18.01.2015 Views

The genomics of plant-virus co-evolution in wild Brassica species

The genomics of plant-virus co-evolution in wild Brassica species

The genomics of plant-virus co-evolution in wild Brassica species

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>genomics</strong> <strong>of</strong> <strong>plant</strong>-<strong>virus</strong><br />

<strong>co</strong>-<strong>evolution</strong> <strong>in</strong> <strong>wild</strong> <strong>Brassica</strong><br />

<strong>species</strong><br />

Mike Kearsey<br />

Agriculture and<br />

Agri-Food Canada<br />

Environmental Genomics Grant Number NER/T/S/2002/00902<br />

1


Questions.<br />

• Do <strong>wild</strong> <strong>plant</strong>s show a different genetic response<br />

to local <strong>virus</strong> pathotypes than to foreign ones<br />

• Is there <strong>co</strong>mpetition between different <strong>virus</strong><br />

pathotypes replicat<strong>in</strong>g with<strong>in</strong> a s<strong>in</strong>gle <strong>plant</strong> and<br />

does the out<strong>co</strong>me depend on <strong>plant</strong> genotype<br />

• Do these effects vary with <strong>plant</strong> <strong>species</strong><br />

2


Transcriptomics Approach.<br />

2. To develop and optimise an oligonucleotide<br />

microarray to study <strong>Brassica</strong> <strong>genomics</strong> <strong>in</strong><br />

order to…..<br />

4. … identify genes <strong>in</strong>volved <strong>in</strong> differential <strong>plant</strong><br />

host responses to challenge from different viral<br />

genotypes.<br />

3


Experimental System:<br />

Plant <strong>co</strong>mmunities & <strong>virus</strong> isolate orig<strong>in</strong><br />

Turnip Mosaic Virus<br />

(TuMV)<br />

Llandudno, Wales<br />

<strong>Brassica</strong> oleracea<br />

& TuMV GBR83<br />

• Poty<strong>virus</strong>, s<strong>in</strong>glestranded<br />

+ sense RNA<br />

genome (10K bp)<br />

W<strong>in</strong>spit, Dorset<br />

<strong>Brassica</strong> oleracea<br />

& TuMV GBR98<br />

Culham, Oxon<br />

<strong>Brassica</strong> rapa<br />

Sturm<strong>in</strong>ster Newton, Dorset<br />

<strong>Brassica</strong> rapa<br />

4


Genetic variation – TuMV <strong>co</strong>at<br />

100<br />

100<br />

100<br />

prote<strong>in</strong> nucleotide sequence<br />

2 - 4 major phylogenetic<br />

groups supported by high<br />

bootstrap values<br />

<strong>The</strong> genetic diversity <strong>of</strong><br />

W<strong>in</strong>spit, Dorset<br />

sub-populations Chapman‘s Pool, Dorset is partially<br />

Kimmeridge, Dorset<br />

def<strong>in</strong>ed Great by Orme, the Walesgeographic<br />

Staithes,<br />

location<br />

North Yorkshire<br />

GBR 48(S)<br />

GBR 47(S)<br />

100<br />

GBR 98(W)<br />

GBR 44(W)<br />

GBR 43(W) GBR 98<br />

GBR 38(W) Pathotype 1<br />

GBR 36(W)<br />

GBR 37(W)<br />

GBR 23(C)<br />

GBR 31(C)<br />

GBR 18(K)<br />

GBR 21(W)<br />

GBR 29(C)<br />

GBR 19(C)<br />

GBR 35(W)<br />

GBR 32(C)<br />

GBR 28(C)<br />

UK 1<br />

UK2<br />

1<br />

GBR 56(GO)<br />

GBR 26(K)<br />

GBR 27(K)<br />

GBR 25(K)<br />

GBR 24(K)<br />

GBR 20(K)<br />

GBR 30(K)<br />

GBR 91(GO)<br />

GBR 22(C)<br />

GBR 46(S)<br />

GBR 49(S)<br />

GBR 50(S)<br />

GBR 45(S)<br />

GBR 57(GO)<br />

GBR 53(GO) 2<br />

GBR 52(GO)<br />

GBR 51(S)<br />

GBR 55(GO)<br />

GBR 54(GO)<br />

GBR 83(GO)<br />

GBR 83<br />

Pathotype 3<br />

3<br />

5<br />

4


Results from 1 st <strong>co</strong>mpetition experiment<br />

Wild cabbage from Llandudno (LL3);<br />

local isolate is GBR 83<br />

number <strong>of</strong> <strong>plant</strong>s<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

B. napus – susceptible <strong>co</strong>ntrol<br />

Inoculation 1st round 2nd round 3rd round 4th round 5th round<br />

mixed <strong>in</strong>fected<br />

Infected with GBR 98 from W<strong>in</strong>spit<br />

Infected with GBR 83 from Llandudno<br />

number <strong>of</strong> <strong>plant</strong>s<br />

Wild cabbage from W<strong>in</strong>spit (WS15);<br />

local isolate is GBR 98<br />

number <strong>of</strong> <strong>plant</strong>s<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Inoculation 1st round 2nd round 3rd round 4th round 5th round<br />

Inoculation 1st round 2nd round 3rd round 4th round 5th round<br />

6


<strong>Brassica</strong> Array / Sub-array Layout - Schematic<br />

15,000 oligos spotted <strong>in</strong> duplicate<br />

-14,996 <strong>Brassica</strong> napus<br />

- 4 TuMV<br />

26<br />

12<br />

26<br />

4<br />

Land<strong>in</strong>g light<br />

Stratagene Alien Oligo Controls<br />

676<br />

Oligos duplicated with<strong>in</strong> a subarray<br />

7


Why create a <strong>Brassica</strong> array<br />

<strong>Brassica</strong>s closely related to Arabidopsis,<br />

BUT:<br />

• <strong>Brassica</strong>s are ancient polyploid <strong>species</strong><br />

so need to dist<strong>in</strong>guish between multiple<br />

members <strong>of</strong> related gene families.<br />

• B.napus chip has both A and C genomes.<br />

• Many <strong>Brassica</strong> genes would not be<br />

represented on an Arabidopsis array.<br />

8


Gene Families Arrayed.<br />

Enriched for:<br />

• Stress (biotic and abiotic)<br />

• Meiosis and reproduction<br />

• Genes re<strong>co</strong>gnisable <strong>in</strong> Arabidopsis<br />

• Genes with no Arabidopsis equivalent.<br />

Avoided:<br />

• Housekeep<strong>in</strong>g and ribosomal genes<br />

9


Experimental design<br />

for each population/<strong>species</strong>.<br />

Mock<br />

(n <strong>plant</strong>s)<br />

X r slides<br />

X r slides<br />

TuMVGBR83<br />

(n <strong>plant</strong>s)<br />

X r slides<br />

TuMV GBR98<br />

(n <strong>plant</strong>s)<br />

10


Results – Quantitative analysis<br />

Genes Differentially Expressed<br />

Mock vs. 83<br />

Mock vs. 98<br />

83 vs. 98<br />

B. rapa - Culham<br />

1107<br />

1199<br />

656<br />

B. rapa – Stur. Newt<br />

762<br />

615<br />

362<br />

B. oleracea - Llandudno<br />

141<br />

103<br />

1<br />

B. oleracea - W<strong>in</strong>spit<br />

30<br />

29<br />

1<br />

11


Results – Qualitative analysis<br />

• GO analysis:<br />

1. Biological Processes - describes what it changes<br />

2. Molecular Function – describes what it does<br />

3. Cellular Component – describes where it acts<br />

• GOSSIP: uses GO annotations to test whether terms<br />

are enriched with<strong>in</strong> a group <strong>of</strong> genes <strong>co</strong>mpared to a<br />

reference set.<br />

12


GO Analysis - Highlights<br />

Significant<br />

GO Terms<br />

Photosystem II<br />

/Thylakoid<br />

Proteolysis<br />

Biological significance<br />

Known to be down-regulated <strong>in</strong><br />

several <strong>plant</strong>-<strong>virus</strong> systems<br />

Fungal attack causes degradation<br />

<strong>of</strong> unnecessary prote<strong>in</strong>s<br />

Oxidative<br />

stress<br />

Water<br />

deprivation<br />

Known <strong>plant</strong>-resistance related pathways<br />

Useful markers for programmed<br />

cell death (PCD)<br />

L<strong>in</strong>k to environmental <strong>co</strong>nditions<br />

and possible explanation for<br />

TuMV’s absence <strong>in</strong> <strong>wild</strong> B.rapa<br />

14


GO Analysis<br />

Significant<br />

GO Terms<br />

Carbon<br />

utilisation<br />

Nucleosome<br />

&<br />

Nucleosome<br />

assembly<br />

Biological significance<br />

Culham <strong>plant</strong>s down-reg these<br />

genes <strong>in</strong> response to both<br />

isolates. Not significant <strong>in</strong><br />

Sturm<strong>in</strong>ster Newton<br />

Both are related terms <strong>in</strong> two<br />

separate ontologies. Significant<br />

difference between isolates:<br />

83 up-regulated w.r.t 98;<br />

detected <strong>in</strong> both <strong>plant</strong> pops.<br />

15


Summary<br />

• We developed a 15K <strong>Brassica</strong> oligo array<br />

to analyse gene expression <strong>of</strong> three related<br />

<strong>Brassica</strong> <strong>species</strong>.<br />

• We detected ~10-fold greater expression <strong>in</strong><br />

<strong>wild</strong> B. rapa than B.oleracea <strong>in</strong> response to<br />

two TuMV isolates.<br />

• GO analysis suggests that many genes<br />

detected are <strong>in</strong>volved <strong>in</strong> fail<strong>in</strong>g B. rapa<br />

resistance pathways and PCD.<br />

16


CEH Oxford:<br />

Acknowledgements<br />

Jono Reeves, Denise Pallett, Hui Wang, Ian<br />

Cooper, Bela Tiwari, Delia McCall.<br />

HRI Warwick:<br />

John Walsh, Christian Obermeier.<br />

University Of Birm<strong>in</strong>gham:<br />

Rachel Machado, Zewei Luo, Ela<strong>in</strong>e Howell.<br />

Agriculture and Agri-food Canada:<br />

Andrew Sharpe, Derek Lydiate, Branimir<br />

Gretvaj, Chris Lewis<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!