15.01.2015 Views

CST Guide:

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section I: Research Areas<br />

These protein targets represent key<br />

nodes within autophagy signaling<br />

pathways and are commonly studied<br />

in autophagy research. Primary<br />

antibodies, antibody conjugates, and<br />

antibody sampler kits containing<br />

these targets are available from <strong>CST</strong>.<br />

Listing as of September 2014. See our<br />

website for current product information.<br />

M Monoclonal Antibody<br />

P Polyclonal Antibody<br />

S SignalSilence ® siRNA<br />

207<br />

2012–2014 citations<br />

<strong>CST</strong> antibodies for LC3B have been<br />

cited over 207 times in high-impact,<br />

peer-reviewed publications from the<br />

global research community.<br />

Antibody<br />

Validation<br />

Principles<br />

Please visit our website to learn more<br />

about what Antibody Validation means<br />

at Cell Signaling Technology.<br />

www.cellsignal.com/cstvalidation<br />

Commonly Studied Autophagy Targets<br />

Target M P S Target M P S<br />

Ambra1<br />

• Phospho-Beclin-1<br />

Atg3<br />

(Ser93/96) •<br />

•<br />

Atg4A<br />

Bif-1<br />

•<br />

•<br />

Atg4B<br />

BNIP3<br />

• • •<br />

•<br />

Atg4C<br />

BNIP3L/Nix<br />

• •<br />

•<br />

Atg5<br />

FIP200<br />

• • •<br />

•<br />

Atg7<br />

GABARAP<br />

• • •<br />

•<br />

Atg9A GABARAPL2<br />

• •<br />

•<br />

Atg12<br />

LC3A<br />

• •<br />

• •<br />

Atg13 LC3A/B<br />

• •<br />

• •<br />

Atg14<br />

LC3B<br />

• •<br />

• • •<br />

Atg16L1<br />

MTMR3<br />

•<br />

•<br />

Atg101<br />

MTMR14<br />

•<br />

•<br />

Beclin-1<br />

NBR1<br />

• • •<br />

•<br />

Phospho-Beclin-1 (Ser15)<br />

Rubicon<br />

•<br />

•<br />

SQSTM1/p62 • • •<br />

Select Citations:<br />

Mancias, J.D. et al. (2014) Quantitative proteomics identifies<br />

NCOA4 as the cargo receptor mediating ferritinophagy.<br />

Nature 509, 105–109.<br />

Bejarano, E. et al. (2014) Connexins modulate autophagosome<br />

biogenesis. Nat. Cell Biol. 16, 401–414.<br />

Jang, Y.H. et al. (2014) Phospholipase D-mediated autophagic<br />

regulation is a potential target for cancer therapy. Cell<br />

Death Differ. 21, 533–546.<br />

Kim, J. et al. (2014) Differential regulation of distinct Vps34<br />

complexes by AMPK in nutrient stress and autophagy. Cell<br />

152, 290–303.<br />

Mealer, R.G. et al. (2014) Rhes, a striatal-selective protein<br />

implicated in Huntington disease, binds beclin-1 and activates<br />

autophagy. J. Biol. Chem. 289, 3547–3554.<br />

Efeyan, A. et al. (2014) Regulation of mTORC1 by the Rag<br />

GTPases is necessary for neonatal autophagy and survival.<br />

Nature 93, 679–683.<br />

Brot, S. et al. (2014) Collapsin response mediator protein 5<br />

(CRMP5) induces mitophagy, thereby regulating mitochondrion<br />

numbers in dendrites. J. Biol. Chem. 289, 2261–2276.<br />

Martins, I. et al. (2014) Molecular mechanisms of ATP<br />

secretion during immunogenic cell death. Cell Death Differ.<br />

21, 79–91.<br />

Lu, B. et al. (2014) JAK/STAT1 signaling promotes HMGB1<br />

hyperacetylation and nuclear translocation. Proc. Natl. Acad.<br />

Sci. USA 111, 3068–3073.<br />

Li, Q. et al. (2014) Cited2, a transcriptional modulator<br />

protein, regulates metabolism in murine embryonic stem<br />

cells. J. Biol. Chem. 289, 251–263.<br />

Papa, L. et al. (2014) SirT3 regulates the mitochondrial<br />

unfolded protein response. Mol Cell Biol. 34, 699–710.<br />

Hong, S.W. et al. (2013) SVCT-2 in breast cancer acts<br />

as an indicator for L-ascorbate treatment. Oncogene 32,<br />

1508–1517.<br />

Zhai, H. et al. (2013) Inhibition of autophagy and tumor<br />

growth in colon cancer by miR-502. Oncogene 32,<br />

1570–1579.<br />

Brot, S. et al. (2014) Collapsin response mediator protein 5<br />

(CRMP5) induces mitophagy, thereby regulating mitochondrion<br />

numbers in dendrites. J. Biol. Chem. 289, 2261–2276.<br />

Target M P S<br />

Phospho-SQSTM1/p62<br />

(Thr269/Ser272) •<br />

Phospho-SQSTM1/p62<br />

(Ser403)<br />

•<br />

TECPR1 •<br />

TMEM49/VMP1 •<br />

ULK1 • • •<br />

Phospho-ULK1 (Ser317) • •<br />

Phospho-ULK1 (Ser467) •<br />

Phospho-ULK1 (Ser555) •<br />

Phospho-ULK1 (Ser638) • •<br />

Phospho-ULK1 (Ser757) • •<br />

UVRAG • •<br />

WIPI1<br />

• •<br />

WIPI2<br />

•<br />

Phospho-WIPI2 (Ser413) •<br />

Mealer, R.G. et al. (2014) Rhes, a striatal-selective protein<br />

implicated in Huntington disease, binds beclin-1 and activates<br />

autophagy. J. Biol. Chem. 289, 3547–3554.<br />

Huck, B. et al. (2014) Elevated protein kinase D3 (PKD3)<br />

expression supports proliferation of triple-negative breast<br />

cancer cells and contributes to mTORC1-S6K1 pathway<br />

activation. J. Biol. Chem. 289, 3138–3147.<br />

Conacci-Sorrell, M. et al. (2014) Stress-induced cleavage of<br />

Myc promotes cancer cell survival. Genes Dev. 28, 689–707.<br />

Huck, B. et al. (2014) Elevated protein kinase D3 (PKD3)<br />

expression supports proliferation of triple-negative breast<br />

cancer cells and contributes to mTORC1-S6K1 pathway<br />

activation. J. Biol. Chem. 289, 3138–3147.<br />

Talaber, G. et al. (2014) HRES-1/Rab4 promotes the formation<br />

of LC3(+) autophagosomes and the accumulation of<br />

mitochondria during autophagy. PLoS One 9, 84392.<br />

Lin, G. et al. (2014) Reduced Warburg effect in cancer cells<br />

undergoing autophagy: steady- state 1H-MRS and real-time<br />

hyperpolarized 13C-MRS studies. PLoS One 9, 92645.<br />

Nemati, F. et al. (2014) Targeting Bcl-2/Bcl-XL induces antitumor<br />

activity in uveal melanoma patient-derived xenografts.<br />

PLoS One 9, e80836.<br />

Ren, X.S. et al. (2014) Activation of the PI3K/mTOR pathway<br />

is involved in cystic proliferation of cholangiocytes of the PCK<br />

rat. PLoS One 9, e87660.<br />

Shiroto, T. et al. (2014) Caveolin-1 is a critical determinant<br />

of autophagy, metabolic switching, and oxidative stress in<br />

vascular endothelium. PLoS One, e87871.<br />

Uetake, R. et al. (2014) Adrenomedullin-RAMP2 system suppresses<br />

ER stress-induced tubule cell death and is involved<br />

in kidney protection. PLoS One 9, e87667.<br />

Chang, P.C. et al. (2014) Autophagy pathway is required for<br />

IL-6 induced neuroendocrine differentiation and chemoresistance<br />

of prostate cancer LNCaP cells. PLoS One 9, e88556.<br />

Lin, L. et al. (2014) Mechanical stress triggers cardiomyocyte<br />

autophagy through angiotensin II type 1 receptormediated<br />

p38MAP kinase independently of angiotensin II.<br />

PLoS One 9, e89629.<br />

Gu, W. et al. (2014) Ambra1 is an essential regulator of<br />

autophagy and apoptosis in SW620 cells: pro-survival role of<br />

Ambra1. PLoS One 9, e90151.<br />

Autophagy Signaling<br />

AMP:<br />

ATP<br />

AMPK<br />

Apoptosis<br />

Phagophore<br />

Atg16L1<br />

Amino<br />

Acids<br />

Atg16L1<br />

Macroautophagy<br />

PI3K-I/Akt<br />

Signaling<br />

GβL<br />

MAPK/Erk1/2<br />

Signaling<br />

Atg13 FIP200<br />

ULK1<br />

p150<br />

PI3K<br />

Class III<br />

Beclin-1<br />

Bcl-2<br />

Atg14<br />

Atg5<br />

Rubicon<br />

Atg12<br />

Atg12<br />

mTOR<br />

Ambra1<br />

Atg5<br />

Atg10<br />

Atg7<br />

p53/Genotoxic<br />

Stress<br />

Raptor<br />

PRAS40<br />

ub<br />

Cytoplasmic<br />

Contents<br />

Oxidative<br />

Stress<br />

Membrane<br />

Nucleation<br />

ub<br />

Mitophagy<br />

Mitochondrial<br />

Damage<br />

PARL<br />

BNIP3<br />

SQSTM1/p62<br />

BNIP3L/NIX<br />

+ NBR1 +<br />

ALFY<br />

Atg3<br />

Atg7<br />

Atg4<br />

Sequestration<br />

LC3-II<br />

LC3-I<br />

LC3<br />

PE<br />

PINK<br />

SQSTM1/p62<br />

NBR1<br />

Ambra1<br />

chapter 03: Cell Growth and Death<br />

ub<br />

Parkin<br />

+ LC3-II<br />

Autophagosome<br />

Lysosome<br />

ub -targets<br />

Fusion<br />

Autophagolysosome<br />

Macroautophagy, often referred to as autophagy, is a catabolic process that results in the autophagosomic-lysosomal degradation of bulk cytoplasmic contents, abnormal<br />

protein aggregates, and excess or damaged organelles. Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with physiological<br />

as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer. The kinase mTOR is a critical regulator of<br />

autophagy induction, with activated mTOR (Akt and MAPK signaling) suppressing autophagy, and negative regulation of mTOR (AMPK and p53 signaling) promoting it. Three<br />

related serine/threonine kinases, UNC-51-like kinase -1, -2, and -3 (ULK1, ULK2, UKL3), which play a similar role as the yeast Atg1, act downstream of the mTOR complex.<br />

ULK1 and ULK2 form a large complex with the mammalian homolog of an autophagy-related (Atg) gene product (mAtg13) and the scaffold protein FIP200 (an ortholog of<br />

yeast Atg17). Class III PI3K complex, containing hVps34, Beclin-1 (a mammalian homolog of yeast Atg6), p150 (a mammalian homolog of yeast Vps15), and Atg14-like<br />

protein (Atg14L or Barkor) or ultraviolet irradiation resistance-associated gene (UVRAG), is required for the induction of autophagy. The Atg genes control autophagosome<br />

formation through Atg12-Atg5 and LC3-II (Atg8-II) complexes. Atg12 is conjugated to Atg5 in a ubiquitin-like reaction that requires Atg7 and Atg10 (E1 and E2-like enzymes,<br />

respectively). The Atg12-Atg5 conjugate then interacts noncovalently with Atg16 to form a large complex. LC3/Atg8 is cleaved at its C-terminus by Atg4 protease to generate<br />

the cytosolic LC3-I. LC3-I is conjugated to phosphatidylethanolamine (PE) also in a ubiquitin-like reaction that requires Atg7 and Atg3 (E1 and E2-like enzymes, respectively).<br />

The lipidated form of LC3, known as LC3-II, is attached to the autophagosome membrane. Autophagy and apoptosis are connected both positively and negatively, and extensive<br />

crosstalk exists between the two processes. During nutrient deficiency, autophagy functions as a pro-survival mechanism; however, excessive autophagy may lead to<br />

cell death, a process morphologically distinct from apoptosis. Several pro-apoptotic signals, such as TNF, TRAIL, and FADD, also induce autophagy. Additionally, Bcl-2 inhibits<br />

Beclin-1-dependent autophagy, thereby functioning both as a pro-survival and as an anti-autophagic regulator.<br />

Mitophagy is a selective autophagic process specifically designed for the removal of damaged or unneeded mitochondria from a cell. Upon mitochondrial damage, the protein<br />

PINK, which is continually degraded in the healthy state through the action of PARL, is stabilized and recruits the E3 ligase Parkin to initiate mitophagy. Polyubiquitination of<br />

mitochondrial membrane proteins by Parkin results in the recruitment of autophagy adaptor proteins SQSTM1/p62, NBR1, and Ambra1 that bind to LC3 via their LC3-<br />

interacting region (LIR). In addition, BNIP3 and BNIP3L/NIX, which also contain LIRs, directly recruit autophagic machinery by a ubiquitin-independent mechanism to induce<br />

autophagosome formation in certain cell types.<br />

Select Reviews:<br />

Alers, S., Löffler, A.S., Wesselborg, S., and Stork, B. (2012) Mol. Cell. Biol. 32, 2–11. • Codogno, P., Mehrpour, M., and Proikas-Cezanne, T. (2012) Nat. Rev. Mol. Cell Biol.<br />

13, 7–12. • Ding, W.X. and Yin, X.M. (2012) Biol. Chem. 393, 547–564. • Feng, D., Liu, L., Zhu, Y., and Chen, Q. (2013) Exp. Cell. Res. 319, 1697–1705. • Jin, M.<br />

and Klionsky, D.J. (2014) FEBS Lett. 588, 2457–2463. • Papinski, D. and Kraft, C. (2014) Autophagy 10, 1338–1340. • Schneider, J.L. and Cuervo, A.M. (2014) Curr.<br />

Opin. Genet. Dev. 26, 16–23.<br />

© 2003–2015 Cell Signaling Technology, Inc. • We would like to thank Prof. Bingren Hu, University of Maryland School of Medicine, Baltimore, MD, for reviewing this diagram.<br />

96 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

www.cellsignal.com/cstpathways<br />

97

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!