17.01.2015 Views

The genetic dissection of complex traits

The genetic dissection of complex traits

The genetic dissection of complex traits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>genetic</strong> <strong>dissection</strong><br />

<strong>of</strong> <strong>complex</strong> <strong>traits</strong><br />

Karl W Broman<br />

Biostatistics & Medical Informatics<br />

University <strong>of</strong> Wisconsin – Madison<br />

www.biostat.wisc.edu/~kbroman


<strong>The</strong> goal<br />

Identify genes that contribute to <strong>complex</strong> diseases<br />

Complex disease = one that’s hard to figure out<br />

Many genes + environment + other stuff<br />

2


<strong>The</strong> <strong>genetic</strong> approach<br />

• Start with the trait; find genes that influence it<br />

– Allelic differences at the gene result in phenotypic differences<br />

• Value: Need not know anything in advance<br />

• Goal<br />

– Understand the disease etiology (pathways/mechanisms)<br />

– Prediction/prevention<br />

– Identify possible drug targets<br />

3


Approaches<br />

• Experimental crosses in model organisms<br />

• Mutagenesis in model organisms<br />

• Association analysis with inbred strains<br />

• Linkage analysis in human pedigrees<br />

– A few large pedigrees<br />

– Many small families (e.g., sib pairs)<br />

• Association analysis in human populations<br />

– Candidate genes vs. whole genome<br />

4


Human vs mouse<br />

www.daviddeen.com<br />

6


Mutagenesis<br />

Advantages<br />

+ Can find things<br />

+ At the gene<br />

Disadvantages<br />

– Need cheap phenotype screen<br />

– Mutations must have large effect<br />

– Genes found may be irrelevant<br />

– Still need to map the mutation<br />

– Recessive mutations are hard to see<br />

7


Intercross<br />

P 1 P 2<br />

F 1 F 1<br />

F 2<br />

8


LOD curves<br />

8<br />

6<br />

LOD score<br />

4<br />

5%<br />

2<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19<br />

Chromosome<br />

9


Joys <strong>of</strong> QTL mapping<br />

• Genotype → phenotype<br />

• Recombination is cool<br />

• Simple correlation structure<br />

• Lots <strong>of</strong> opportunity for collaboration<br />

• Lots <strong>of</strong> open problems<br />

• Not many competitors<br />

10


Chromosome 4<br />

8<br />

6<br />

LOD score<br />

4<br />

2<br />

0<br />

1.5−LOD support interval<br />

0 20 40 60<br />

Map position (cM)<br />

11


Traditional approach<br />

F 2 /BC −→ QTL −→ congenic −→ subcongenics<br />

−→ • coding/regulatory polymorphism<br />

• expression/function difference<br />

• knock-in / transgenic<br />

• knock-out<br />

• homology to other species<br />

Issues:<br />

• Large QTL regions<br />

• Time consuming and expensive<br />

12


A congenic line<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y<br />

13


More modern approaches<br />

• Gene expression data<br />

– and proteins, metabolites, epi<strong>genetic</strong> marks<br />

– and eQTL analyses<br />

• Consomics (aka chromosome substitution strains)<br />

• Panels <strong>of</strong> congenics<br />

• Multiple crosses + haplotype analysis<br />

• Cross-species comparisons<br />

• Advanced intercross lines / Heterogenous Stock<br />

• Recombinant inbred lines / Collaborative Cross<br />

• Association mapping with inbred lines<br />

14


Consomics<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y<br />

15


Consomics<br />

Advantages<br />

+ Just phenotyping can get you to<br />

the chromosomes<br />

+ Eliminate the effects <strong>of</strong> other QTL<br />

+ Easy to create congenics<br />

Disadvantages<br />

– Time-consuming, expensive to<br />

create<br />

– Lots <strong>of</strong> phenotyping required<br />

– Cannot see interactions<br />

16


B.A on low fat diet<br />

C57BL/6J − Chr A J / NaJ<br />

0.10<br />

0.08<br />

Weight gain<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

A/J 7 10 14 11 6 1 Y 9 4 16 8 X 12 2 19 3 17 13 15 M 5 18<br />

B6<br />

Strain<br />

Shao et al., PNAS, 105:19910–19914, 2008<br />

17


More modern approaches<br />

• Gene expression data<br />

– and proteins, metabolites, epi<strong>genetic</strong> marks<br />

– and eQTL analyses<br />

• Consomics (aka chromosome substitution strains)<br />

• Panels <strong>of</strong> congenics<br />

• Multiple crosses + haplotype analysis<br />

• Cross-species comparisons<br />

• Advanced intercross lines / Heterogenous Stock<br />

• Recombinant inbred lines / Collaborative Cross<br />

• Association mapping with inbred lines<br />

18


Advanced intercross lines<br />

P<br />

A<br />

B<br />

F 2<br />

F 3<br />

F 4<br />

F 7<br />

F 10<br />

19


AIL<br />

Advantages<br />

+ Many more breakpoints =⇒<br />

more precise mapping<br />

+ Straightforward to create<br />

Disadvantages<br />

– Time and cost<br />

– Each individual <strong>genetic</strong>ally distinct<br />

– Useful largely for fine-mapping<br />

known loci<br />

– Relationships among individuals<br />

in final generation<br />

20


Sibships at F 8<br />

21


AIL: percent matching<br />

genotypes<br />

22


AIL: genotype data<br />

23


Heterogeneous stock<br />

G 0<br />

A B C D E F G H<br />

G 1<br />

G 2<br />

G 10<br />

G 20<br />

G 40<br />

24


HS<br />

Advantages<br />

+ Super-dense breakpoints<br />

+ Many alleles<br />

+ Heterozygous<br />

Disadvantages<br />

– Must be satisfied with what is<br />

available<br />

– Inbreeding: loss <strong>of</strong> alleles<br />

– Each individual unique<br />

– Like AIL, maybe best for<br />

fine-mapping known loci<br />

– Like AIL, relationships at last<br />

generations<br />

25


Recombinant inbred lines<br />

P 1 P 2<br />

F 1 F 1<br />

F 2<br />

F 3<br />

F 4<br />

●<br />

●<br />

●<br />

F ∞<br />

26


RIL<br />

Advantages<br />

+ High density <strong>of</strong> breakpoints<br />

+ Just genotype once<br />

+ Phenotype multiple individuals to<br />

reduce environmental/individual<br />

variation<br />

+ Multiple phenotypes on the same<br />

genomes<br />

+ Longitudinal phenotypes<br />

+ Genotype × environment<br />

interactions<br />

Disadvantages<br />

– Time-consuming, expensive to<br />

create<br />

– Available panels generally too<br />

small<br />

– Only homozygotes<br />

27


RIX<br />

1 2 3 4 5<br />

RI strains<br />

RIX<br />

1 x 2 1 x 3 1 x 4 1 x 5 2 x 3 2 x 4 2 x 5 3 x 4 3 x 5 4 x 5<br />

28


Collaborative Cross<br />

G 0<br />

A B C D E F G H<br />

G 1<br />

A B C D E F G H<br />

G 2<br />

ABCD EFGH<br />

G 3<br />

G 4<br />

●<br />

●<br />

●<br />

G ∞<br />

29


A CC genome<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X Y<br />

30


Association mapping<br />

• Phenotype available inbred strains<br />

• Make use <strong>of</strong> available SNP data<br />

• Need to account for the correlations among strains<br />

• Likely want to work with haplotypes rather than just individual SNPs<br />

• Be careful about wild-derived strains<br />

31


Association mapping<br />

Advantages<br />

+ Once you’ve done a strain survey,<br />

no further data needed<br />

+ Potentially very high resolution<br />

Disadvantages<br />

– All the usual problems with<br />

association mapping<br />

– Power is unpredictable<br />

– How to account for relationships<br />

among strains<br />

32


CC vs HS vs<br />

association mapping<br />

<strong>The</strong>se approaches have many similarites.<br />

Key differences:<br />

• CC, HS: pattern <strong>of</strong> association along chromosomes by design<br />

• HS: each individual unique<br />

33


Summary<br />

• QTL mapping in mice is fun and useful<br />

• But we need to be able to get to gene<br />

• <strong>The</strong>re are lots <strong>of</strong> new strategies to speed things along<br />

• Numerous interesting statistical problems remain<br />

• Need to consider human GWAS<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!