Impact of the MJO on the Gulf of Carpentaria during the monsoon

Impact of the MJO on the Gulf of Carpentaria during the monsoon Impact of the MJO on the Gulf of Carpentaria during the monsoon

phys.ocean.dal.ca
from phys.ocean.dal.ca More from this publisher
18.01.2015 Views

ong>Impactong> ong>ofong> ong>theong> ong>MJOong> on ong>theong> Gulf ong>ofong> Carpentaria during ong>theong> monsoon CAWCR Annual Workshop 13 November 2012 Melbourne, VIC, Australia Eric C. J. Oliver 1,2 , Keith R. Thompson 2 1 Institute for Marine and Antarctic Studies University ong>ofong> Tasmania, Hobart, TAS, Australia 2 Physical Oceanography, Department ong>ofong> Oceanography Dalhousie University, Halifax, NS, Canada

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g> <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong><br />

<strong>during</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong><br />

CAWCR Annual Workshop<br />

13 November 2012<br />

Melbourne, VIC, Australia<br />

Eric C. J. Oliver 1,2 , Keith R. Thomps<strong>on</strong> 2<br />

1 Institute for Marine and Antarctic Studies<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania, Hobart, TAS, Australia<br />

2 Physical Oceanography, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography<br />

Dalhousie University, Halifax, NS, Canada


The Madden-Julian Oscillati<strong>on</strong><br />

The Madden-Julian Oscillati<strong>on</strong> (<str<strong>on</strong>g>MJO</str<strong>on</strong>g>) is an intraseas<strong>on</strong>al (30-90<br />

day period) phenomen<strong>on</strong> that originates over <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorial<br />

Indian Ocean and propagates eastward<br />

o S<br />

Associated with deep c<strong>on</strong>vecti<strong>on</strong> and z<strong>on</strong>al wind anomalies at<br />

both low and high levels in <str<strong>on</strong>g>the</str<strong>on</strong>g> tropics<br />

Characterized by bivariate index [Wheeler and Hend<strong>on</strong>, 2004]


The <str<strong>on</strong>g>MJO</str<strong>on</strong>g> and Global Sea Level<br />

Oliver and Thomps<strong>on</strong> [JGR, 2010] calculated statistical c<strong>on</strong>necti<strong>on</strong>s<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g> and global sea level using a coherence-based metric<br />

Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern<br />

Indian Ocean<br />

<strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Carpentaria</strong><br />

Equatorial<br />

Pacific<br />

Coastal<br />

Americas<br />

0.7<br />

50 o N<br />

0.6<br />

25 o N<br />

0.5<br />

0 o<br />

0.4<br />

25 o S<br />

0.3<br />

50 o S<br />

0.2<br />

60 o E 120 o E 180 o W 120 o W 60 o W 0 o<br />

0.1


The <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong><br />

The <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong> (GOC) is a shallow (~50 m avg.) sea north<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Australia. It neighbours shallow Arafura and Timor Seas and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> deep waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ind<strong>on</strong>esian Archipelago to <str<strong>on</strong>g>the</str<strong>on</strong>g> west as well<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> deep waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Western Pacific to <str<strong>on</strong>g>the</str<strong>on</strong>g> East<br />

"GOC" regi<strong>on</strong><br />

for wind<br />

model<br />

domain<br />

tide gauge<br />

locati<strong>on</strong>s


The <str<strong>on</strong>g>MJO</str<strong>on</strong>g> and Coastal Sea Level<br />

Sea level from tide gauges also coherent with <str<strong>on</strong>g>MJO</str<strong>on</strong>g> over<br />

intraseas<strong>on</strong>al time scales:<br />

0.9<br />

0.8<br />

0.7<br />

Groote Ey.<br />

Karumba<br />

Weipa<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> energy<br />

0.6<br />

coherence<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.05 0.1 0.15<br />

frequency [cpd]


Observed Wind<br />

Surface wind (10m) over <str<strong>on</strong>g>the</str<strong>on</strong>g> GOC is predominantly northwesterly<br />

<strong>during</strong> m<strong>on</strong>so<strong>on</strong> seas<strong>on</strong> (peak in January) and <str<strong>on</strong>g>the</str<strong>on</strong>g> predominantly<br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>asterly trade winds peak six m<strong>on</strong>ths later, in July<br />

8<br />

1600<br />

6<br />

1400<br />

v [m/s]<br />

4<br />

2<br />

0<br />

−2<br />

actual occurrence<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

m<strong>on</strong>so<strong>on</strong><br />

northwesterlies<br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>asterly<br />

trades<br />

−4<br />

200<br />

−6<br />

−8 −6 −4 −2 0 2 4 6<br />

u [m/s]<br />

0<br />

E NE N NW W SW S SE E<br />

wind directi<strong>on</strong>


Observed Wind<br />

0.8<br />

0.7<br />

sea level<br />

resp<strong>on</strong>se<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g>/wind<br />

coherence<br />

0.08<br />

0.07<br />

Wind over <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> is<br />

predominantly northwesterly or<br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>asterly ( histogram bars)<br />

coherence<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

maximum sea level [m]<br />

The coherence between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

and surface wind is highest for<br />

ESE and WNW winds ( line)<br />

Sea level in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> resp<strong>on</strong>ds<br />

preferentially to SSE and NNW<br />

winds ( line)<br />

0.2<br />

0.02<br />

0.1<br />

0.01<br />

0<br />

0<br />

E NE N NW W SW S SE E<br />

wind directi<strong>on</strong><br />

These factors combine to make<br />

sea level in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> particularly<br />

resp<strong>on</strong>sive to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g>


Seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> ISV<br />

Str<strong>on</strong>g seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> wind, sea level, and <str<strong>on</strong>g>MJO</str<strong>on</strong>g> relati<strong>on</strong>ship over<br />

intraseas<strong>on</strong>al time scales.<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

Power <str<strong>on</strong>g>of</str<strong>on</strong>g> northwesterly surface wind<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

Coherence between wind and <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

Power <str<strong>on</strong>g>of</str<strong>on</strong>g> Karumba sea level<br />

J<br />

0.015 0.02 0.025 0.03 0.035 0.04 0.045<br />

frequency [cpd]<br />

J<br />

J<br />

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.015 0.02 0.025 0.03 0.035 0.04 0.045<br />

frequency [cpd]<br />

frequency [cpd]<br />

600 800 1000 1200 1400 1600 1800<br />

power<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 6 8 10 12 14 16<br />

coherence<br />

power * 100<br />

Northwesterly surface wind is str<strong>on</strong>gly coherent with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

<strong>during</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong> (Austral Summer) and this corresp<strong>on</strong>ds to<br />

seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum intraseas<strong>on</strong>al sea level variability .


Numerical Model<br />

Princet<strong>on</strong> Ocean Model (POM) [Blumberg and Mellor, 1987]<br />

N<strong>on</strong>-linear, two-dimensi<strong>on</strong>al<br />

barotropic<br />

3 o S<br />

depth [m]<br />

4000<br />

Ten-minute spatial resoluti<strong>on</strong><br />

(157 x 103 grid points)<br />

6 o S<br />

9 o S<br />

3500<br />

3000<br />

2500<br />

12 s time step for CFL c<strong>on</strong>d.<br />

12 o S<br />

Groote<br />

Eylandt<br />

Weipa<br />

2000<br />

1500<br />

Radiati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s at<br />

open boundaries<br />

15 o S<br />

18 o S<br />

Karumba<br />

1000<br />

500<br />

Sea level and both z<strong>on</strong>al and<br />

meridi<strong>on</strong>al currents output daily<br />

125 o E 130 o E 135 o E 140 o E 145 o E<br />

0<br />

Bathymetry from CSIRO, using Geoscience Australia (2009) data<br />

Forced by NCEP/NCAR Reanalysis 2 winds (6 hourly) and we are<br />

c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> POM results to be <str<strong>on</strong>g>the</str<strong>on</strong>g> wind-forced, barotropic<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong>


Predicted Sea Level<br />

Modeled sea level matches well with tide gauge records<br />

RMS error [cm]:<br />

Correlati<strong>on</strong>:<br />

Gain<br />

Groote Eylandt<br />

6.56<br />

0.76<br />

0.89<br />

Karumba<br />

10.70<br />

0.76<br />

0.89<br />

Weipa<br />

6.91<br />

0.84<br />

0.82<br />

Coherence is high (0.80-0.95) <strong>on</strong> intraseas<strong>on</strong>al frequencies (20-100<br />

days) but drops for l<strong>on</strong>ger periods (>100 days) - model does not<br />

capture low frequency variability<br />

Karumba<br />

sea level [m]<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

obs. (high passed)<br />

model predicti<strong>on</strong><br />

−0.6<br />

Jan<br />

1997<br />

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan<br />

1998<br />

Feb


Predicted Seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> ISV<br />

Numerical model reproduces <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> intraseas<strong>on</strong>al<br />

variability, although with reduced amplitude<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

J<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

J<br />

observati<strong>on</strong>s Groote Eylandt<br />

model<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

J<br />

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.015 0.02 0.025 0.03 0.035 0.04 0.045<br />

observati<strong>on</strong>s<br />

Karumba<br />

model<br />

D<br />

N<br />

O<br />

S<br />

A<br />

J<br />

J<br />

M<br />

A<br />

M<br />

F<br />

J<br />

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.015 0.02 0.025 0.03 0.035 0.04 0.045<br />

0 5 10<br />

0 10 20<br />

600 800 1000 1200 1400 1600<br />

power


Can<strong>on</strong>ical Resp<strong>on</strong>se to <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

Composites <str<strong>on</strong>g>of</str<strong>on</strong>g> obs. wind, modeled sea level and circulati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g>: can<strong>on</strong>ical resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong> to <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

Phase 1<br />

3 cm/s<br />

Phase 2<br />

Phase 3<br />

Phase 4<br />

10<br />

10 o S<br />

8<br />

12 o S<br />

14 o S<br />

6<br />

4<br />

Setdown<br />

<strong>during</strong><br />

phases 1-3<br />

16 o S<br />

2<br />

1.01 m/s<br />

Phase 5<br />

1.06 m/s<br />

Phase 6<br />

0.59 m/s<br />

Phase 7<br />

0.18 m/s<br />

Phase 8<br />

0<br />

sea level [cm]<br />

10 o S<br />

12 o S<br />

14 o S<br />

−2<br />

−4<br />

−6<br />

Setup<br />

<strong>during</strong><br />

phases 5-7<br />

16 o S<br />

0.45 m/s<br />

1.13 m/s<br />

1.67 m/s<br />

0.68 m/s<br />

−8<br />

136 o E 138 o E 140 o E 142 o E136 o E 138 o E 140 o E 142 o E136 o E 138 o E 140 o E 142 o E136 o E 138 o E 140 o E 142 o E<br />

−10


Predictability: Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g><br />

The <str<strong>on</strong>g>MJO</str<strong>on</strong>g> index (projected <strong>on</strong> to phase 7/3) shows remarkable<br />

correlati<strong>on</strong> with intraseas<strong>on</strong>al sea level in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong>.<br />

sea level [m]<br />

Karumba<br />

0.6<br />

obs. (high passed)<br />

0.4<br />

model predicti<strong>on</strong><br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> phase 7 (+) / phase 3 (-)<br />

−0.6<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb<br />

1997<br />

1998<br />

The <str<strong>on</strong>g>MJO</str<strong>on</strong>g> index can be used as an indicator for set-up or set-down<br />

favourable c<strong>on</strong>diti<strong>on</strong>s . . . <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g> can give predictability to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system


Predictability<br />

Potential predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g>-related sea level variability<br />

quantified using a simple statistical predicti<strong>on</strong> model<br />

Statistical model is a lagged linear regressi<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level<br />

<strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g> index at lags from 0 to D days.<br />

sea level at future time k<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> index<br />

regressi<strong>on</strong> coefficients


Predictability<br />

Model <strong>on</strong>ly includes lags 0 and 8 days. Trained over March-<br />

November for 1979-1994 and validated for March-November<br />

1995-2009:<br />

0.5<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> amplitude > 1<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> amplitude increasing<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> amplitude decreasing<br />

0.4<br />

correlati<strong>on</strong><br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25 30<br />

future predicti<strong>on</strong> time, k [days]<br />

Statistical model can account for at 10-25% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variance with<br />

leads times up to 20 days<br />

Can be supplemented with forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g> index...


The <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thailand<br />

Similar study in <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thailand shows a very similar phenomen<strong>on</strong>:<br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g>-related wind-driven sea level and circulati<strong>on</strong> variability <strong>during</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

m<strong>on</strong>so<strong>on</strong> seas<strong>on</strong> (July-January)<br />

Phase 1<br />

wind<br />

0.80 m/s<br />

Phase 2<br />

wind<br />

0.97 m/s<br />

Phase 3<br />

wind<br />

0.76 m/s<br />

Phase 4<br />

wind<br />

0.36 m/s<br />

5<br />

12 o N<br />

9 o N<br />

6 o N<br />

4<br />

3<br />

2<br />

Setup<br />

<strong>during</strong><br />

phases 8, 1-3<br />

3 o N<br />

0 o<br />

12 o N<br />

5 cm/s<br />

Phase 5<br />

wind<br />

0.99 m/s<br />

5 cm/s<br />

Phase 6<br />

wind<br />

1.00 m/s<br />

5 cm/s<br />

Phase 7<br />

wind<br />

0.50 m/s<br />

5 cm/s<br />

Phase 8<br />

wind<br />

0.48 m/s<br />

1<br />

0<br />

−1<br />

sea level [cm]<br />

9 o N<br />

6 o N<br />

−2<br />

−3<br />

Setdown<br />

<strong>during</strong><br />

phases 4-7<br />

3 o N<br />

−4<br />

0 o<br />

5 cm/s<br />

99 o E 102 o E 105 o E 108 o E<br />

5 cm/s<br />

5 cm/s<br />

5 cm/s<br />

99 o E 102 o E 105 o E 108 o E 99 o E 102 o E 105 o E 108 o E 99 o E 102 o E 105 o E 108 o E<br />

−5<br />

Oliver, E.C.J., Intraseas<strong>on</strong>al variability <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level and circulati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thailand:<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Madden-Julian Oscillati<strong>on</strong>, accepted for publicati<strong>on</strong> in Climate Dynamics


C<strong>on</strong>clusi<strong>on</strong>s<br />

Madden-Julian Oscillati<strong>on</strong>, an intraseas<strong>on</strong>al tropical phenomen<strong>on</strong>, is<br />

c<strong>on</strong>nected to global patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in sea level.<br />

Surface wind over <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Gulf</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Carpentaria</strong> is highly correlated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>MJO</str<strong>on</strong>g> and is also well suited for setting up sea level.<br />

Numerical model c<strong>on</strong>firms that observati<strong>on</strong>s are mainly wind-driven<br />

sea level set up <strong>during</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian-Ind<strong>on</strong>esian M<strong>on</strong>so<strong>on</strong><br />

Winds that lead to sea level set-up are part <str<strong>on</strong>g>of</str<strong>on</strong>g> a global system related<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>MJO</str<strong>on</strong>g>: <str<strong>on</strong>g>the</str<strong>on</strong>g>re is potential for predictability and this is dem<strong>on</strong>strated<br />

using a simple real-time predicti<strong>on</strong> model<br />

Related publicati<strong>on</strong>s:<br />

i) Oliver and Thomsp<strong>on</strong>, 2010, J. Geophys. Res.<br />

ii) Oliver and Thomps<strong>on</strong>, 2011, J. Geophys. Res<br />

iii) Oliver, accepted for publicati<strong>on</strong> in Clim. Dyn.<br />

Thank you!<br />

NUNATSIAVUT PSSSP

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!