17.01.2015 Views

Preparation of Papers in Two-Column Format for the ... - visla

Preparation of Papers in Two-Column Format for the ... - visla

Preparation of Papers in Two-Column Format for the ... - visla

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Remote Sens<strong>in</strong>g Data Acquisitions and Process<strong>in</strong>g <strong>for</strong><br />

Vistula Lagoon Ecosystem Management<br />

I. M. Mróz (1) , M. Mleczko (1) , K. Osińska-Skotak (2) , D. Durand (3) , M. Szumilo (1) , J. Kosakowski (1)<br />

1<br />

University <strong>of</strong> Warmia and Mazury <strong>in</strong> Olsztyn, ul.Oczapowskiego 2, 10-957 Olsztyn, Poland<br />

2<br />

Warsaw University <strong>of</strong> Technology, Plac Politechniki 1, 00-660 Warsaw, Poland<br />

3 NIVA – Water Research Institute, Oslo-Bergen, Norway<br />

Abstract-The paper presents a part <strong>of</strong> <strong>the</strong> research project<br />

“VISLA” concern<strong>in</strong>g establish<strong>in</strong>g <strong>of</strong> a spatial and environmental<br />

<strong>in</strong><strong>for</strong>mation system <strong>for</strong> Vistula Lagoon <strong>in</strong> Poland. An important<br />

set <strong>of</strong> satellite images has been collected dur<strong>in</strong>g last 3 years <strong>for</strong><br />

this water body and surround<strong>in</strong>g land. The images are processed<br />

not only <strong>in</strong> order to extract well known water quality parameters<br />

but also <strong>in</strong> <strong>the</strong> perspective <strong>of</strong> <strong>the</strong>ir use as a source <strong>of</strong> <strong>in</strong><strong>for</strong>mation<br />

<strong>for</strong> land use/ land cover updat<strong>in</strong>g. The <strong>in</strong>novative aspect <strong>of</strong> <strong>the</strong><br />

project is implement<strong>in</strong>g ecological model<strong>in</strong>g <strong>for</strong> this water body<br />

us<strong>in</strong>g GEMSS approach and use remote sens<strong>in</strong>g data at <strong>the</strong> later<br />

stage to verification <strong>of</strong> output results from <strong>the</strong> model.<br />

I. INTRODUCTION<br />

The ability to map and monitor ecological phenomena over<br />

large spatial extents has become a focus <strong>of</strong> research <strong>in</strong> <strong>the</strong><br />

context <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g awareness <strong>of</strong> human activities and<br />

environmental change. Research ef<strong>for</strong>ts <strong>in</strong> support <strong>of</strong><br />

susta<strong>in</strong>able ecosystem management have focused on<br />

characteriz<strong>in</strong>g ecosystem condition and understand<strong>in</strong>g how<br />

natural and anthropogenic processes affect ecosystem<br />

function<strong>in</strong>g [10, 11]. Coastal aquatic ecosystems are <strong>of</strong>ten<br />

perceived as a complex and “difficult” area from a<br />

management perspective due to <strong>the</strong>ir dynamic nature and jo<strong>in</strong>t<br />

management by multiple local, regional and national level<br />

government <strong>in</strong>stitutions and agencies. Common activities on<br />

<strong>the</strong>se areas range from resource use (fish<strong>in</strong>g, tourism),<br />

recreation (boat<strong>in</strong>g, swimm<strong>in</strong>g) and urban development<br />

(hous<strong>in</strong>g, port, <strong>in</strong>dustrial, commercial) to natural functions<br />

(habitat, shorel<strong>in</strong>e stabilization, flood reduction, nutrient s<strong>in</strong>ks)<br />

Environmental management <strong>in</strong> coastal zones is frequently<br />

represented by term “three-M” approach: Mapp<strong>in</strong>g,<br />

Monitor<strong>in</strong>g and Model<strong>in</strong>g. Mapp<strong>in</strong>g – surveys or <strong>in</strong>ventories<br />

conducted to determ<strong>in</strong>e <strong>the</strong> presence and locations <strong>of</strong> features,<br />

Monitor<strong>in</strong>g – time series analyses enabl<strong>in</strong>g changes to be<br />

mapped and measured, Model<strong>in</strong>g – understand<strong>in</strong>g and<br />

ma<strong>the</strong>matical description how an environmental system, or<br />

one <strong>of</strong> its components, operates [11]. The objective <strong>of</strong> this<br />

paper is to present a part <strong>of</strong> multidiscipl<strong>in</strong>ary research project<br />

“VISLA” concern<strong>in</strong>g a geo<strong>in</strong><strong>for</strong>mation system build<strong>in</strong>g <strong>for</strong><br />

assessment <strong>of</strong> ecological vulnerability and susta<strong>in</strong>able<br />

development <strong>of</strong> ecologically valuable Vistula Lagoon (VL)<br />

ecosystem. This project covers all “three-M” aspects <strong>of</strong><br />

management. It is carried out <strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> Polish<br />

Norwegian Research Fund and consists <strong>in</strong> <strong>in</strong>tegration <strong>of</strong><br />

multisource databases like local and regional GIS bases,<br />

remotely sensed data and water quality parameters extracted<br />

from <strong>in</strong> situ measurements. One <strong>of</strong> <strong>the</strong> major challenges <strong>of</strong> <strong>the</strong><br />

project is implementation <strong>of</strong> ma<strong>the</strong>matical model<strong>in</strong>g <strong>of</strong> VL<br />

water ecosystem processes based on GEMSS model solutions<br />

[5]. The second one is to jo<strong>in</strong> toge<strong>the</strong>r land <strong>in</strong><strong>for</strong>mation<br />

databases (governmental and regional) exist<strong>in</strong>g <strong>for</strong> adjacent<br />

communes and <strong>in</strong>clude <strong>the</strong> results <strong>of</strong> several water quality<br />

measurement campaigns <strong>in</strong> a common VL_GIS system<br />

serv<strong>in</strong>g local communities and decision makers as a support <strong>in</strong><br />

<strong>the</strong>ir management activity. One <strong>of</strong> important data sources<br />

about lagoon’s water quality and features <strong>of</strong> adjacent land<br />

areas is remote sens<strong>in</strong>g.<br />

II. LAND AND WATER INFORMATION SYSTEM FOR VISTULA<br />

LAGOON<br />

A. Study area<br />

The study area is located on <strong>the</strong> Polish part <strong>of</strong> Vistula<br />

Lagoon (828 km 2 area, 2.6 m mean depth), <strong>the</strong> estuary <strong>of</strong><br />

Baltic Sea. The hydrological regime <strong>of</strong> Vistula Lagoon is<br />

dependent on <strong>the</strong> <strong>in</strong>flow <strong>of</strong> sea waters. Even 80% <strong>of</strong> water is<br />

com<strong>in</strong>g from Baltic Sea by Pilawa Strait. The major<br />

phenomenon caus<strong>in</strong>g permanent disturbance <strong>of</strong> ecosystem<br />

balance is an excessive primary productivity <strong>of</strong> phytoplankton,<br />

particularly regular harmful algae blooms [12]. The ma<strong>in</strong><br />

sources <strong>of</strong> nutrients are orig<strong>in</strong>at<strong>in</strong>g from unmanaged properly<br />

water treatment <strong>in</strong> <strong>the</strong> catchment area and from <strong>the</strong><br />

resuspension from bottom sediment. The trophic <strong>in</strong>dices are<br />

characteristic <strong>for</strong> <strong>the</strong> state <strong>of</strong> strong eutrophy and even<br />

hypertrophy. The ma<strong>in</strong> consequence <strong>of</strong> <strong>the</strong> state described<br />

above is a significant impoverishment <strong>of</strong> biodiversity and a<br />

lower<strong>in</strong>g <strong>of</strong> <strong>the</strong> production o<strong>the</strong>r, except phytoplankton,<br />

ecological associations <strong>in</strong>clud<strong>in</strong>g fishes and macrophytes.<br />

More, Cyanophytes and bacteria, as well as trace metals and<br />

organic pollutants com<strong>in</strong>g <strong>in</strong>to Lagoon from <strong>the</strong> sludge, cause<br />

severe toxic effects, which practically elim<strong>in</strong>ate this water<br />

body from effective fisheries, recreation and water sports<br />

activities.<br />

B. Integrated approach <strong>for</strong> VL_GIS establish<strong>in</strong>g<br />

The tasks <strong>of</strong> communes and counties <strong>in</strong> ecological<br />

management are very <strong>of</strong>ten supported by governmental or<br />

regional GIS –based tools. For Vistula Lagoon Area Of<br />

Interest (VL AOI) <strong>the</strong>re are many different databases,<br />

generally branch specific, organized or not as GIS maps or


layers. Some <strong>of</strong> <strong>the</strong>m cover only land areas, o<strong>the</strong>rs cover<br />

whole territory <strong>in</strong>clud<strong>in</strong>g water bodies and rivers. For ex.<br />

Regional Spatial In<strong>for</strong>mation System (RSIS) managed by<br />

geodesy and cartography regional <strong>of</strong>fices, detailed geological<br />

maps <strong>in</strong> paper, digital raster or vector <strong>for</strong>m, ecological maps<br />

<strong>of</strong> NATURA 2000 areas, Geochemical atlas <strong>of</strong> Vistula<br />

Lagoon, Cor<strong>in</strong>e Land Cover 2006 database, hydrographic map<br />

<strong>of</strong> Poland, Digital Terra<strong>in</strong> Models, etc. RSIS is a ma<strong>in</strong> set <strong>of</strong><br />

<strong>in</strong><strong>for</strong>mation about topography and man-made <strong>in</strong>frastructure.<br />

On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong>re exist numerous ecological databases,<br />

<strong>of</strong>ficial, adm<strong>in</strong>istrative, governmental, <strong>of</strong>ten <strong>of</strong>fer<strong>in</strong>g long<br />

time series <strong>of</strong> parameters’ values concern<strong>in</strong>g water quality <strong>in</strong><br />

lakes, rivers and streams. But <strong>the</strong>se measurement results (e.g.<br />

sediment transport, sal<strong>in</strong>ity, temperature, chemical and<br />

biological components) are <strong>of</strong>ten stored <strong>in</strong> simple<br />

alphanumerical tables or <strong>in</strong> <strong>the</strong> spreadsheets <strong>in</strong> different<br />

<strong>in</strong>stitutions. In some cases adm<strong>in</strong>istrative limits are <strong>the</strong><br />

“firewalls” disabl<strong>in</strong>g data and <strong>in</strong><strong>for</strong>mation exchange between<br />

adjacent adm<strong>in</strong>istrative units without any agreement from<br />

headquarter. One <strong>of</strong> <strong>the</strong> purposes <strong>of</strong> mentioned project is<br />

complement<strong>in</strong>g distributed ecological databases with <strong>in</strong> situ<br />

measured water quality parameters <strong>of</strong> <strong>the</strong> Vistula Lagoon<br />

us<strong>in</strong>g own equipment and follow<strong>in</strong>g own procedures. The next<br />

step <strong>in</strong> creation <strong>of</strong> Common VL_GIS is establish<strong>in</strong>g<br />

geodatabases <strong>in</strong> ArcGIS environment permitt<strong>in</strong>g bi-directional<br />

<strong>in</strong>teroperability between water specific and land specific<br />

features. It means e.g. tak<strong>in</strong>g <strong>in</strong>to account water quality<br />

parameters when elaboration <strong>of</strong> derivative <strong>the</strong>matic maps <strong>for</strong><br />

land areas management. And backward - tak<strong>in</strong>g <strong>in</strong>to account<br />

land features and properties when plann<strong>in</strong>g management<br />

actions concern<strong>in</strong>g improvement <strong>of</strong> water quality <strong>in</strong> <strong>the</strong> lagoon.<br />

The VISLA project seems to be an <strong>in</strong>itial research plat<strong>for</strong>m <strong>for</strong><br />

jo<strong>in</strong><strong>in</strong>g toge<strong>the</strong>r dispersed and distributed sources <strong>of</strong> data<br />

about land characteristics and water quality, convert<strong>in</strong>g <strong>the</strong>m<br />

<strong>in</strong>to coherent GIS system and complement<strong>in</strong>g <strong>the</strong>m with<br />

satellite images br<strong>in</strong>g<strong>in</strong>g updated <strong>in</strong><strong>for</strong>mation on water optical<br />

properties (on ma<strong>in</strong> water quality parameters) as well as on<br />

land use/land cover changes. The <strong>in</strong>novative aspect <strong>of</strong> <strong>the</strong><br />

project is implement<strong>in</strong>g ecological model<strong>in</strong>g <strong>for</strong> this water<br />

body us<strong>in</strong>g GEMSS approach [5]. Fig.1, 2 and 3show three<br />

mock-ups <strong>of</strong> <strong>the</strong> project structure and <strong>in</strong>terrelationships<br />

between its components. Functional mock-up, GIS area mockup<br />

and Remote Sens<strong>in</strong>g contribution mock-up.<br />

Figure 2. GIS area mock-up<br />

Figure 3. Remote Sens<strong>in</strong>g area mock-up<br />

Figure 1. Functional mock-up<br />

III. SATELLITE IMAGES DATABASE<br />

Many satellite images have been registered <strong>for</strong> this area<br />

dur<strong>in</strong>g last three years (2008, 2009 and 2010).<br />

ENVISAT/MERIS and CHRIS/PROBA served as source <strong>of</strong><br />

<strong>in</strong><strong>for</strong>mation on water parameters, o<strong>the</strong>rs like Landsat5 TM,<br />

SPOT XS, DMCII, both <strong>for</strong> water body <strong>in</strong>spection and<br />

surround<strong>in</strong>g land areas mapp<strong>in</strong>g The extent <strong>of</strong> water body and<br />

<strong>the</strong> needs <strong>of</strong> study were <strong>the</strong> ma<strong>in</strong> factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong><br />

choice <strong>of</strong> satellite systems and sensors used <strong>for</strong> observ<strong>in</strong>g<br />

lagoon and surround<strong>in</strong>g land areas. Be<strong>for</strong>e this study start we<br />

expected to have an access to Earth Observ<strong>in</strong>g 1 satellite and<br />

its sensor ALI (Advanced Land Imager). We had at our


disposal some images acquired by this sensor dur<strong>in</strong>g 2006 and<br />

2007 seasons and we appreciated its relatively high spatial<br />

resolution (30m MS and 10m Panchro) and spectral bands <strong>in</strong><br />

blue region <strong>of</strong> spectrum. S<strong>in</strong>ce 2008 <strong>the</strong> clouds free images<br />

have not been available and programmed acquisitions have<br />

been even impossible. There<strong>for</strong>e <strong>the</strong> ma<strong>in</strong> sources <strong>of</strong> satellite<br />

images became “old” Landsat 5 TM system with 30m spatial<br />

resolution and ENVISAT/MERIS sensor largely used <strong>for</strong><br />

ocean and coastal waters study, but characterized by about<br />

300m spatial resolution, not very well suited <strong>for</strong> Vistula<br />

Lagoon “detailed” area mapp<strong>in</strong>g. The third sensor used <strong>in</strong> <strong>the</strong><br />

project is CHRIS imag<strong>in</strong>g spectrometer fly<strong>in</strong>g on PROBA<br />

plat<strong>for</strong>m. CHRIS, i.e. <strong>the</strong> Compact High Resolution Imag<strong>in</strong>g<br />

Spectrometer is specially designed <strong>for</strong> environmental<br />

<strong>in</strong>vestigations. Mov<strong>in</strong>g on <strong>the</strong> orbit <strong>of</strong> <strong>the</strong> average altitude <strong>of</strong><br />

600 km, CHRIS acquires images on a swath <strong>of</strong> <strong>the</strong><br />

approximate width <strong>of</strong> 14 km with <strong>the</strong> average spatial<br />

resolution <strong>of</strong> 18×18 m. This value is slightly chang<strong>in</strong>g as a<br />

result <strong>of</strong> variations <strong>in</strong> <strong>the</strong> orbit altitude, which varies between<br />

561 and 681 km, with <strong>the</strong> nom<strong>in</strong>al scanner field <strong>of</strong> view <strong>of</strong><br />

1.3 o . CHRIS images are normally acquired as a set <strong>of</strong> five<br />

scenes <strong>of</strong> <strong>the</strong> same area <strong>of</strong> <strong>the</strong> Earth’s surface recorded along<br />

track, <strong>for</strong> different view angles, <strong>in</strong> an „almost-real” time.<br />

CHRIS acquires images <strong>for</strong> <strong>the</strong> spectral range between 410<br />

nm and 1050 nm; it is possible to achieve 63 spectral bands<br />

with <strong>the</strong> spatial resolution <strong>of</strong> 36×36 m or 18 spectral bands<br />

with <strong>the</strong> so-called, full spatial resolution, i.e. 18×18 m. In <strong>the</strong><br />

case <strong>of</strong> higher spatial resolution it is possible to acquire<br />

images <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g modes: „Land/Aerosols” (18 bands<br />

marked as L), „Water” (18 bands marked as W),<br />

„Chlorophyll” (18 bands marked as C) and „Land” (36 bands<br />

marked as H, acquired <strong>for</strong> a half <strong>of</strong> <strong>the</strong> nom<strong>in</strong>al band <strong>of</strong><br />

scann<strong>in</strong>g). In <strong>the</strong> case <strong>of</strong> data acquisition dedicated to<br />

<strong>in</strong>vestigations <strong>of</strong> water, CHRIS acquires more visible spectral<br />

bands than <strong>in</strong> <strong>the</strong> case <strong>of</strong> data registration <strong>for</strong> <strong>the</strong> needs <strong>of</strong> land<br />

<strong>in</strong>vestigations. In <strong>the</strong> case <strong>of</strong> CHRIS <strong>the</strong> images cover small<br />

area and are used <strong>for</strong> water parameters extraction only. For<br />

this reason <strong>the</strong> acquisitions were scheduled close to field<br />

campaigns days (cruises) on two separate smaller areas <strong>of</strong><br />

<strong>in</strong>terest (Vistula Lagoon East and West). Only MERIS and<br />

CHRIS acquisitions could be anticipated or programmed. The<br />

Landsat 5 TM images were available from <strong>the</strong> archives, much<br />

later than <strong>the</strong> day <strong>of</strong> acquisition. Thus <strong>in</strong> order to complement<br />

<strong>the</strong> set <strong>of</strong> images <strong>of</strong> high spatial resolution and to fill temporal<br />

gaps result<strong>in</strong>g from clouds cover we decided to purchase also<br />

ALOS/AVNIR-2, SPOT-4 XS and SPOT-5 HRG images.<br />

TABLE I<br />

SPECTRAL BANDS AND SPATIAL RESOLUTION OF THE SENSORS<br />

Sensor type<br />

Spectral<br />

bands<br />

Wavelength<br />

[µm]<br />

Spatial<br />

resolution<br />

[m]<br />

Landsat 5 TM Panchrom. 0.520 - 0.900 15<br />

1 0.450 - 0.515 30<br />

2 0.525 - 0.605 30<br />

3 0.630 - 0.690 30<br />

4 0.775 - 0.900 30<br />

5 1.550 - 1.750 30<br />

7 2.090 - 2.350 30<br />

6a 10.40 - 12.50 60<br />

6b 10.40 - 12.50 60<br />

CHRIS/PROBA<br />

Mode 2<br />

W1 0.406 - 0.415 18<br />

W2 0.438 - 0.447 18<br />

W3 0.486 - 0.495 18<br />

W4 0.505 - 0.515 18<br />

W5 0.526 - 0.534 18<br />

W6 0.556 - 0.566 18<br />

W7 0.566 - 0.577 18<br />

W8 0.585 - 0.596 18<br />

W9 0.618 - 0.627 18<br />

W10 0.646 - 0.656 18<br />

W11 0.666 - 0.677 18<br />

W12 0.677 - 0.683 18<br />

W13 0.683 - 0.689 18<br />

W14 0.700 - 0.712 18<br />

W15 0.752 - 0.759 18<br />

W16 0.773 - 0.788 18<br />

W17 0.863 - 0.881 18<br />

W18 1.003 - 1.036 18<br />

SPOT 4<br />

Monospectral<br />

0.610 - 0.680 10<br />

B1 0.500 - 0.590 20<br />

B2 0.610 - 0.680 20<br />

B3 0.780 - 0.890 20<br />

B4 1.580 - 1.750 20<br />

SPOT 5 Panchrom. 0.480 - 0.710 2.5 - 5<br />

B1 0.500 - 0.590 10<br />

B2 0.610 - 0.680 10<br />

B3 0.780 - 0.890 10<br />

B4 1.580 - 1.750 20<br />

ALOS/AVNIR 1 0.420 - 0.500 10<br />

2 0.520 - 0.600 10<br />

3 0.610 - 0.690 10<br />

4 0.760 - 0.890 10<br />

ENVISAT/<br />

MERIS<br />

1 0.403 - 0.423 300<br />

2 0.433 - 0.453 300<br />

3 0.480 - 0.500 300<br />

4 0.500 - 0.520 300<br />

5 0.550 - 0.570 300<br />

6 0.610 - 0.630 300<br />

7 0.655 - 0.675 300<br />

8 0.674 - 0.689 300<br />

9 0.699 - 0.719 300<br />

10 0.746 - 0.761 300<br />

11 0.757 - 0.764 300<br />

12 0.764 - 0.794 300<br />

13 0.845 - 0.885 300<br />

14 0.875 - 0.895 300<br />

15 0.890 - 0.910 300<br />

DMC NiSAT 0 0.770 - 0.900 32<br />

1 0.630 - 0.690 32<br />

2 0.520 - 0.600 32<br />

EO-1/ALI Panchrom. 0.480 - 0.690 10<br />

MS - 1' 0.433 - 0.453 30<br />

MS - 1 0.450 - 0.515 30<br />

MS - 2 0.525 - 0.605 30<br />

MS - 3 0.630 - 0.690 30<br />

MS - 4 0.775 - 0.805 30<br />

MS - 4' 0.845 - 0.890 30<br />

MS - 5' 1.200 - 1.300 30<br />

MS - 5 1.550 - 1.750 30<br />

MS - 7 2.080 - 2.350 30


TABLE II<br />

MULTITEMPORAL DATASET OF SATELLITE IMAGES<br />

Acquisition<br />

Date<br />

Sensor<br />

Acquisition mode<br />

2008<br />

2008-04-26 Landsat 5 TM Multispectral<br />

2008-05-26 Cruise<br />

2008-05-28 Landsat 5 TM Multispectral<br />

2008-06-02 SPOT4 Multispectral<br />

2008-06-13 Landsat 5 TM Multispectral<br />

2008-06-13 ALOS/AVNIR-2 Multispectral<br />

2008-06-17 Cruise<br />

2008-06-17 CHRIS/PROBA Superspectral<br />

2008-06-18 CHRIS/PROBA Superspectral<br />

2008-06-26 CHRIS/PROBA Superspectral<br />

2008-06-27 CHRIS/PROBA Superspectral<br />

2008-07-06 Landsat 5 TM Multispectral<br />

2008-07-22 CHRIS/PROBA Superspectral<br />

2008-07-31 Landsat 5 TM Multispectral<br />

2008-08-01 CHRIS/PROBA Superspectral<br />

2008-08-18<br />

Cruise<br />

CHRIS/PROBA<br />

Superspectral<br />

2008-08-19<br />

Cruise<br />

CHRIS/PROBA<br />

Superspectral<br />

2008-09-01 Landsat 5 TM Multispectral<br />

2008-09-16 Cruise<br />

2008-09-24 Landsat 5 TM Multispectral<br />

2008-09-24 DMC NiSAT Multispectral<br />

2009<br />

2009-04-13 Landsat 5 TM Multispectral<br />

2009-04-21 CHRIS / PROBA Superspectral<br />

2009-04-23 Cruise<br />

2009-04-24 Envisat/MERIS Superspectral<br />

2009-04-29 Landsat 5 TM Multispectral<br />

2009-05-13 Envisat/MERIS Superspectral<br />

2009-05-14 Envisat/MERIS Superspectral<br />

2009-05-26 Cruise<br />

2009-05-26 Envisat/MERIS Superspectral<br />

2009-05-31 Landsat 5 TM Multispectral<br />

2009-06-04 Envisat/MERIS Superspectral<br />

2009-06-04 CHRIS/PROBA Superspectral<br />

2009-06-06 CHRIS/PROBA Superspectral<br />

2009-06-11 Envisat/MERIS Superspectral<br />

2009-06-15 Cruise<br />

2009-06-15 Envisat/MERIS Superspectral<br />

2009-07-07 Envisat/MERIS Superspectral<br />

2009-07-10 Envisat/MERIS Superspectral<br />

2009-07-16 Envisat/MERIS Superspectral<br />

2009-07-18 CHRIS/PROBA Superspectral<br />

2009-07-21 Cruise<br />

2009-07-29 Envisat/MERIS Superspectral<br />

2009-08-07 Envisat/MERIS Superspectral<br />

2009-08-08 Envisat/MERIS Superspectral<br />

2009-08-12 Cruise<br />

2009-08-21 Envisat/MERIS Superspectral<br />

2009-08-27 Envisat/MERIS Superspectral<br />

2009-08-30 Envisat/MERIS Superspectral<br />

2009-09-01 Envisat/MERIS Superspectral<br />

2009-09-01 SPOT-5/ HRG Multispectral<br />

2009-09-14 Envisat/MERIS Superspectral<br />

2009-09-20 Envisat/MERIS Superspectral<br />

2009-09-23 Cruise<br />

2009-10-16 Envisat/MERIS Superspectral<br />

2009-10-17 Envisat/MERIS Superspectral<br />

Acquisition<br />

Date<br />

Sensor<br />

Acquisition mode<br />

2010<br />

2010-03-11 Envisat/MERIS superspectral<br />

2010-03-25 Envisat/MERIS superspectral<br />

2010-03-30 Envisat/MERIS superspectral<br />

2010-04-04 Envisat/MERIS superspectral<br />

2010-04-12 Envisat/MERIS superspectral<br />

2010-04-15 Envisat/MERIS superspectral<br />

2010-04-18 Envisat/MERIS superspectral<br />

2010-04-19 Envisat/MERIS superspectral<br />

2010-04-20 Envisat/MERIS superspectral<br />

2010-04-25 Envisat/MERIS superspectral<br />

2010-04-26 Envisat/MERIS superspectral<br />

2010-05-02 Envisat/MERIS superspectral<br />

2010-05-05 Envisat/MERIS superspectral<br />

2010-05-12 Envisat/MERIS superspectral<br />

A. MERIS<br />

IV. SATELLITE IMAGES PROCESSING<br />

Tak<strong>in</strong>g <strong>in</strong>to account effective short revisit time <strong>of</strong><br />

ENVISAT/MERIS system it gives us <strong>the</strong> most frequent<br />

<strong>in</strong><strong>for</strong>mation about ma<strong>in</strong> water quality parameters and <strong>the</strong>ir<br />

temporal changes. MERIS data was provided free <strong>of</strong> charge by<br />

<strong>the</strong> European Space Agency under <strong>the</strong> Cat.1 Project. Products:<br />

MER_FR_1P (Full Resolution Level 1 with spatial resolution<br />

<strong>of</strong> 290x260m, and MER_FR_2P (Full Resolution Geophysical<br />

Product Level 2) were made available by ESA on <strong>the</strong> Internet<br />

via Near Real Time process<strong>in</strong>g service. Level 1 datasets have<br />

been used <strong>for</strong> color compositions elaboration and Level 2<br />

standard products have been sources <strong>of</strong> water quality<br />

parameters. The algorithms used <strong>in</strong> geophysical product<br />

preparation, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> atmospheric correction <strong>for</strong> case 1<br />

waters and its extension to case 2 are based on <strong>the</strong> MERIS<br />

Advanced Theoretical Basis Documents available from ESA<br />

Website.(http://envisat.esa.<strong>in</strong>t/<strong>in</strong>struments/meris/pdf/ [2]. The<br />

process<strong>in</strong>g <strong>of</strong> MERIS pixels classified as “water pixels”<br />

provides 8 quantitative and 5 qualitative products as well as<br />

flags relevant to <strong>the</strong> quality <strong>of</strong> all products [4]. Three ma<strong>in</strong><br />

water parameters have been extracted from MERIS Level 2<br />

standard quantitative products <strong>in</strong> native measurements units<br />

and converted to: Algal Pigment Index 2 (Chl-a) <strong>in</strong> [mg/m3],<br />

TSM – Total Suspended Matter <strong>in</strong> [g/m3] and Yellow<br />

Substance Absorption (or ODOC) coefficient rema<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

[1/m] absorption unit. As Vistula Lagoon is classified as Case<br />

2 waters and observed as turbid water reservoir <strong>the</strong> masks <strong>of</strong><br />

“Sediment dom<strong>in</strong>ated Case_2 water” have been also extracted<br />

from Level 2 Product <strong>for</strong> each acquisition. The detailed results<br />

<strong>of</strong> MERIS data process<strong>in</strong>g were presented dur<strong>in</strong>g ESA<br />

Hyperspectral Workshop 2010 <strong>in</strong> Frascati [7].


B. CHRIS/PROBA<br />

CHRIS/ PROBA images were processed accord<strong>in</strong>g to<br />

successive steps:<br />

1. Metadata analysis and extraction <strong>of</strong> <strong>in</strong><strong>for</strong>mation needed<br />

<strong>for</strong> radiometric and atmospheric corrections <strong>of</strong> satellite<br />

images.<br />

2. Radiometric and atmospheric correction. Noise reduction.<br />

(The atmospheric correction <strong>of</strong> <strong>the</strong> CHRIS/PROBA<br />

satellite data was made us<strong>in</strong>g ATCOR 2/3 model - version<br />

6.4.)<br />

3. Water quality parameters extraction. (This was made<br />

from radiometric, atmospheric and geometrically<br />

corrected images.<br />

Figure.4. MERIS FRS Level 1 image acquired on 2009/04/24 (7,5,2, bands<br />

as RGB) merged with Landsat5 TM image (3,2,1, bands as RGB channels).<br />

Figure 5. Example <strong>of</strong> “Sediment dom<strong>in</strong>ated Case_2 water” mask.<br />

The follow<strong>in</strong>g water quality parameters were extracted<br />

us<strong>in</strong>g empirical and statistical relationships between CHRIS<br />

measured spectral reflectance and <strong>in</strong> situ measurements<br />

(regression based): Secchi disc depth, Suspended solids,<br />

Chlorophyll-a and Pheophyt<strong>in</strong>s. An attempt <strong>of</strong> Total<br />

Phosphorus and Total Nitrogen extraction was also made.<br />

Those results are not yet ready to publish. Generally <strong>the</strong><br />

relationships between <strong>in</strong> situ measurements and remotely<br />

sensed values <strong>of</strong> parameters <strong>for</strong> s<strong>in</strong>gle acquisitions were weak.<br />

Low values <strong>of</strong> coefficient <strong>of</strong> determ<strong>in</strong>ation were noted. This<br />

observation is due to <strong>the</strong> small gradient <strong>in</strong> water optical<br />

properties observed on <strong>the</strong> Polish side <strong>of</strong> <strong>the</strong> lagoon. It is<br />

clearly visible on many color compositions made from MERIS,<br />

CHRIS and o<strong>the</strong>r sensors dur<strong>in</strong>g observation period. Only<br />

common analysis <strong>of</strong> all available images showed significant<br />

empirical relationships confirmed by statistical coefficient <strong>of</strong><br />

determ<strong>in</strong>ation. The strongest relationships have been obta<strong>in</strong>ed<br />

<strong>for</strong> Secchi Disk Depth, Total Suspended Matter and<br />

Chlorophyll-a.<br />

The masks <strong>of</strong> uncerta<strong>in</strong> pixel values <strong>for</strong> <strong>the</strong>se 3 quantitative<br />

parameters have been also extracted from metadata records.<br />

Figure 6. Examples <strong>of</strong> “uncerta<strong>in</strong> pixel values” mask<br />

Figure 7. Georeferenced quicklooks <strong>of</strong> CHRIS images taken on Polish part<br />

<strong>of</strong> <strong>the</strong> Vistula Lagoon.


22.07.2008 18.08.2008<br />

Figure 8. The relationship <strong>of</strong> Secchi Disk Depth [m] and A 679-755 nm calculated<br />

on CHRIS/ PROBA satellite data acquired <strong>for</strong> Vistula Lagoon AOI.<br />

21.04.2009 04.06.2009<br />

06.06.2009<br />

Figure 9. The relationship <strong>of</strong> total suspended matter [mg/l] and A 560-590 nm<br />

calculated on CHRIS/ PROBA satellite data acquired <strong>for</strong> Vistula Lagoon AOI.<br />

Figure.11. Spatial distribution <strong>of</strong> Secchi Disk Depth [m] <strong>for</strong> Vistula<br />

Lagoon AOI.<br />

C. O<strong>the</strong>r sensors –Landsat5 TM, SPOT-4&5, ALOS/AVNIR-<br />

2, DMC NiSAT.<br />

Figure10. The relationship <strong>of</strong> chlorophyll-a [micrograms/l] content and <strong>in</strong>dex<br />

706 nm / 674 nm calculated on CHRIS/ PROBA satellite data acquired <strong>for</strong><br />

Vistula Lagoon AOI.<br />

These systems/sensors play several roles <strong>in</strong> <strong>the</strong> project. The<br />

first one is a source <strong>of</strong> data <strong>in</strong> water parameters extraction<br />

follow<strong>in</strong>g empirical and statistical approach similar to CHRIS<br />

case. Of course <strong>the</strong> ma<strong>in</strong> <strong>in</strong>dicator <strong>of</strong> water state calculated<br />

from wide visible bands is turbidity <strong>in</strong>dex. Better spatial<br />

resolution <strong>of</strong> <strong>the</strong>se images <strong>in</strong> VNIR bands compar<strong>in</strong>g with<br />

MERIS ones gives much more precision <strong>in</strong> water vegetation<br />

mapp<strong>in</strong>g. Multitemporal set <strong>of</strong> L5 TM images acquired <strong>in</strong><br />

2008 and 2009 year, supported by SPOT HRG image<br />

permitted updat<strong>in</strong>g and ref<strong>in</strong>ement <strong>of</strong> Cor<strong>in</strong>e Land Cover 2006<br />

(CLC 2006) <strong>the</strong>matic layer <strong>for</strong> Polish side <strong>of</strong> <strong>the</strong> AOI. An<br />

important ef<strong>for</strong>t was also made <strong>in</strong> elaboration <strong>of</strong> this layer <strong>for</strong>


V. CONCLUDING REMARKS<br />

The presented 3-years VISLA project gave an opportunity<br />

to collect first time an important set <strong>of</strong> different satellite<br />

images <strong>for</strong> Vistula Lagoon water ecosystem and surround<strong>in</strong>g<br />

land. This dataset complements well o<strong>the</strong>r (GIS and <strong>in</strong> situ<br />

measurements) components <strong>of</strong> <strong>the</strong> VL_GIS. The images<br />

acquired as geophysical products or processed to <strong>the</strong>matic<br />

layers are useful <strong>for</strong> better spatial and temporal description <strong>of</strong><br />

<strong>the</strong> water quality parameters <strong>of</strong> <strong>the</strong> lagoon. At <strong>the</strong> same time<br />

<strong>the</strong> images can be used <strong>for</strong> land <strong>in</strong><strong>for</strong>mation updat<strong>in</strong>g,<br />

particularly on <strong>the</strong> Russian side <strong>of</strong> AOI. The remotely sensed<br />

data is still under process<strong>in</strong>g and its later use will be l<strong>in</strong>ked to<br />

<strong>the</strong> GEMSS model output results. All processed data are made<br />

available <strong>for</strong> <strong>in</strong>terested parties at <strong>the</strong> <strong>visla</strong>.uwm.edu.pl server<br />

via WEB page (<strong>in</strong> Polish, but soon <strong>in</strong> English), or FTP service<br />

<strong>for</strong> registered users.<br />

ACKNOWLEDGMENT<br />

Figure.12. SPOT-5 HRG image converted <strong>in</strong>to pseudo-realistic colors<br />

orthophotomap with CLC 2006 vector overlay (near Kal<strong>in</strong><strong>in</strong>grad – Russia).<br />

Russian part <strong>of</strong> <strong>the</strong> AOI. CLC 2006 vector data available <strong>for</strong><br />

Polish side, methodological description <strong>of</strong> its creation and<br />

many color composition cover<strong>in</strong>g large, transboundary area<br />

permitted reliable expand<strong>in</strong>g <strong>of</strong> this map on non directly<br />

accessible terra<strong>in</strong>s <strong>for</strong> field works. And <strong>the</strong> last but not least<br />

from PR po<strong>in</strong>t <strong>of</strong> view is jo<strong>in</strong><strong>in</strong>g toge<strong>the</strong>r high spatial<br />

resolution TM images <strong>for</strong> represent<strong>in</strong>g land areas and<br />

oversampled MERIS images used only <strong>for</strong> represent<strong>in</strong>g <strong>of</strong><br />

water body surface by water/non water mask<strong>in</strong>g. An example<br />

<strong>of</strong> this k<strong>in</strong>d <strong>of</strong> image is given on <strong>the</strong> figure 13.<br />

Figure.13. An example <strong>of</strong> MERIS / TM merged image complemented with<br />

watermarks.<br />

This work has been carried out <strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong><br />

VISLA project f<strong>in</strong>anced by <strong>the</strong> Polish-Norwegian Research<br />

Fund. MERIS satellite data was provided by <strong>the</strong> European<br />

Space Agency free <strong>of</strong> charge. Peter Fletcher is thanked <strong>for</strong> his<br />

ef<strong>for</strong>ts <strong>in</strong> ensur<strong>in</strong>g that <strong>the</strong> CHRIS PROBA data <strong>of</strong> Vistula<br />

Lagoon were collected dur<strong>in</strong>g <strong>the</strong> periods <strong>of</strong> <strong>the</strong> water<br />

sampl<strong>in</strong>g.<br />

REFERENCES<br />

1. Bhatti A., Nasu S, Takagi M. (2007) Monitor<strong>in</strong>g suspended<br />

concentrations <strong>in</strong> surface waters <strong>of</strong> <strong>the</strong> Indus River, Pakistan from<br />

ALOS data. Proceed<strong>in</strong>gs <strong>of</strong> First Jo<strong>in</strong>t Pl Symposium <strong>of</strong> ALOS Data<br />

Nodes <strong>for</strong> ALOS Science Program <strong>in</strong> Kyoto<br />

2. Doerffer, R., Schiller H. (1997). Pigment <strong>in</strong>dex, sediment and gelbst<strong>of</strong>f<br />

retrieval from directional water leav<strong>in</strong>g radiance reflectances us<strong>in</strong>g<br />

<strong>in</strong>verse modell<strong>in</strong>g technique. Doc. No. PO-TN-MEL-GS-0005 Name:<br />

ATBD: 2.12.<br />

3. Edwards, A.J. (Editor) (1999). Application <strong>of</strong> satellite and airborne<br />

image data to coastal management. Coastal Regions and Small Islands<br />

<strong>Papers</strong>, 4, UNESCO, Paris, 185 pp.<br />

4. European Space Agency – MERIS Product Handbook, Issue 2.1, 24 th<br />

October 2006.<br />

5. GEMSS Development Team Surfacewater Model<strong>in</strong>g Group GEMSS-<br />

HDM Hydrodynamic and Transport Module Technical Documentation<br />

Exton (USA), April 2006<br />

6. Geochemical Atlas <strong>of</strong> Vistula Lagoon, (1996), State Geological Institute,<br />

Warsaw (<strong>in</strong> Polish)<br />

7. Kruk M., Mróz M., Nawrocka L., Parszuto K., Mleczko M. Uniseasonal<br />

dynamics <strong>of</strong> ma<strong>in</strong> water quality parameters <strong>in</strong> Vistula Lagoon extracted<br />

from ENVISAT/MERIS geophysical product and <strong>in</strong> situ measurements.<br />

ESA Hyperspectral Workshop 2010 Proceed<strong>in</strong>gs,17-19 March 2010,<br />

Frascati, Italy. – <strong>in</strong> Press.<br />

8. Lorenzen, C.J. (1967). Determ<strong>in</strong>ation <strong>of</strong> chlorophyll and pheopigments:<br />

spectrophotometric equations. Limnology and Oceanography, 12: 343–<br />

346.<br />

9. Mann<strong>in</strong>o, A., Russ, M.E., Hooker, S.B. (2008).Algorithm development<br />

and validation <strong>for</strong> satellite-derived distributions <strong>of</strong> DOC and CDOM <strong>in</strong><br />

<strong>the</strong> U.S. Middle Atlantic Bight. Journal <strong>of</strong> Geophysical Research<br />

113 ,C07051, doi:10.1029/2007JC004493<br />

10. Mesev V. (Editor) (2007), Integration <strong>of</strong> GIS and Remote Sens<strong>in</strong>g,<br />

England<br />

11. Ph<strong>in</strong>n, S., Joyce, K., Scarth, P. & Roelfsema, C. (2006). The role <strong>of</strong><br />

<strong>in</strong>tegretated <strong>in</strong><strong>for</strong>mation aquisition and management <strong>in</strong> <strong>the</strong> analysis <strong>of</strong><br />

coastal ecosystem change. In : Remote Sens<strong>in</strong>g <strong>of</strong> Aquatic Coastal


Ecosystem Processes. Science and Management Applications (Eds. L.L.<br />

Richardson & E.F. LeDrew), Spr<strong>in</strong>ger, Ne<strong>the</strong>rlands, 326 pp.<br />

12. Pliński, M. (2004). The Hydrobiological characteristic <strong>of</strong> <strong>the</strong> Polish part<br />

<strong>of</strong> Vistula Lagoon : a review. Oceanological and Hydrobiological<br />

Studies 34, 287-294.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!