18.01.2015 Views

Math 250B Practice Questions for Test 3

Math 250B Practice Questions for Test 3

Math 250B Practice Questions for Test 3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Math</strong> <strong>250B</strong><br />

<strong>Practice</strong> <strong>Questions</strong> <strong>for</strong> <strong>Test</strong> 3<br />

1. Locate the center of mass of the plane region bounded by y = x 2 , x = 0, y = 1 with density<br />

δ(x, y) = xy.<br />

Answer: (x, y) = ( 4<br />

7 , 3 )<br />

4<br />

2. Locate the center of mass of the solid region bounded by x = y 2 , z = 0, x + z = 1 with a<br />

constant density δ(x, y, z) = 1.<br />

Answer: (x, y, z) = ( 3<br />

7 , 0, 2 )<br />

7<br />

3. Set-up an iterated triple integral <strong>for</strong> ∫∫∫ Q<br />

f(x, y, z) dV where Q is the first-octant region under<br />

the plane of equation 3x + 2y + z = 6.<br />

Answer:<br />

∫ 2 ∫ (6−3x)/2 ∫ 6−3x−2y<br />

0<br />

0<br />

0<br />

f(x, y, z) dz dy dx<br />

4. Set-up a triple integral in cylinder coordinates to compute ∫∫∫ Q (x2 + y 2 ) dV where Q is the<br />

solid region in the first octant that is inside the hemisphere z = √ 9 − x 2 − y 2 and outside the<br />

cylinder x 2 + y 2 = 2y<br />

Answer:<br />

∫ π/2 ∫ 3<br />

0<br />

2 sin θ<br />

∫ √ 9−r 2<br />

0<br />

r 3 dz dr dθ<br />

5. Set-up an iterated triple integral in spherical coordinates to evaluate ∫∫∫ Q (x2 + y 2 ) dV where<br />

Q is the region that lies between the spheres x 2 + y 2 + z 2 = 1 and x 2 + y 2 + z 2 = 9, and inside<br />

the cone z = √ 4x 2 + 4y 2 .<br />

Answer:<br />

∫ 2π ∫ arctan(1/2) ∫ 3<br />

0<br />

0<br />

6. Use spherical coordinates to evaluate<br />

1<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

ρ 4 sin 3 φ dρ dφ dθ<br />

∫ √ 2−x 2 −y 2<br />

− √ √<br />

1−x 2 x 2 +y 2<br />

√<br />

x 2 + y 2 + z 2 dz dy dx.<br />

Answer: π(2 − √ 2)<br />

7. Use spherical coordinates to find the mass of the solid region above the cone z = √ x 2 + y 2 and<br />

below z = 3 with density δ = √ x 2 + y 2 + z 2 .<br />

Answer:<br />

∫ 2π ∫ π/4 ∫ 3 sec φ<br />

0<br />

0<br />

0<br />

ρ 3 sin φ dρ dφ dθ = 27π<br />

2 (2√ 2 − 1)<br />

8. Evaluate ∫∫∫ B (x2 + y 2 ) dV where B = {(x, y, z) | x 2 + y 2 + z 2 ≤ 1} is the unit ball in R 3 .<br />

Answer: 8π/15


<strong>Math</strong> <strong>250B</strong> <strong>Practice</strong> <strong>Questions</strong> <strong>for</strong> <strong>Test</strong> 3 Page 2 of 2<br />

9. Assume that p(x, y, z) is a function that measures the air pollutant particles per cubic meters<br />

of air at any point inside BC Place Stadium in Vancouver. What does<br />

∫∫∫<br />

p(x, y, z) dV<br />

represent physically<br />

(BC Place)<br />

Answer: It represents the total amount of air pollution inside BC Place.<br />

10. Let R be the region bounded by the curves xy = 1, xy = 4, y = 1, and y = 2. Evaluate ∫∫ R exy dA<br />

by using an appropriate change of variables.<br />

Answer: (e 4 − e) ln 2<br />

11.<br />

∫∫<br />

Let R be the parallelogram region with vertices at (0, 0), (3, −3), (5, −2), and (2, 1). Evaluate<br />

(x + y) dA by using an appropriate change of variables.<br />

R<br />

Answer: By using u = x + y and v = x − 2y, we get ∫∫ R<br />

(x + y) dA = 27/2.<br />

Note that if we used (x, y) coordinates, we would need to evaluate three double integrals.<br />

∫ 2 ∫ x/2<br />

0<br />

−x<br />

(x + y) dy dx +<br />

∫ 3 ∫ 3−x<br />

2<br />

−x<br />

(x + y) dy dx +<br />

∫ 5 ∫ 3−x<br />

3<br />

(x−9)/2<br />

(x + y) dy dx = 27<br />

2<br />

12. Let R be the region in the first quadrant bounded by the curves xy = 1, xy = 2, y = x, and<br />

y = 3x. Evaluate ∫∫ R y2 dA by using the change of variables u = xy and v = y/x.<br />

Answer: 3/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!