16.01.2015 Views

superconducting qubits

superconducting qubits

superconducting qubits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Solid State Qubits: way 2<br />

Way 1<br />

single particle states<br />

in semiconductor structures<br />

Way 2<br />

global quantum states<br />

of <strong>superconducting</strong> Josephson circuits<br />

A)Kane’s proposal : nuclear spins of P impurities in Si<br />

Phase qubit<br />

Flux<br />

qubit<br />

B) electrons in quantum dots (charge or spin)<br />

6 / 6 5<br />

C)Propagating states: flying <strong>qubits</strong><br />

Charge-flux qubit<br />

C P Box<br />

C P Box<br />

e<br />

Z<br />

/<br />

e<br />

Why superconductivity <br />

Why different flavors


1) Energy spectrum of an isolated electrode<br />

Non <strong>superconducting</strong><br />

state<br />

N<br />

Why <strong>superconducting</strong> <strong>qubits</strong> <br />

Isolated<br />

electrode<br />

Superconducting state<br />

S<br />

2 ∆<br />

+<br />

singlet ground state<br />

But one is not enough...


Why <strong>superconducting</strong> <strong>qubits</strong> <br />

2) The Josephson junction<br />

2 ∆<br />

2 ∆


Building blocks for quantum bit circuits<br />

N<br />

<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

0/1<br />

U 1<br />

U 1


Basics of the Josephson junction<br />

single degree<br />

of freedom<br />

L<br />

R<br />

R<br />

L<br />

[ ]<br />

= ∈ π<br />

1<br />

θ = ∑ H<br />

2π<br />

N<br />

N∈]<br />

2π<br />

0<br />

−LNθ<br />

N<br />

1<br />

LNθ<br />

= ∫ Gθ<br />

H θ<br />

2π<br />

Nˆ<br />

= ∑N N N<br />

ˆ = L<br />

N∈]<br />

∂<br />

∂ N<br />

N=Q/2e∈]<br />

H<br />

Lθˆ<br />

N = N+1<br />

⎡ˆ, ˆN ⎤ =<br />

⎣ ⎦<br />

L<br />

E<br />

J<br />

h<br />

= 8e<br />

2 R<br />

t<br />

Josephson Hamiltonian :<br />

E<br />

∑( N N+1 + N+ 1 N ) E ˆ<br />

Jc s<br />

J<br />

H<br />

J<br />

= - = -<br />

2 N<br />

o θ


Josephson <strong>qubits</strong> come in different flavors<br />

Ψ (1)<br />

1 2 >>1<br />

1<br />

2<br />

~ 1<br />

1<br />

phase<br />

flux<br />

charge-phase<br />

charge<br />

1,67 TU Delft<br />

Saclay, Yale (Devoret)<br />

NEC, Chalmers<br />

Yale (Schoelkopf)<br />

Single Cooper pair boxes


δ : extended phase<br />

conjugated of q on C J<br />

V<br />

δ<br />

Phase <strong>qubits</strong><br />

2<br />

q<br />

H = -EJcosδ<br />

-ϕ0Ibδ<br />

+ 2C<br />

J<br />

1<br />

4 2 , Φ<br />

0 0<br />

∆8 = [ 1−<br />

, / ,<br />

3 2π<br />

ω<br />

S<br />

⎛ 2 2π<br />

⎜<br />

,<br />

=<br />

⎝ Φ0<br />

⎞<br />

1/ 2<br />

0<br />

] 3/ 2<br />

[ ] 1/ 4<br />

0 ⎟ 1 − , ,<br />

0<br />

& ⎠<br />

Ib<br />

dc<br />

ac<br />

I 2 ><br />

I 1 ><br />

I 0 ><br />

( I )<br />

arcsin /I<br />

Γ<br />

L +1 10<br />

3<br />

Γ<br />

<br />

L<br />

b 0<br />

tilted washboard potential<br />

Γ 2<br />

Γ 1<br />

( ( − )<br />

Q<br />

( Q<br />

/ = ω<br />

+1 S<br />

0.9<br />

0.8<br />

0.7<br />

Γ0<br />

0 5<br />

δ<br />

ω 10<br />

ω 21<br />

ω 32<br />

∆8 = ω S


Rabi oscillations<br />

t r<br />

ω 10 ω 31<br />

Aumentado, Urbina,<br />

Martinis (NIST), 2002


etter phase qubit : rf SQUID<br />

with dc SQUID readout<br />

δ<br />

2<br />

1 ⎛ φ q<br />

δ π<br />

⎞<br />

⎝ ⎠ 2C<br />

ext<br />

H = -EJcos + ⎜ - 2 ⎟ +<br />

2L φ0<br />

2<br />

low noise bias<br />

I φ<br />

I s<br />

"sample<br />

and hold"<br />

readout<br />

qubit<br />

J. Martinis team (2003-2005)<br />

NIST & SB<br />

T2 : 10-50 ns ()<br />

I 1 ><br />

I 0 ><br />

Switching<br />

current<br />

10 µΑ<br />

0<br />

“0”<br />

U(δ)<br />

Qubit<br />

Cycle<br />

I φ<br />

I s<br />

…<br />

“1”<br />

fast<br />

deca<br />

y<br />

1 Φ 0<br />

SQUID flux<br />

Qubit Op Meas Amp Reset<br />

flux<br />

Measure p 1<br />

~5000 states<br />

time


A flux quantum bit : the three junction loop<br />

J <br />

(0.5


SQUID readout<br />

of the flux qubit<br />

(readout # 1)<br />

Switching<br />

measurement<br />

(Ic 200 nA)<br />

µw on resonance


flux qubit spectroscopy<br />

linewidth<br />

Coherence<br />

time<br />

, SW<br />

(0.4 nA per division)<br />

~<br />

0.498 0.500 0.502<br />

) ext<br />

() 0<br />

)<br />

9.711 GHz<br />

8.650 GHz<br />

6.985 GHz<br />

5.895 GHz<br />

4.344 GHz<br />

3.208 GHz<br />

2.013 GHz<br />

1.437 GHz<br />

1.120 GHz<br />

0.850 GHz<br />

f (GHz)<br />

10<br />

5<br />

0<br />

0<br />

0.8<br />

2<br />

0<br />

0 1 2 3<br />

') res<br />

(10 -3 ) 0<br />

)<br />

Short coherence times !<br />

Van der Wal<br />

TU Delft (2000)


Single Cooper pair boxes<br />

V g<br />

C g<br />

C J<br />

N<br />

7KH ILUVW ZRUNLQJ·<br />

TXELW


Hamiltonian and energy spectrum<br />

V g<br />

N<br />

C g<br />

C J<br />

2 characteristic energies:<br />

⎡ˆ, ˆN ⎤ = L<br />

⎣ ⎦<br />

1 degree of freedom: 1 knob: or /<br />

Hamiltonian:<br />

E<br />

h∆<br />

8e R<br />

J = 2<br />

t<br />

V g<br />

E<br />

C<br />

=<br />

N = C V (2e)<br />

2<br />

g g g<br />

( 2e)<br />

2<br />

( Cg<br />

+ CJ)<br />

ˆ ˆ 2<br />

H = E cosˆ<br />

C( N-N g) -EJ<br />

θ<br />

ˆ<br />

2 EJ<br />

H = E ( N-N ) N N - N+1 N + N N+1<br />

2<br />

C<br />

g<br />

∑( )<br />

N∈]


energy spectrum<br />

4<br />

E =1.1<br />

Ej /E J<br />

Ec<br />

C<br />

1.1<br />

3<br />

E 3<br />

Energy (E C )<br />

2<br />

1<br />

0<br />

E J<br />

E 2<br />

E 1<br />

E 0<br />

≡ 1<br />

≡ 0<br />

1<br />

0 0.5 1 1.5 2 2.5 3<br />

N g<br />

J<br />

qubit<br />

E >> k T<br />

B


Readout of single Cooper pair boxes<br />

V g<br />

C g<br />

C J<br />

N


Readout through the charge<br />

(measurement of the quantum state)<br />

ˆ ˆ 2<br />

H = E ( N-N ) -E<br />

cosθˆ<br />

C<br />

Nˆ<br />

= -<br />

g<br />

J<br />

1 ∂Hˆ<br />

2E<br />

∂N<br />

C<br />

g<br />

+ N<br />

g<br />

Energy (E C )<br />

1<br />

0<br />

E =1.1<br />

Ej /E J Ec C 1.1<br />

1<br />

0 0.5 1<br />

N g<br />

expectation value<br />

of the box charge:<br />

N k<br />

N 1<br />

0<br />

N 0<br />

0 0.5 1<br />

N g


Capacitive coupling to a Single Electron Transistor<br />

E<br />

0<br />

N = 0 + N = 1<br />

=<br />

2<br />

V. Bouchiat et al.<br />

Quantronics (1996)<br />

<br />

2<br />

1<br />

0<br />

-1<br />

theory<br />

Théorie<br />

Expérience<br />

experimen<br />

t<br />

Sans effet Josephson<br />

E J /E C =0.1<br />

T=20 mK<br />

Theory with no Josephson effect<br />

N<br />

V g<br />

-2<br />

-1.5 0 0.5 1 1.5<br />

N g<br />

n e<br />

V<br />

I( N )<br />

0 1/2 1<br />

qg( H)<br />

too slow ...


A box with a continuous readout<br />

Nakamura, Pashkin<br />

&Tsai (NEC,1999)<br />

Q =1<br />

Q = 0<br />

N<br />

V g<br />

Continuous<br />

measurement by<br />

energy relaxation<br />

0.5<br />

N g<br />

2e- or 0<br />

DC pulses from N g<br />

=0.25 to 0.5<br />

with duration ∆t<br />

V<br />

I ∝ N<br />

5<br />

I ( pA)<br />

First Rabi oscillations<br />

0<br />

200 400 600<br />

Pulse duration∆t (ps)<br />

Short coherence time : a few ns<br />

2000: WHY


The main difficulty<br />

U 1<br />

write<br />

1<br />

0<br />

D<br />

0<br />

E<br />

<br />

1<br />

Readout<br />

Decoherence<br />

Sources<br />

Open ports<br />

Decoherence


Readout port... lets noise in<br />

1<br />

0<br />

O <br />

e!8<br />

0 $ 0 1 $ 1<br />

A -meter<br />

Fluctuating<br />

environment<br />

detuning :<br />

E8 T<br />

EO<br />

<br />

T<br />

<br />

sO<br />

s8<br />

<br />

E8 T<br />

Readout + environment<br />

signal<br />

(if A measured) :<br />

DEPHASING<br />

O<br />

< ! ! > H<br />

s s8<br />

dephasing and readout closely related !


... and noise dephases...<br />

ψ =<br />

0 + e iϕ 1<br />

2<br />

MW S ÔQ<br />

W<br />

GW<br />

<br />

LI 6 Z<br />

<br />

;<br />

FRQVWDQW<br />

DWORZIUHT<br />

H<br />

L'M<br />

W<br />

W<br />

<br />

7<br />

H M<br />

7 M S<br />

<br />

$ $ ; <br />

<br />

6


... and depolarises<br />

)HUPL*ROGHQ5XOH<br />

<br />

* 5<br />

Z<br />

$ 6;<br />

<br />

=<br />

<br />

<br />

*(<br />

$ 6 Z<br />

<br />

;<br />

=<br />

7<br />

<br />

*<br />

<br />

* *<br />

<br />

( 5 5<br />

<br />

<br />

<br />

<br />

WRVXPPDUL]H<br />

6 ;<br />

Z<br />

<br />

H[FLWDWLRQ<br />

<br />

GHSKDVLQJ<br />

Z<br />

Z<br />

<br />

UHOD[DWLRQ


Solving the noise/readout dilemma:<br />

connect only at readout time<br />

Operate qubit at a stationary point:<br />

sO<br />

s8<br />

<br />

<br />

<br />

For readout:<br />

-Move away adiabatically at:<br />

sO<br />

s8<br />

- better: stay there, and apply an ac drive<br />

<br />

v


A qubit ‘protected’ from decoherence:<br />

the quantronium<br />

gate<br />

160 x160 nm<br />

A general strategy now applied to<br />

different Josephson <strong>qubits</strong><br />

Vion et al, Science 2002; Esteve&Vion, cond-mat 2005


The quantronium: 1) a split Cooper pair box<br />

U<br />

2 knobs : Ng = CgU/2e<br />

Φϕ 0<br />

Φ<br />

)<br />

1 d° of freedom<br />

2 energies:<br />

E<br />

C<br />

( 2e) 2<br />

h∆<br />

= EJ= 2<br />

2C<br />

8e R<br />

island<br />

⎡ˆN<br />

ˆ ⎤ = L<br />

⎣ ⎦<br />

ˆ ˆ 2 δ<br />

H ≈ E<br />

cos cosθˆ<br />

C(<br />

N- Ng) -EJ<br />

2<br />

t<br />

U<br />

N<br />

i<br />

State dependent persistent currents<br />

î =<br />

1 ∂Hˆ<br />

1 ∂E<br />

=<br />

ϕ ∂δ<br />

ϕ ∂δ<br />

0 0<br />

k


2) protected from dephasing<br />

E J<br />

≈ E<br />

C<br />

sO<br />

s8<br />

<br />

<br />

<br />

20<br />

energy (k B K)<br />

0.5<br />

0.25<br />

0<br />

-0.25<br />

- ccccc<br />

1<br />

2<br />

0<br />

δ/2π<br />

1<br />

ccccc<br />

2 0<br />

1<br />

ccccc<br />

2<br />

N g<br />

1<br />

1<br />

0<br />

hν 01<br />

ν 01 (GHz)<br />

15<br />

10<br />

5<br />

0<br />

- ccccc<br />

1<br />

2<br />

0<br />

δ/2π<br />

1<br />

ccccc<br />

2 0<br />

1<br />

ccccc<br />

2<br />

N g<br />

1<br />

E J =0.86 k B K<br />

E C =0.68 k B K<br />

Optima working points exist in many <strong>qubits</strong>


3) with a readout junction<br />

first readout of<br />

persistent currents<br />

with dc switching<br />

20<br />

15<br />

10<br />

V=0<br />

or<br />

V≠0<br />

I 0<br />

I b<br />

U<br />

5<br />

0<br />

- ccccc<br />

1<br />

2<br />

U<br />

δ/2π<br />

0<br />

1<br />

ccccc<br />

2 0<br />

1<br />

ccccc<br />

2<br />

N g<br />

RF amplitude (a.u.)<br />

1<br />

200 20<br />

0<br />

0 1 2 3 4 5 6<br />

time (µs)<br />

bias current (nA)<br />

1000 100<br />

800 80<br />

600 60<br />

400 40<br />

output voltage (µV)<br />

1<br />

1: switching<br />

0: no switching<br />

0 discrimination


Rabi precession<br />

microwave output voltage (mV)<br />

100<br />

50<br />

0<br />

-50<br />

A cos( ωW<br />

+ χ)<br />

Z<br />

16 GHz<br />

1.0 2.0 3.0 4.0<br />

time (ns)<br />

<br />

switching<br />

probability<br />

(%)<br />

UHDGRXW<br />

URWDWLRQ<br />

ω Rabi = αU RF<br />

Rabi oscillations<br />

50<br />

F<br />

Y<br />

40<br />

X<br />

<br />

Effective<br />

field<br />

30<br />

0 50 100 150 200 250<br />

ν µw<br />

Note: visibility :


measuring coherence using Ramsey interferences<br />

0<br />

ω Rabi<br />

ω =ω 01 −ω RF<br />

ω Rabi<br />

Projection Z<br />

π/2 pulse )UHHHYROXWLRQ π/2 pulse<br />

URWDWLRQDOVR<br />

UHDGRXW<br />

Ramsey interferences reveal<br />

decoherence during free evolution


Ramsey interferences in the quantronium<br />

switching probability (%) (%)<br />

45<br />

45<br />

40<br />

40<br />

35<br />

35<br />

30<br />

30<br />

∆t<br />

ν RF = 16409.50 MHz<br />

−∆W/<br />

7<br />

sin(2π<br />

.<br />

Fit<br />

∆ν = 19.84 MHz<br />

T = 500 +/- 50 ns<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

0.0 0.1 time 0.2 between 0.3 pulses ∆t 0.4(µs)<br />

0.5 0.6<br />

time between pulses ∆t (µs)<br />

H<br />

ϕ<br />

ν.<br />

W)


microwave output voltage (mV)<br />

100<br />

50<br />

0<br />

-50<br />

Arbitrary transformation of a qubit<br />

using multipulse sequences <br />

1.0 2.0 3.0 4.0<br />

time (ns)<br />

<br />

16 GHz<br />

X<br />

0<br />

1<br />

Z<br />

Y<br />

X<br />

F<br />

<br />

Y<br />

Effective<br />

field<br />

Remind:<br />

8 = 5 5 5<br />

3 ; 2< 1;<br />

ν µw


Checking combined rotations<br />

0<br />

ω Rabi<br />

Collin et al,<br />

PRL 2004<br />

ω =ω 01 −ω RF<br />

ω Rabi<br />

Projection Z<br />

π/2 pulse )UHHHYROXWLRQ π/2 pulse<br />

URWDWLRQDOVR<br />

UHDGRXW<br />

60<br />

(π/2) X<br />

-(π/2) X<br />

(π/2) X<br />

-(π/2) -Y<br />

switching probability (%)<br />

50<br />

40<br />

30<br />

(π/2) X<br />

-(π/2) -X<br />

(π/2) X<br />

-(π/2) Y<br />

50 MHz detuning<br />

20<br />

0 20 40 60<br />

8 = 53 ;<br />

52 <<br />

51;<br />

feasible<br />

delay between π/2 pulse (ns)<br />

robustness


Towards better rotations: composite pulses<br />

Composite ‘ S ’ CORPSE :<br />

60° X 300 ° -X 420 X ° Collin et al,<br />

6 0<br />

sw itching probability (% )<br />

5 0<br />

4 0<br />

3 0<br />

‘ S ’ CORPSE<br />

corpse: 420°(X )/300°(-X )/60°(X )<br />

sim ple π pulse<br />

ν R abi<br />

= 92 M H z<br />

sw eet sp ot<br />

Single pulse<br />

1 6 .3 0 1 6.3 5 16 .40 1 6 .4 5 1 6 .5 0<br />

frequency (G H z)<br />

Improved robustness to frequency detuning<br />

PRL 2004


Corpse :<br />

test for any initial state<br />

NOT operation: θ x<br />

π Corpse<br />

60<br />

θ x<br />

θ x<br />

+ corpse π X<br />

switching probability (%)<br />

50<br />

40<br />

30<br />

20<br />

180 360 540 720<br />

angle (°)


Optimal point for other <strong>qubits</strong><br />

the flux qubit<br />

, E <br />

Chiorescu et al, TU Delft 2003<br />

Nakamura et al., NEC 2005<br />

a ) <br />

, H[<br />

PRELI-<br />

, E <br />

, F P$<br />

, J<br />

T<br />

S+<br />

a )<br />

S+<br />

T<br />

<br />

MINARY<br />

, E <br />

2005: T2=400 ns


Cavity QED with a Cooper pair box<br />

Dispersive readout with<br />

out of resonance photons<br />

R. Schoelkopf, A. Wallraff, S. Girvin<br />

et al., Yale (2004)


Cavity Quantum Electrodynamics (CQED)


Coherence time measurements<br />

with 2 pulse Ramsey sequence


2 qubit gates <br />

CNOT performed with 2 Cooper pair boxes,<br />

(NEC 2003), without single shot readout<br />

Correlations demonstrated on 2 phase <strong>qubits</strong>,<br />

(NIST-SB, Science 2005)<br />

2 coupled phase <strong>qubits</strong><br />

10 and 01 anticorrelated


Summary :<br />

Different Josephson <strong>qubits</strong> at work<br />

General strategy to improve coherence: optimal point<br />

Single shot readout, but fidelity

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!