17.01.2015 Views

A comparison of solvers and approaches - Montanuniversität Leoben

A comparison of solvers and approaches - Montanuniversität Leoben

A comparison of solvers and approaches - Montanuniversität Leoben

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

5th OpenFOAM TM Workshop, Chalmers, Gothenburg<br />

bgschaid,pvita,dprieling,hsteiner<br />

June 21-24,<br />

RoWaFloSim<br />

2010<br />

1/33<br />

Liquid coverage <strong>of</strong> rotating discs<br />

A <strong>comparison</strong> <strong>of</strong> <strong>solvers</strong> <strong>and</strong> <strong>approaches</strong><br />

Bernhard F.W. Gschaider 1 Petr Vita 2 Doris Prieling 3<br />

Helfried Steiner 3<br />

1 ICE Strömungsforschung<br />

<strong>Leoben</strong>, Austria<br />

2 Department Mineral Resources <strong>and</strong> Petroleum Engineering, Montanuniversität<br />

<strong>Leoben</strong>, Austria<br />

3 Institute <strong>of</strong> Fluid Mechanics <strong>and</strong> Heat Transfer, Graz University <strong>of</strong> Technology,<br />

Austria


Outline<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

1 Introduction<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

2 VoF-approach<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

3 FAM-approach<br />

Overview<br />

Implementation<br />

Results<br />

Summary<br />

4 Conclusion<br />

Results summary<br />

Acknowledgements<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 2/33


Wafer cleaning<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

• Important step during the<br />

production <strong>of</strong> semiconductor<br />

silicon-wafers<br />

• But the same happens<br />

during etching etc<br />

• Two contradicting goals:<br />

• Wafer should be fully wetted<br />

• Minimum amount <strong>of</strong> liquid<br />

• Goal <strong>of</strong> this project is to<br />

develop a simulation tool that<br />

helps with the planing <strong>of</strong> this<br />

process<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 3/33


Simulation features<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

• Liquid film<br />

• Thin (compared to the size <strong>of</strong> the geometry)<br />

• On a rotating surface<br />

• Liquid jet impinges on the surface<br />

• Not necessarily on the center<br />

• Position <strong>and</strong> strength change during time<br />

• Transport <strong>of</strong> reactants in the liquid<br />

• All this should be achieved in a reasonable time-frame<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 4/33


Asymptotic solutions<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

Nusselt solution<br />

Ro 2 ≪ 1, Ro 2 = ( ) ū 2<br />

ωr<br />

ν ∂2 v r<br />

∂z 2 = −rω2<br />

Film thickness<br />

( ) 1<br />

3 Qν 3<br />

δ =<br />

2π ω 2 r 2<br />

Asymptotic solution<br />

Rauscher et al. (1973) [RKC73]:<br />

(<br />

δ<br />

62<br />

= r ∗−2/3 +<br />

h 0 315 − 2 )<br />

9 F −1 r ∗−10/3 +O(r −4 )<br />

with F −1 = 2πgν<br />

3ω 2 Q , r ∗ = r/l<br />

characteristic lengths: l =<br />

(<br />

9Q 2<br />

4π 2 νω<br />

) 1<br />

4<br />

<strong>and</strong> h 0 = ( ν<br />

ω<br />

) 1<br />

2<br />

Viscous−<br />

Resistance<br />

Inertial−<br />

Force<br />

Gravitational−<br />

Force<br />

Centrifugal−<br />

Force<br />

Coriolis−<br />

Force<br />

leading order balance<br />

higher order correction<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 5/33


Ozar et el<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

• Rotating disc<br />

• Inlet at the center<br />

• Not by a jet, but through a<br />

collar<br />

• This allows a good control<br />

over the flow properties<br />

• Lots <strong>of</strong> experimental data<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 6/33


Charwat et al<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Problem description<br />

Approximate solution<br />

Published benchmark cases<br />

• Impinging jet on the center <strong>of</strong><br />

the disc<br />

• Closer to the actual<br />

application<br />

• Still axi-symmetric<br />

• Described in [CKG72]<br />

• Analytical solution in [KK09]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 7/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

The Volume <strong>of</strong> Fluid Method<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

• Multiphase solver for 2 liquids with a high density difference<br />

• Volume fraction <strong>of</strong> one liquid is solved for<br />

• Implemented in OpenFOAM TM in the interFoam-family <strong>of</strong><br />

<strong>solvers</strong><br />

• For details look elsewhere<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 8/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Different implementations<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

• There are 3 schemes to calculate VoF in Fluent:<br />

HRIC High resolution interface capturing<br />

QUICK Quick Upwind Interpolation for Convective<br />

Kinematics<br />

PLIC Geometric reconstruction<br />

• “only” one implementation in OpenFOAM TM<br />

γ-differencing scheme Implementation in interFoam <strong>and</strong><br />

others<br />

• If not otherwise noted the same grid was used in Fluent <strong>and</strong><br />

OpenFOAM TM for all calculations<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 9/33


Motivation<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

• Both sets <strong>of</strong> experiments were set up in an axially symmetric<br />

fashion<br />

• Minimizes amount <strong>of</strong> computational time<br />

• More calculations possible<br />

• Of course assumes that all the effects are symmetric<br />

• Slightly different implementation:<br />

OpenFOAM Needs a modified mesh <strong>and</strong> special boundary<br />

conditions<br />

Fluent Modifies all the differential operators but uses a<br />

2D-mesh<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 10/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparing a case (200 rpm, 7 l/min)<br />

0.4<br />

Instantaneous film thickness after t=2s<br />

Testcase 1b<br />

ω=200rpm, Q=7lpm, ν L<br />

=1x10 −6 m 2 /s, θ=10deg<br />

0.4<br />

Instantaneous film thickness after t=2s<br />

0.35<br />

0.35<br />

0.3<br />

0.3<br />

δ [mm]<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

FLUENT PLIC, α=0.5<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Thomas 1991<br />

0<br />

50 100 150 200<br />

r [mm]<br />

δ [mm]<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

FLUENT HRIC, α=0.5<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Thomas 1991<br />

0<br />

50 100 150 200<br />

r [mm]<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

FLUENT QUICK, α=0.5<br />

OpenFOAM Inter−γ<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Thomas 1991<br />

Instantaneous film thickness after t=2s<br />

0<br />

50 100 150 200<br />

r [mm]<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Temporal film thickness variation, monitor at r=180mm<br />

FLUENT PLIC<br />

FLUENT HRIC<br />

FLUENT QUICK<br />

OpenFOAM Inter−γ<br />

0<br />

1.85 1.9 1.95 2<br />

t [s]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 11/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparing a case (200 rpm, 7 l/min) - time average<br />

0.4<br />

0.35<br />

0.3<br />

Test case 1b<br />

ω=200rpm, Q=7lpm, ν L<br />

=1x10 −6 m 2 /s, θ=10deg<br />

FLUENT PLIC<br />

FLUENT HRIC<br />

FLUENT QUICK<br />

OpenFOAM Inter−γ<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Thomas 1991<br />

0.25<br />

δ [mm]<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

Temporal averages<br />

• good agreement with experimental<br />

data<br />

• QUICK ≈ Inter-γ (smooth)<br />

• approach asymptotic solution in outer<br />

region<br />

0<br />

50 60 80 100 120 140 160 180 200<br />

r [mm]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 12/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparing another case (300 rpm, 3 l/min)<br />

Test case 1f<br />

ω=300rpm, Q=3lpm, ν L<br />

=0.66x10 −6 m 2 /s, θ=10deg<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

Instantaneous film thickness after t=2s<br />

FLUENT PLIC, α=0.5<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Ozar 2003<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

Instantaneous film thickness after t=2s<br />

FLUENT HRIC, α=0.5<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Ozar 2003<br />

0.1<br />

0.1<br />

0.05<br />

0.05<br />

0<br />

50 60 80 100 120 140 160 180 200<br />

r [mm]<br />

0<br />

50 100 150 200<br />

r [mm]<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

Instantaneous film thickness after t=2s<br />

FLUENT QUICK, α=0.5<br />

OpenFOAM Inter−γ<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Ozar 2003<br />

δ [mm]<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

Temporal film thickness variation, monitor at r=180mm<br />

FLUENT PLIC<br />

FLUENT HRIC<br />

FLUENT QUICK<br />

OpenFOAM Inter−γ<br />

0.1<br />

0.1<br />

0.05<br />

0.05<br />

0<br />

50 100 150 200<br />

r [mm]<br />

0<br />

1.85 1.9 1.95 2<br />

t [s]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 13/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparing anothert case (300 rpm, 3 l/min) - time<br />

average<br />

0,4<br />

0,35<br />

0,3<br />

0,25<br />

• Exp. data<br />

overpredicted<br />

• HRIC, Inter-γ:<br />

enhanced waviness<br />

• Smaller Ro 2 (ω ↑,<br />

Q ↓)<br />

Test case 1f<br />

ω=300rpm, Q=3lpm, ν L<br />

=0.66x10 −6 m 2 /s, θ=10deg<br />

FLUENT PLIC<br />

FLUENT HRIC<br />

FLUENT QUICK<br />

OpenFOAM Inter−γ<br />

Nusselt solution<br />

Asympt. Rauscher 1973<br />

Exp. Ozar 2003<br />

δ [mm]<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

50 60 80 100 120 140 160 180 200<br />

r [mm]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 14/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Hydraulic jump on stationary disc (7 l/min)<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 15/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparison impinging jet (Charwat 1)<br />

0.6<br />

0.5<br />

0.4<br />

Film thickness − test case C1<br />

Q=0.3lpm, ω=60rpm, Re=1156<br />

FLUENT PLIC, α−mean<br />

FLUENT HRIC, α−mean<br />

FLUENT QUICK, α−mean<br />

OpenFOAM Inter−γ<br />

Kim & Kim 2009<br />

Exp. Charwat (data fit)<br />

δ [mm]<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

mesh: 71160 cells<br />

nozzle inflow included<br />

20 40 60 80 100 120 140 160 180<br />

r [mm]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 16/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparison impinging jet (Charwat 2)<br />

0.35<br />

0.3<br />

0.25<br />

Film thickness − test case C2<br />

Q=0.18lpm, ω=180rpm, Re=694<br />

FLUENT PLIC<br />

FLUENT HRIC<br />

FLUENT QUICK<br />

OpenFOAM Inter−γ<br />

Kim & Kim 2009<br />

Exp. Charwat (data fit)<br />

δ [mm]<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

mesh: 71160 cells<br />

nozzle inflow included<br />

20 40 60 80 100 120 140 160 180<br />

r [mm]<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 17/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

MOVIE: Impinging jet<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 18/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Motivation <strong>and</strong> model setup<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

• Full 3D was considered<br />

• Large meshes due to different length-scales (wafer diameter vs.<br />

film thickness)<br />

• Grid near the wafer determines the resolution <strong>of</strong> the film<br />

• The solution: interDyMFoam<br />

• Finer grid resolution at the surface <strong>of</strong> the liquid<br />

• The Ozar case was calculated<br />

• Coarse blockMesh<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 19/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

MOVIE: Dynamically meshed case<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 20/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Exploiting rotational symmetry<br />

Dynamic meshing<br />

Summary VoF<br />

Comparison <strong>of</strong> the VoF-<strong>approaches</strong><br />

• All <strong>approaches</strong> <strong>and</strong> <strong>solvers</strong> give similar time averaged results<br />

which are consistent with the experimental data<br />

• Results are mesh-independent, except for PLIC<br />

• Instantaneous values differ significantly<br />

• Axial-symmetric solution fast, but limited in physical<br />

phenomena it can tackle<br />

• 3D with mesh refinement takes a long time<br />

• Even then the surface film is only 3–5 computational cells<br />

“thick”<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 21/33


Motivation<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Implementation<br />

Results<br />

• Disadvantages <strong>of</strong> the VoF-approach:<br />

Axial-symmetric Can not simulate a jet that does not<br />

impinge on the center <strong>of</strong> the disc<br />

3D-dynamic Takes too long for reasonable grid resolutions<br />

• The simulation should be able to<br />

• Simulate arbitrary processes<br />

• Computational times <strong>of</strong> months for processes that last in the<br />

order <strong>of</strong> a minute are unacceptable<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 22/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

The FiniteAreaMethod<br />

Overview<br />

Implementation<br />

Results<br />

• Specialisation <strong>of</strong> the FVM to flows on surfaces<br />

• Possible applications: wall-films<br />

• Implementation by H.Jasak <strong>and</strong> Z.Tukovic in OpenFOAM TM<br />

• Not in the “<strong>of</strong>ficial” version. Only in 1.5-dev<br />

• Only a demo-solver that models the transport-equation on a<br />

prescribed velocity field available<br />

• Equations are solved on a boundary-patch <strong>of</strong> the volume mesh<br />

• Solution <strong>of</strong> the volume (impinging jet) can be used as a source<br />

term<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 23/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

The simplified wafer model<br />

Overview<br />

Implementation<br />

Results<br />

• Based on the shallow-water equations<br />

• The height <strong>of</strong> the fluid-film takes a dual role as “Density” <strong>of</strong><br />

the fluid <strong>and</strong> Pressure<br />

• Equations are solved using an adapted PISO-approach<br />

• Implemented using the finiteArea-approach<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 24/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Implementation<br />

Results<br />

The modified shallow water equations<br />

• Liquid velocity:<br />

∂⃗u<br />

∂t + ⃗u∇⃗u + g∇h − σ ρ ∇∇2 h = ν∇ 2 ⃗u + ν h 2 (⃗u wafer − ⃗u)<br />

• With added surface tension<br />

• <strong>and</strong> motion <strong>of</strong> the wafer<br />

• Liquid height<br />

∂h<br />

∂t<br />

+ h∇⃗u + ⃗u∇h = 0<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 25/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Replaying the Ozar case<br />

Overview<br />

Implementation<br />

Results<br />

• Need for validation <strong>of</strong> the solver:<br />

• Significantly differs from the VoF-approach<br />

• Ozar case chosen for validation because:<br />

• It is easy to set up <strong>and</strong> well defined<br />

• Especially the inner boundary condition<br />

• For the Charwat case (<strong>and</strong> application) the impinging jet is<br />

modelled by a source term in the continuity equation<br />

• Experimental <strong>and</strong> computational data exists<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 26/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Implementation<br />

Results<br />

Film height <strong>and</strong> liquid velocity with FAM<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 27/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Implementation<br />

Results<br />

Quantative <strong>comparison</strong> <strong>of</strong> the <strong>approaches</strong><br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 28/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Overview<br />

Implementation<br />

Results<br />

MOVIE: Transient covering <strong>of</strong> a wafer<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 29/33


Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Summary <strong>of</strong> the results<br />

Results summary<br />

Acknowledgements<br />

• Two different <strong>solvers</strong> were compared<br />

• Two well-documented experimental cases were investigated<br />

• A variety <strong>of</strong> different solutions to the cases were taken<br />

• Asymptotic solution<br />

• Axial-symmetric solution using VoF<br />

• Full 3D-solution <strong>of</strong> the VoF<br />

• A special solver using the FAM<br />

• All <strong>approaches</strong> give similar results<br />

• Potentially best results (not surprisingly) would be given by<br />

the full 3D-solution<br />

• Usable for the actual application is the FAM-approach<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 30/33


Acknowledgements<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Results summary<br />

Acknowledgements<br />

• This work is part <strong>of</strong> the project RoWaFloSim which is<br />

funded by Austrian Research Promotion Fund within the<br />

ModSim-programme<br />

• The industrial sponsor <strong>and</strong> user <strong>of</strong> this work is the Lam<br />

Research AG (http://www.lamrc.com/)<br />

• This work would not have been possible without the people<br />

who brought us OpenFOAM TM , especially Henry Weller <strong>and</strong><br />

Hrvoje Jasak<br />

• No dams were hurt during the making <strong>of</strong> this study<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 31/33


The End<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

Results summary<br />

Acknowledgements<br />

Thanks for listening!<br />

Questions<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 32/33


Previous work<br />

Introduction<br />

VoF-approach<br />

FAM-approach<br />

Conclusion<br />

References<br />

[CKG72] A F Charwat, R E Kelly, <strong>and</strong> C Gazley. The flow <strong>and</strong> stability <strong>of</strong> thin<br />

liquid films on a rotating disk. Journal <strong>of</strong> Fluid Mechanics,<br />

53:2:227–255, 1972.<br />

[KK09] Tae-Sung Kim <strong>and</strong> Moon-Uhn Kim. The flow <strong>and</strong> hydrodynamic<br />

stability <strong>of</strong> a liquid film on a rotating disc. Fluid Dynamics Research,<br />

41(3):035504 (28pp), Juni 2009.<br />

[OCF03] B. Ozar, B. Cetegen, <strong>and</strong> A. Faghri. Experiments on the flow <strong>of</strong> a<br />

thin liquid film over a horizontal stationary <strong>and</strong> rotating disk surface.<br />

Experiments in Fluids, 34:556–565, 2003.<br />

[RKC73] J. Rauscher, R. Kelly, <strong>and</strong> J. Cole. An asymptotic solution for the<br />

laminar flow <strong>of</strong> thin films on a rotating disk. Appl. Mechanics,<br />

40:45–47, 1973.<br />

[TFH91] S. Thomas, A. Faghri, <strong>and</strong> W. Hankey. Experimental analysis <strong>and</strong><br />

flow visualization <strong>of</strong> a thin liquid film on a stationary <strong>and</strong> rotating<br />

disk. Journal <strong>of</strong> Fluids Engineering, 113:73–80, 1991.<br />

bgschaid,pvita,dprieling,hsteiner RoWaFloSim 33/33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!