18.01.2015 Views

download

download

download

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CIRA, The Italian Aerospace Research Center<br />

Vibration and Acoustics Laboratory<br />

Modal Analysis of a Benchmark Aeronautic Structure:<br />

Modal Analysis and FE Model Updating<br />

V. Quaranta, I. Dimino<br />

LMS Conference March 22 & 23, 2006, Munich


Objectives<br />

! To assess a complete reference case on which<br />

applying the available methodologies aiming to the<br />

dynamic characterisation of an aeronautical<br />

structure.<br />

! The work was accomplished by the following<br />

steps:<br />

" Model realisation (after GA specifications)<br />

" Numerical analysis<br />

" Experimental tests<br />

" Model upgrade<br />

" Model validation


Dynamic Characterization<br />

of Aerospace Structures<br />

# Finite Element Analysis;<br />

# Ground Vibration Test (Phase(<br />

Separation<br />

and Phase Resonance techniques):<br />

Pre-Test, Test and experimental model<br />

validation;<br />

# Computational Model Updating by using the<br />

inverse sensitivity approach.


Ground Vibration Test


Description of Testbed<br />

Design requirements:<br />

# Beam assembly;<br />

# 3 modes within 1 Hz<br />

frequency band;<br />

# Damping treatment;<br />

# Very low frequency<br />

sospension.<br />

Garteur SM AG 19


FE Model<br />

Eigenvalue analysis of undamped sistems<br />

It consists of:<br />

V1<br />

FEM Simulation:<br />

# 3018 DOFs; 0 – 150 Hz<br />

# 502 elements;<br />

# 2 lumped masses (CONM2).<br />

-900.<br />

-750.<br />

-600.<br />

-450.<br />

-300.<br />

-150.<br />

0.<br />

150.<br />

300.<br />

450.<br />

600.<br />

750.<br />

900.<br />

Y<br />

-900.<br />

-750.<br />

-600.<br />

-450.<br />

-300.<br />

-150.<br />

Z<br />

Y<br />

0.<br />

150.<br />

300.<br />

450.<br />

600.<br />

X<br />

X<br />

Lumped masses


Mode Description<br />

2N wing bending<br />

Fuselage rotation<br />

Antisymmetric wing torsion<br />

Symmetric wing torsion<br />

3N wing bending<br />

4N wing bending<br />

Antisymmetric fore and aft<br />

Symmetric fore and aft<br />

5N wing bending<br />

Tail torsion<br />

Lateral fuselage bending<br />

2nd tail bending<br />

6N wing bending<br />

7N wing bending<br />

Natural Frequency (Hz)<br />

5.82<br />

16.81<br />

31.35<br />

31.51<br />

38.61<br />

46.74<br />

53.92<br />

57.11<br />

65.44<br />

67.94<br />

105.07<br />

131.04<br />

136.74<br />

151.59


Pre-Test<br />

An integrated<br />

experimental–analytical<br />

analytical<br />

procedure allows to:<br />

# Plan testing strategy;<br />

# Optimise the<br />

experimental setup;<br />

# Improve results quality;<br />

# Reduce testing time.


Pre-Testing<br />

# Guyan<br />

Reduction and<br />

its variant - the<br />

M/K method;<br />

# MODMAC<br />

method;<br />

! 27 nodes<br />

! 32 DOF<br />

Experimental Test Setup


Pre-Test<br />

MAC =<br />

r,<br />

r'<br />

[ ]<br />

T<br />

V [ ]<br />

r<br />

Vr<br />

'<br />

([ ]<br />

T<br />

[ ])[ ]<br />

T<br />

V V V [ V ]<br />

r<br />

r<br />

( )<br />

r'<br />

2<br />

r'


MAC : Accelerometer plan<br />

(0 -150<br />

Hz)<br />

Coarse Mesh (27 dofs)<br />

Refined mesh (32 dofs)


Phase Separation Test<br />

# Identification of the Normal Modes<br />

Broadband excitation (random<br />

or impulsive or sine sweep) to global identify all<br />

modes of the structure and modal parameters extraction (curve fitting methods)<br />

from the measured FRFs.<br />

Hypothesis: : LTA structural system<br />

! Random signal<br />

4-150<br />

Hz


Phase Separation Test<br />

H 1( ω)<br />

=<br />

H<br />

2<br />

( ω)<br />

=<br />

XPS<br />

input(<br />

APS)<br />

output(<br />

APS)<br />

XPS<br />

γ<br />

2<br />

=<br />

H<br />

H<br />

1<br />

2<br />

( ω)<br />

( ω)


Normal mode Test<br />

# MIF<br />

∑<br />

∑<br />

u'<br />

i<br />

u<br />

MIF = 1−<br />

2<br />

u<br />

i<br />

i<br />

# Lissajous Display<br />

# Phase Scatter<br />

Diagram<br />

# On-line<br />

visualization<br />

of mode shapes.


Normal mode:<br />

generalized parameters<br />

Complex power<br />

P<br />

1 T<br />

= [ f ] [ V ] P= P’ + jP’’<br />

2<br />

ω k<br />

Resonance frequencies :<br />

⎛<br />

⎜<br />

⎝<br />

dP'<br />

⎞<br />

⎟<br />

dω<br />

⎠<br />

ω<br />

k<br />

=<br />

0<br />

P' '( ω k<br />

) =<br />

0<br />

P'(<br />

ω )<br />

k<br />

= α<br />

k<br />

ω<br />

k<br />

γ<br />

k<br />

⎛<br />

⎜<br />

⎝<br />

dP''<br />

⎞<br />

⎟<br />

dω<br />

⎠<br />

ω<br />

k<br />

= −γ<br />

k<br />

= −µ<br />

k<br />

ω<br />

2<br />

k


Normal mode Test


Linearity Tests<br />

2N 4N wing wing bending mode mode<br />

42<br />

5,3<br />

41,8<br />

natural frequenciy (Hz)<br />

natural frequency (Hz)<br />

41,6<br />

41,4<br />

41,2<br />

5,26<br />

5,22<br />

5,18<br />

5,14<br />

41<br />

5,1<br />

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5<br />

Master Force (N)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1<br />

Master Force (N)


Measured Normal Modes<br />

Nr<br />

Mode<br />

MIF<br />

ξ [%]<br />

M gen<br />

[Kg m²] m<br />

Frequency [Hz]<br />

Ph Separation<br />

Frequency [Hz]<br />

Ph Resonance<br />

Excitation<br />

1<br />

2N wing bending<br />

0.9749<br />

1.476<br />

3.27<br />

5.30<br />

5.2656<br />

Gart 22z<br />

2<br />

Fuselage rotation<br />

0.9955<br />

1.4<br />

4.46<br />

14.25<br />

13.3750<br />

Gart 13z<br />

3<br />

Antisymmetric wing<br />

torsion<br />

0.9559<br />

0.6<br />

0.61<br />

33.25<br />

28.17<br />

Gart 22z<br />

Gart 19z<br />

4<br />

Symmetric wing<br />

torsion<br />

0.95<br />

0.5<br />

1.71<br />

32.86<br />

28.637<br />

Gart 22z<br />

Gart 19z<br />

5<br />

3N wing bending<br />

0.9990<br />

1.084<br />

2.06<br />

31.83<br />

31.5<br />

Gart 13z<br />

6<br />

4N wing bending<br />

0.9998<br />

0.510<br />

2.8<br />

42.81<br />

41.4843<br />

Gart 13z<br />

7<br />

Antisymmetric Fore<br />

and aft<br />

0.9525<br />

2.186<br />

7.14<br />

41.15<br />

40.20<br />

Gart 3y<br />

8<br />

Symmetric Fore<br />

and aft<br />

0.9989<br />

0.8<br />

3.84<br />

51.09<br />

50.6718<br />

Gart 7x<br />

9<br />

5N wing bending<br />

0.9905<br />

2.1<br />

3.76<br />

55.62<br />

54.00<br />

Gart 13z<br />

10<br />

Tail torsion<br />

0.9980<br />

0.2<br />

0.48<br />

61.90<br />

56.5312<br />

Gart 25z<br />

11<br />

Lateral fuselage<br />

bending<br />

0.9990<br />

0.840<br />

1.02<br />

100.48<br />

97.3437<br />

Gart 3y<br />

12<br />

2° Tail bending<br />

0.9788<br />

1.280<br />

3.38<br />

120.00<br />

117.3906<br />

Gart 13z<br />

13<br />

6N wing bending<br />

0.9960<br />

0.963<br />

2.17<br />

126.66<br />

123.3750<br />

Gart 13z<br />

14<br />

7N wing bending<br />

0.9568<br />

1.358<br />

1.73<br />

134.34<br />

132.1718<br />

Gart 13z


Correlation of Analytical and<br />

Test Results<br />

T<br />

[ Φ ] [ M ][ Φ ] [ I ]<br />

sper num sper<br />

=<br />

XOR<br />

=<br />

MAC =<br />

T<br />

[ Φ ] [ M ][ Φ ]<br />

num<br />

num<br />

sper<br />

T<br />

T<br />

( Φ Φ )( Φ Φ )<br />

test<br />

Φ<br />

T<br />

test<br />

test<br />

Φ<br />

num<br />

num<br />

2<br />

num


Modal correlation<br />

MAC<br />

=<br />

T<br />

T<br />

( Φ Φ )( Φ Φ )<br />

test<br />

Φ<br />

T<br />

test<br />

test<br />

Φ<br />

num<br />

num<br />

2<br />

num


FRFs correlation<br />

FRAC( j)<br />

=<br />

T<br />

2<br />

FE<br />

Test<br />

{ H ( ω<br />

i<br />

) } { H ( ω ) }<br />

j<br />

i j<br />

FE T<br />

FE<br />

Test T<br />

{ H ( ω ) } { H ( ω ) }{ H ω } { H ( ω ) }<br />

Test<br />

( )( ( )<br />

)<br />

i<br />

j<br />

i<br />

j<br />

i<br />

j<br />

i<br />

j


FE model updating:<br />

sensitivity study<br />

Design Sensitivity<br />

Wing<br />

Wing Fuselage junction<br />

V Tail<br />

H Tail<br />

Physical and geometric<br />

updating parameters:<br />

# Cross section;<br />

# Area moment of inertia Ix;<br />

# Area moment of inertia Iy;<br />

# Area moment of inertia Iz.


Model Updating Results<br />

35,00%<br />

30,00%<br />

25,00%<br />

20,00%<br />

Wing<br />

Plate<br />

Vertical Tail<br />

Horizzontal Tail<br />

Density of the model<br />

Density of the plate<br />

Parameter changes after updating<br />

A<br />

Iy<br />

Error % FE Model versus GVT<br />

-7%<br />

-19.81%<br />

+2.66%<br />

+24.54%<br />

+28.06%<br />

+10%<br />

+10%<br />

+4.86%<br />

+23.71%<br />

Iz<br />

-30.36%<br />

J<br />

-15.49%<br />

-10.23%<br />

-21.20%<br />

Updated FEM -9.86%<br />

Initial FEM<br />

15,00%<br />

10,00%<br />

5,00%<br />

0,00%<br />

5,27 13,38 28,17 28,64 31,5 41,48 40,2 50,67 54 56,53 97,34 117,4 123,4 132,2<br />

Natural frequency


FE Model Validation


Conclusions<br />

# Pre – Test Analysis allowed to optimize the<br />

accelerometer’s number and location;<br />

# Experimental model validation was performed<br />

using two methods: modal and FRF analysis;<br />

# Computational<br />

model<br />

updating<br />

procedure<br />

made use of the inverse sensitivity approach.<br />

It drastically reduced the FE modal parameter<br />

errors.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!