18.01.2015 Views

An Open Source CFD-DEM Perspective

An Open Source CFD-DEM Perspective

An Open Source CFD-DEM Perspective

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong>-<strong>DEM</strong> <strong>Perspective</strong><br />

Christoph Goniva<br />

Christoph Kloss<br />

Alice Hager<br />

Stefan Pirker<br />

Christian Doppler Laboratory on Particulate Flow Modelling<br />

Johannes Kepler University Linz<br />

www.cfdem.com | www.particule-flow.at


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Contents<br />

1. Introduction of the Laboratory<br />

2. Motivation<br />

3. The <strong>Open</strong> <strong>Source</strong> code LIGGGHTS / LAMMPS<br />

4. <strong>CFD</strong> – <strong>DEM</strong> coupling<br />

5. Validation example<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Introduction of the lab<br />

Founded in 2009 by Dr. Stefan Pirker at the<br />

Johannes Kepler University, Linz, Austria.<br />

Governmental funding (50-70%) for application<br />

oriented fundamental research based on existing<br />

knowledge on particulate flows at the Institute of<br />

Fluid Mechanics and Heat Transfer of the JKU.<br />

Our research focus covers:<br />

(a) solids charging,<br />

(b) offgas scrubbing,<br />

(c) industrial dust recycling,<br />

(d) sedimentation & erosion and<br />

(e) trickling beds<br />

Current Industrial partners:<br />

Siemens VAI Metals Technologies,<br />

voestalpine Stahl,<br />

voestalpine Donawitz,<br />

Polysius (ThyssenKrupp group)<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at<br />

3


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Introduction of the lab<br />

CD-Laboratory on<br />

Particulate Flow Modelling<br />

Industrial Partners<br />

Offgas Scrubbing<br />

Solids Charging<br />

Industrial Dust Recycling<br />

Associated research<br />

Sedimentation & Erosion<br />

Tickling Bed<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Motivation<br />

Many applications require coupled <strong>CFD</strong>-<strong>DEM</strong> simulations !<br />

Unfortunately, the <strong>CFD</strong>-<strong>DEM</strong> Approach is CPU intensive …<br />

<strong>An</strong> efficient <strong>CFD</strong>-<strong>DEM</strong> solver is on need<br />

‣ Fast solver (both <strong>CFD</strong> and <strong>DEM</strong>)<br />

‣ Efficient parallelisation<br />

‣ Low license fees<br />

‣ <strong>Open</strong> access to source code<br />

‣ GPU acceleration for <strong>DEM</strong> is desirable to handle industrial scale processes<br />

<strong>Open</strong>Foam is already established as leading <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> toolbox…<br />

LIGGGHTS is a parallel efficient <strong>DEM</strong> solver<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

5


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

LAMMPS =<br />

Large Atomic and Molecular Massively Parallel Simulator<br />

<strong>Open</strong><strong>Source</strong> under GPL, provided by Sandia National Laboratories since the<br />

mid 90‘s (http://lammps.sandia.gov/)<br />

Widely used (over 500 journal publications 2000-2009 using LAMMPS)<br />

see http://lammps.sandia.gov/papers.html<br />

LAMMPS has potentials for soft materials (biomolecules, polymers), solid-state<br />

materials (metals, semiconductors) and coarse-grained systems. It can be used<br />

to model atoms or, more generically, as a parallel particle simulator at the<br />

atomic, meso, or continuum scale.<br />

LAMMPS is a C++ code, it runs on single processors or in parallel using messagepassing<br />

techniques and a spatial-decomposition of the simulation domain.<br />

The code is designed to be easy to modify or extend with new functionality.<br />

It is very fast and also used on huge clusters (e.g. on Sandia Red Storm with 16k<br />

Quadcore nodes, simulations with 2 billion particles performed)<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

6


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

Currently, LAMMPS offers a fast and efficient “GRANULAR” package for<br />

doing <strong>DEM</strong> simulations. Thereby, we profit from the fact that there are physical<br />

and algorithmic analogies between <strong>DEM</strong> and MD<br />

The key functionalities of this LAMMPS package are:<br />

‣ Pairwise interaction styles: Hooke and Hertz contact laws<br />

with optional friction<br />

‣ Granular walls: (Hooke and Hertz, with optional friction) for<br />

geometric primitives (box, cylinder)<br />

‣ Shear history for pairwise interaction and granular walls<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

7


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

The key functionalities of this package are (continued):<br />

‣ A function to insert/pour a stream of material into a<br />

geometrical region<br />

‣ Functions to introduce gravity , freeze particles<br />

and exert Stokes drag<br />

‣ Multibody dynamics which can be modified to use it<br />

for handling of non-spherical particles<br />

‣ With pair style “hybrid/overlay”, other LAMMPS functionalities can be<br />

added easily (e.g. adding bonds, point charges, dipole moments,...)<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

8


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

LIGGGHTS application example:<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

9


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

Goals of the <strong>CFD</strong>EM Project:<br />

‣ Creating a <strong>CFD</strong>-<strong>DEM</strong> framework for high performance computing<br />

‣ Make LAMMPS feasible for industrial applications<br />

LIGGGHTS =<br />

LAMMPS IMPROVED FOR GENERAL GRANULAR AND<br />

GRANULAR HEAT TRANSFER SIMULATIONS<br />

WWW.LIGGGHTS.COM | WWW.<strong>CFD</strong>EM.COM<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

10


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

LAMMPS / LIGGGHTS<br />

The following challenges have been tackled with LIGGGHTS:<br />

Feature LAMMPS LIGGGHTS 1.0<br />

Complex wall import from CAD No Yes<br />

Improved pair style No Yes<br />

Moving mesh No Yes<br />

Pour nonspherical clumps<br />

(multisphere method)<br />

No<br />

Macroscopic cohesion model No Yes<br />

Heat transfer model No Yes<br />

In progress...<br />

Particle bonds with torques No In progress...<br />

Wall Stress <strong>An</strong>alysis No Yes<br />

6 dof solver No Yes<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

11


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

<strong>CFD</strong> – <strong>DEM</strong> coupling<br />

Theoretical background:<br />

f4<br />

f1<br />

f2 f3<br />

= +<br />

-(f1 + f2)<br />

αf,1<br />

αf,2<br />

-(f3 + f4)<br />

<strong>DEM</strong> with force on<br />

particles coming<br />

from <strong>CFD</strong><br />

<strong>CFD</strong> with adapted<br />

voidfraction<br />

and momentum sources<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at<br />

12


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

<strong>CFD</strong> – <strong>DEM</strong> coupling<br />

Theoretical background:<br />

Navier-Stokes equations for the fluid in presence of a granular phase<br />

∂α<br />

∂<br />

α f<br />

u f<br />

f<br />

∂ t<br />

ρ<br />

( α ρ u )<br />

f<br />

f<br />

f<br />

∂ t<br />

f<br />

+ ∇ ⋅<br />

( α ρ u )<br />

f<br />

+ ∇ ⋅<br />

f<br />

( α ρ u u ) p K ( u u ) ( )<br />

f f<br />

= −α<br />

∇ −<br />

fs f<br />

−<br />

s<br />

+ ∇ ⋅ α τ + α ρ g<br />

f<br />

f<br />

=<br />

f<br />

0<br />

fluid volume fraction<br />

fluid velocity<br />

τ, p stress tensor, pressure<br />

fluid density<br />

ρ f<br />

K fs<br />

f<br />

fluid solid momentum exchange term<br />

comprises drag force, Magnus and Saffman force, virtual mass force,...<br />

f<br />

f<br />

f<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at<br />

13


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

<strong>CFD</strong> – <strong>DEM</strong> coupling<br />

Theoretical background:<br />

Example for fluid solid momentum exchange Kfs :<br />

Gidaspow (1992): Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach. In Fluidization<br />

VII, Proceedings of the 7 th Engineering Foundation Conference on Fluidization, pages 75‐82<br />

α f<br />

> 0.8:<br />

K<br />

C<br />

d<br />

sl<br />

=<br />

3<br />

4<br />

C<br />

f<br />

d<br />

α<br />

24<br />

=<br />

α Re<br />

p<br />

p<br />

α<br />

f<br />

ρ<br />

f<br />

d<br />

p<br />

u<br />

f<br />

−<br />

( α Re )<br />

−2.65<br />

f<br />

( 1 0.15<br />

)<br />

0.687<br />

+<br />

f<br />

u<br />

p<br />

α<br />

p<br />

,<br />

,<br />

α f<br />

≤ 0.8:<br />

K<br />

sl<br />

α<br />

s<br />

= 150<br />

α<br />

f<br />

2<br />

μ<br />

d<br />

f<br />

2<br />

p<br />

α<br />

sρ<br />

f<br />

+ 1.75<br />

u<br />

f<br />

−<br />

d<br />

p<br />

u<br />

p<br />

.<br />

www.cfdem.com<br />

CD-Laboratory on Particulate Flow Modelling<br />

www.particulate-flow.at<br />

14


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

„LammpsFoam“<br />

init<br />

particle data<br />

<strong>Open</strong>Foam<br />

Solver<br />

LIGGGHTS<br />

end<br />

flow data<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

15


<strong>An</strong> <strong>Open</strong> <strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Implementation<br />

start<br />

<strong>DEM</strong> solver calculates<br />

100 time-steps,<br />

and transfers particle<br />

data to <strong>CFD</strong> solver<br />

<strong>CFD</strong> solver calculates<br />

1 time-step<br />

<strong>CFD</strong> solver fetches<br />

<strong>DEM</strong> particle data<br />

<strong>CFD</strong> solver searches<br />

cell each particle is in<br />

<strong>CFD</strong> solver calculates<br />

volume fraction and<br />

momentum coupling<br />

<strong>CFD</strong> solver transfers<br />

drag forces to <strong>DEM</strong><br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

16


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Implementation<br />

“Chimera” approach for momentum exchange<br />

mesh for<br />

exchange fields<br />

K sl , α<br />

mesh for <strong>CFD</strong><br />

calculations<br />

<strong>DEM</strong> domain<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

17


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

Pressure drop and onset of fluidization in a cylindrical granular bed:<br />

u f 0 – 0.02 m/s<br />

g 9.81 m/s 2<br />

μ f 1.5 e-4 m 2 /s<br />

ρ s 200 kg/m 3<br />

d s 0.001 m (10000 particles)<br />

Fluid boundary conditions<br />

Inital particle packing<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

18


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

validation case, onset of fluidization<br />

inlet velocity<br />

void fraction<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

19


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

pressure drop<br />

according to analytics, the<br />

minimum fluidization velocity is<br />

at 0.012 m/s<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

20


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

Performance:<br />

excessive performance tests have not yet been carried out, a first hint:<br />

10000 particles<br />

1h for 1s simulation time<br />

on 2 2.4 GHz processors<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

21


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

Partly fluidized bed (inhomogeneous velocity BC):<br />

Fluid boundary conditions<br />

Inital particle packing<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

22


<strong>An</strong> <strong>Open</strong>-<strong>Source</strong> <strong>CFD</strong> – <strong>DEM</strong> <strong>Perspective</strong><br />

Validation example<br />

Partly fluidized bed (inhomogeneous velocity BC):<br />

www.cfdem.com CD-Laboratory on Particulate Flow Modelling www.particulate-flow.at<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!