15.01.2015 Views

CST Guide:

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

c-IAP<br />

TRADD<br />

FADD<br />

Section I: Research Areas<br />

chapter 03: Cell Growth and Death<br />

Regulation of Apoptosis Overview<br />

Inhibition of Apoptosis<br />

TNF, FasL, TRAIL<br />

TNF, FasL, TRAIL<br />

Trophic Factors<br />

TNF-α<br />

TNF-R1<br />

Survival Factors:<br />

Growth Factors,<br />

Cytokines, etc.<br />

Cytoplasm<br />

IKKα<br />

IκBα<br />

TAK1<br />

IKKγ<br />

IκBα<br />

NF-κB<br />

NF-κB<br />

Cytoplasm<br />

Nucleus<br />

IKKβ<br />

Calpain<br />

[Ca 2+ ]<br />

FLIP<br />

XIAP<br />

c-IAP<br />

TRAF2<br />

NIK Casp-8,-10<br />

RIP<br />

TRAF2<br />

Casp-12<br />

Casp-9<br />

ER Stress<br />

RIP1<br />

TRADD<br />

NF-κB<br />

FADD<br />

CYLD<br />

PARP<br />

Itch<br />

FLIP<br />

TRADD<br />

FADD<br />

BID<br />

ROCK<br />

• Cell shrinking<br />

• Membrane<br />

blebbing<br />

DFF40<br />

XIAP<br />

AIF<br />

RIP RAIDD<br />

PIDD<br />

Casp-2<br />

p53<br />

SirT2<br />

HtrA2<br />

Arts<br />

Casp-3,-6,-7<br />

Lamin<br />

A/C<br />

APP<br />

DNA<br />

Fragmentation<br />

RIP<br />

Smac/<br />

Diablo<br />

Endo G<br />

TRAF2<br />

tBID<br />

DFF40<br />

JNK<br />

Cyto c<br />

DFF45<br />

ASK1<br />

Bax<br />

DNA Damage<br />

Bak<br />

Mcl-1<br />

Casp-9<br />

Apaf-1<br />

AIF<br />

PKC<br />

Bcl-2<br />

Bim<br />

ATM/ATR<br />

p53<br />

Puma<br />

Noxa<br />

p90RSK<br />

Puma<br />

Bcl-xL<br />

Noxa<br />

HECTH9<br />

Endo G<br />

Chk1/2<br />

FoxO1<br />

p53<br />

Bad<br />

p53<br />

PI3K<br />

Cell Cycle<br />

Erk1/2<br />

cdc2<br />

14-3-3<br />

Akt<br />

Cellular Stress<br />

FoxO1<br />

JNK<br />

JNK<br />

Bim<br />

c-Jun<br />

NIK<br />

IKKγ CDC37<br />

IKKβ HSP90<br />

IκB<br />

IκB<br />

NF-κB<br />

NF-κB<br />

Cytoplasm<br />

Nucleus<br />

NF-κB<br />

cIAP<br />

TAK1<br />

TAB<br />

IKKα IKKβ<br />

IKKγ<br />

TRAF2<br />

TRADD<br />

HSP90<br />

Casp-8<br />

XIAP<br />

CYLD<br />

HSP70<br />

FADD<br />

HSP90<br />

JNK<br />

HSP27<br />

A20<br />

GSK-3<br />

FoxO1<br />

PTEN<br />

PI3K<br />

PIP 3<br />

Akt<br />

Bcl-2<br />

Casp-3,-6,-7<br />

Bax<br />

HSP27<br />

Apoptosis<br />

Casp-9<br />

Apaf-1 Cyto c HECTH9 HSP70<br />

Akt<br />

FLIP<br />

XIAP<br />

A20<br />

FLIP<br />

BID<br />

Smac/<br />

Diablo<br />

RIP1<br />

HSP70<br />

tBID<br />

HSP27<br />

HSP90<br />

Bax<br />

Bax<br />

Mcl-1<br />

Bak<br />

Bcl-xL<br />

Bim<br />

Bim<br />

PDK1<br />

p70S6K<br />

FAS<br />

Bim<br />

Bad<br />

Bim<br />

PKA<br />

[cAMP]<br />

FoxO1<br />

Ras<br />

Raf<br />

Erk1/2<br />

FoxO1<br />

PKC<br />

p90RSK<br />

Jak<br />

Src<br />

CREB Stat1 Stat3<br />

Bcl-2<br />

Bcl-xL<br />

Cytoplasm<br />

CREB<br />

Stat1<br />

Stat3<br />

HSP90<br />

Apoptosis is a regulated cellular suicide mechanism characterized by nuclear condensation, cell shrinkage, membrane blebbing, and DNA fragmentation. Caspases, a family<br />

of cysteine proteases, are the central regulators of apoptosis. Initiator caspases (including caspase-2, -8, -9, -10, -11, and -12) are closely coupled to pro-apoptotic signals.<br />

Once activated, these caspases cleave and activate downstream effector caspases (including caspase-3, -6, and -7), which in turn execute apoptosis by cleaving cellular<br />

proteins following specific Asp residues. Activation of Fas and TNFR by FasL and TNF, respectively, leads to the activation of caspase-8 and -10. DNA damage induces the<br />

expression of PIDD, which binds to RAIDD and caspase-2 and leads to the activation of caspase-2. Cytochrome c released from damaged mitochondria is coupled to the<br />

activation of caspase-9. XIAP inhibits caspase-3, -7, and -9. Mitochondria release multiple pro-apoptotic molecules, such as Smac/Diablo, AIF, HtrA2, and Endo G, in addition<br />

to cytochrome c. Smac/Diablo binds to XIAP, preventing it from inhibiting caspases. Caspase-11 is induced and activated by pathological pro-inflammatory and pro-apoptotic<br />

stimuli and leads to the activation of caspase-1, thereby promoting inflammatory response and apoptosis by directly processing caspase-3. Caspase-12 and caspase-7 are<br />

activated under ER stress conditions. Anti-apoptotic ligands, including growth factors and cytokines, activate Akt and p90RSK. Akt inhibits Bad by direct phosphorylation and<br />

prevents the expression of Bim by phosphorylating and inhibiting the Forkhead family of transcription factors (FoxO). FoxO promotes apoptosis by upregulating pro-apoptotic<br />

molecules such as FasL and Bim.<br />

Select Reviews:<br />

Degterev, A. and Yuan J. (2008) Nat. Rev. Mol. Cell Biol. 9, 378–390. • Fuchs, Y. and Steller H. (2011) Cell 147, 742–758. • Indran, I.R., Tufo, G., Pervaiz, S., and Brenner<br />

C. (2011) Biochim. Biophys. Acta. 1807, 735–745. • Kaufmann, T., Strasser, A., and Jost, P.J. (2012) Cell Death Differ. 19, 42–50. • Kurokawa, M. and Kornbluth, S.<br />

(2009) Cell 138, 838–854. • Pradelli, L.A., Bénéteau, M., and Ricci, J.E. (2010) Cell. Mol. Life Sci. 67, 1589–1597. • Van Herreweghe, F., Festjens, N., Declercq, W., and<br />

Vandenabeele, P. (2010) Cell. Mol. Life Sci. 67, 1567–1579.<br />

Cell survival requires the active inhibition of apoptosis, which is accomplished by inhibiting the expression of pro-apoptotic factors as well as promoting the expression of<br />

anti-apoptotic factors. The PI3K pathway, activated by many survival factors, leads to the activation of Akt, an important player in survival signaling. PTEN negatively regulates<br />

the PI3K/Akt pathway. Activated Akt phosphorylates and inhibits the pro-apoptotic Bcl-2 family members Bad, Bax, caspase-9, GSK-3, and FoxO1. Many growth factors and<br />

cytokines induce anti-apoptotic Bcl-2 family members. The Jaks and Src phosphorylate and activate Stat3, which in turn induces the expression of Bcl-xL and Bcl-2. Erk1/2<br />

and PKC activate p90RSK, which activates CREB and induces the expression of Bcl-xL and Bcl-2. These Bcl-2 family members protect the integrity of mitochondria, preventing<br />

cytochrome c release and the subsequent activation of caspase-9. TNF-α may activate both pro-apoptotic and anti-apoptotic pathways; TNF-α can induce apoptosis by<br />

activating caspase-8 and -10, but can also inhibit apoptosis via NF-κB, which induces the expression of anti-apoptotic genes such as Bcl-2. cIAP1/2 inhibit TNF-α signaling<br />

by binding to TRAF2. FLIP inhibits the activation of caspase-8.<br />

Select Reviews:<br />

Brumatti, G., Salmanidis, M., and Ekert, P.G. (2010) Cell. Mol. Life Sci. 67, 1619–1630. • Fuchs, Y. and Steller, H. (2011) Cell 147, 742–758. • Fulda, S. and Vucic, D.<br />

(2012) Nat. Rev. Drug Discov. 11, 109–124. • Kaufmann, T., Strasser, A., and Jost, P.J. (2012) Cell Death Differ. 19, 42–50. • Lopez, J. and Meier, P. (2010) Curr. Opin.<br />

Cell Biol. 22, 872–881. • Rong, Y. and Distelhorst, C.W. (2008) Annu. Rev. Physiol. 70, 73–91. • Srinivasula, S.M. and Ashwell, J.D. (2008) Mol. Cell 30, 123–135. •<br />

Zhang, X., Tang, N., Hadden, T.J., and Rishi, A.K. (2011) Biochim. Biophys. Acta. 1813, 1978–1986.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Prof. Junying Yuan, Harvard Medical School, Boston, MA, for reviewing this diagram.<br />

90 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Prof. Junying Yuan, Harvard Medical School, Boston, MA, for reviewing this diagram.<br />

www.cellsignal.com/cstpathways 91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!