15.01.2015 Views

CST Guide:

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section I: Research Areas<br />

Calcium pump<br />

protein ATP2A2/<br />

SERCA2 is widely<br />

expressed in<br />

many cell lines.<br />

Calcium Channels and Pumps<br />

Maintaining proper calcium concentrations within the cell is critical for effective cell signaling and<br />

requires a variety of channels and pumps to transport calcium ions across intracellular and plasma<br />

membranes. Ion channels move calcium ions into the cell or out from intracellular storage compartments<br />

(with the gradient), effectively raising cytoplasmic calcium concentrations. The three types of<br />

calcium ion channels are broadly classified by their ability to open in response to a ligand, second<br />

messenger, or membrane potential (voltage-dependent calcium channels; VDCC). For example, the IP3<br />

receptor requires the second messenger inositol 1,4,5-triphosphate (IP3) for activation and is located<br />

on the endoplasmic reticulum (ER) where it regulates release of intracellular calcium stores.<br />

As cytoplasmic calcium concentrations rise, calcium can be transported back outside the cell or into<br />

storage within the sarcoplasmic reticulum or ER by calcium pumps. Calcium pump proteins are calcium-<br />

ATPases that use the energy of ATP hydrolysis to retrotransport calcium across plasma or ER membranes,<br />

thus maintaining the calcium gradient necessary for rapid signaling. For example, the calcium<br />

pump ATP2A2/SERCA2 is responsible for regulating calcium transport across sarcoplasmic reticulum and<br />

ER membranes, and its activity can be regulated through a variety of post-translational modifications.<br />

ATP2A2/SERCA2 Antibody #4388: WB analysis<br />

of extracts from various cell lines using #4388.<br />

Lanes<br />

1. Hep G2<br />

2. RD<br />

3. C2C12<br />

4. Jurkat<br />

5. NIH/3T3<br />

6. PC-12<br />

IP3 receptor, a calcium ion channel activated by<br />

second messengers, is expressed in brain tissue.<br />

IP3 Receptor 1 (D53A5) Rabbit mAb #8568: WB analysis of extracts from mouse and<br />

rat brain using #8568.<br />

82 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

kDa<br />

200<br />

140<br />

100<br />

80<br />

60<br />

50<br />

40<br />

kDa<br />

200<br />

140<br />

100<br />

1 2<br />

IP3<br />

Receptor 1<br />

Lanes<br />

1. mouse brain<br />

2. rat brain<br />

Mitochondrial Calcium Uniporter<br />

The mitochondrial calcium uniporter (MCU) is a calcium channel specifically located within the<br />

mitochondrial inner membrane. Mitochondrial calcium uniporter regulator 1 (MCUR1) is a multi-pass,<br />

transmembrane protein that directly interacts with MCU and plays an essential role in the regulation of<br />

calcium uptake and maintenance of mitochondrial calcium homeostasis. Regulation of MCU by MCUR1<br />

may be critical for a variety of cellular functions, including signal transduction, bioenergetics, and cell<br />

death and survival.<br />

Mitochondrial calcium uniporter<br />

is expressed in many cell lines.<br />

MCUR1 Antibody #13706: WB analysis of extracts from<br />

various tissues and cell lines using #13706 (upper) and<br />

β-Actin (D6A8) Rabbit mAb #8457 (lower).<br />

1 2 3 4 5 6<br />

kDa<br />

60<br />

50<br />

40<br />

30<br />

20<br />

50<br />

40<br />

ATP2A2/<br />

SERCA2<br />

1 2 3 4 5 6<br />

MCUR1<br />

β-Actin<br />

Lanes<br />

1. mouse kidney<br />

2. mouse testis<br />

3. human kidney<br />

4. rat kidney<br />

5. C6<br />

6. Neuro-2a<br />

Select Reviews<br />

Bublitz, M., Musgaard, M., Poulsen, H., et al. (2013) J. Biol. Chem. 288, 10759–10765. • Freeley, M., Kelleher, D., Long, A.<br />

(2011) Cell. Signal. 23, 753–762. • Newton, A.C. (2010) Am. J. Physiol. Endocrinol. Metab. 298, 395–402. • Patron, M.,<br />

Raffaello, A., Granatiero, V. et al. (2013) J. Biol. Chem. 288, 10750–10758. • Rossi, A.M., Tovey, S.C., Rahman, T., et al.<br />

(2012) Biochim. Biophys. Acta. 1820, 1214–1227. • Yáñez, M., Gil-Longo, J., and Campos-Toimil, M. (2012) Adv. Exp. Med.<br />

Biol. 740, 461–482. • Yang, Y.R., Follo, M.Y., Cocco, L., and Suh, P.G. (2013) Adv. Biol. Regul. 53, 232–241.<br />

Commonly Studied Calcium, cAMP, and Lipid Signaling Targets<br />

Target M P S Target M P S Target M P S<br />

β1-Adrenergic Receptor • PDE5<br />

• Phospho-Phospholamban<br />

(Ser16/Thr17)<br />

•<br />

AKAP1 •<br />

PIP4K2A •<br />

AKAP5 •<br />

PIP4K2B • PLCβ3 • •<br />

Annexin A1 • • PIP5K1A • Phospho-PLCβ3 •<br />

(Ser537)<br />

Annexin A2 •<br />

PIP5K1C •<br />

Phospho-PLCβ3<br />

Annexin A7 • PKA C-α • • •<br />

•<br />

(Ser1105)<br />

ApoA1 •<br />

Phospho-PKA C-α • •<br />

PLCγ1 • •<br />

ApoA4 •<br />

(Thr197)<br />

Phospho-PLCγ1<br />

ApoA5 •<br />

PKA RI-α/β •<br />

• •<br />

(Tyr783)<br />

ApoM •<br />

Phospho-PKC (pan) •<br />

Phospho-PLCγ1 • •<br />

(βII Ser660)<br />

ASM<br />

•<br />

(Ser1248)<br />

Phospho-PKC (pan)<br />

ATP2A1/SERCA1 • •<br />

•<br />

PLCγ2<br />

•<br />

(γ Thr514)<br />

ATP2A2/SERCA2 • •<br />

Phospho-PLCγ2<br />

Phospho-PKC (pan) •<br />

•<br />

Pan-Calcineurin A •<br />

(Tyr759)<br />

(ζ Thr410)<br />

Calmodulin •<br />

Phospho-PLCγ2<br />

PKCα<br />

•<br />

•<br />

(Tyr1217)<br />

Calumenin •<br />

Phospho-PKCα/β II •<br />

PLD1<br />

CBARA1/MICU1 •<br />

•<br />

(Thr638/641)<br />

Phospho-PLD1 (Thr147)<br />

CFTR<br />

• PKCδ • •<br />

•<br />

Phospho-PLD1 (Ser561)<br />

Choline Kinase α •<br />

Phospho-PKCδ (Tyr311) •<br />

•<br />

PLD2<br />

cPLA2 • • Phospho-PKCδ (Thr505) •<br />

•<br />

PRK2<br />

Phospho-cPLA2 • Phospho-PKCδ/θ •<br />

• •<br />

(Ser505)<br />

(Ser643/676)<br />

PKA RI-α •<br />

Cyclic AMP •<br />

PKCε • • RyR1 •<br />

DAG Lipase β •<br />

PKCθ • • S100A1 •<br />

Gα (pan) • Phospho-PKCθ (Thr538) • S100A4 • •<br />

Gα (z)<br />

• PKCζ • • • S100A6 •<br />

Gα (i)<br />

• Phospho-PKCζ/λ • S100A10 •<br />

Gα (o)<br />

•<br />

(Thr410/403)<br />

S100B •<br />

Gelsolin • • •<br />

PKD/PKCµ • S100P<br />

• •<br />

INPP4b • •<br />

Phospho-PKD/PKCµ • nSMase1 •<br />

(Ser744/748)<br />

IP3 Receptor • •<br />

SPHK1 • •<br />

Phospho-PKD/PKCµ<br />

Phospho-IP3 Receptor • •<br />

• STIM1 • •<br />

(Ser916)<br />

(Ser1756)<br />

STIM2<br />

•<br />

PKD2<br />

MARCKS •<br />

• •<br />

TGM2 •<br />

PKD3/PKCν<br />

Phospho-MARCKS • •<br />

•<br />

TRPV3<br />

•<br />

(Ser152/156)<br />

Phospho-PRK1 •<br />

TSPO<br />

•<br />

(Thr774)/PRK2 (Thr816)<br />

Phospho-MARCKS •<br />

WFS1<br />

(Ser167/Ser170)<br />

Phospholamban •<br />

• •<br />

NIPSNAP1 •<br />

Select Citations:<br />

Volk, L. et al. (2013) PKM-zeta is not required for hippocampal<br />

synaptic plasticity, learning and memory. Nature<br />

493, 420–423.<br />

Paul, S. et al. (2014) T cell receptor signals to NF-kappaB<br />

are transmitted by a cytosolic p62-Bcl10-Malt1-IKK signalosome.<br />

Sci. Signal. 7, ra45.<br />

Dusaban, S.S. et al. (2013) Phospholipase C epsilon links<br />

G protein-coupled receptor activation to inflammatory<br />

astrocytic responses. Proc. Natl. Acad. Sci. USA 110,<br />

3609–3614.<br />

Xiang, S.Y. et al. (2013) PLCepsilon, PKD1, and SSH1L<br />

transduce RhoA signaling to protect mitochondria from<br />

oxidative stress in the heart. Sci. Signal. 6, ra108.<br />

Varsano, T. et al. (2013) Inhibition of melanoma growth by<br />

small molecules that promote the mitochondrial localization<br />

of ATF2. Clin. Cancer Res. 19, 2710–2722.<br />

Ke, G. et al. (2013) MiR-181a confers resistance of cervical<br />

cancer to radiation therapy through targeting the proapoptotic<br />

PRKCD gene. Oncogene 32, 3019–3027.<br />

Stumpf, C.R. et al. (2013) The translational landscape of the<br />

mammalian cell cycle. Mol. Cell. 52, 574–582.<br />

Gobbi, G. et al. (2013) Proplatelet generation in the mouse<br />

requires PKCepsilon-dependent RhoA inhibition. Blood 122,<br />

1305–1311.<br />

Tuszynski, M.H. et al. (2012) Concepts and methods for<br />

the study of axonal regeneration in the CNS. Neuron 7,<br />

777–791.<br />

Qu, Y. et al. (2012) Phosphorylation of NLRC4 is critical for<br />

inflammasome activation. Nature 490, 539–542.<br />

chapter 02: Signaling<br />

These protein targets represent key<br />

nodes within calcium, cAMP, and lipid<br />

signaling pathways and are commonly<br />

studied in calcium, cAMP, and lipid<br />

signaling research. Primary antibodies,<br />

antibody conjugates, and antibody<br />

sampler kits containing these targets<br />

are available from <strong>CST</strong>.<br />

Listing as of September 2014. See our<br />

website for current product information.<br />

M Monoclonal Antibody<br />

P Polyclonal Antibody<br />

S SignalSilence ® siRNA<br />

58<br />

2012–2014 citations<br />

<strong>CST</strong> antibodies for PKC have been<br />

cited over 58 times in high-impact, peerreviewed<br />

publications from the global<br />

research community.<br />

www.cellsignal.com/cstcalcium 83

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!