15.01.2015 Views

CST Guide:

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section I: Research Areas<br />

chapter 02: Signaling<br />

G Protein-Coupled Receptor Signaling: Overview<br />

RhoA<br />

β-Arrestin<br />

AP2<br />

clathrin<br />

Receptor<br />

Internalization<br />

β-Arrestin<br />

PI3K<br />

Akt<br />

Examples<br />

Src<br />

Ras<br />

Raf<br />

Erk<br />

All GPCRs<br />

p90RSK<br />

Bad<br />

M1, H1,<br />

V2R, OXTR,<br />

AT 1 R, PAR<br />

Gα q<br />

GDP<br />

Gα q<br />

GTP<br />

β,γ<br />

β,γ<br />

GRK<br />

GPR55, SDF-1,<br />

PAR, S1P<br />

Gα 12/13 β,γ<br />

GDP<br />

Gα 12/13<br />

GTP<br />

β,γ<br />

β1-Adrenergic R<br />

Wnt Ligand/Frizzled<br />

Gα s<br />

GDP<br />

Gα s<br />

GTP<br />

β,γ<br />

β,γ<br />

CXCR4,<br />

GABA-B, LPA<br />

Gα i β,γ<br />

GDP<br />

Gα i β,γ<br />

GTP<br />

MMPs<br />

VEGFR, PDGFR,<br />

EGFR<br />

Transactivation<br />

Src<br />

PI3K<br />

Ion<br />

Channels<br />

Stat3<br />

PLCβ PKC Rac RhoA Axin AC<br />

CDC42 PI3K PLCβ<br />

Ras<br />

[cAMP]<br />

CDC42<br />

IP3<br />

PAK<br />

Akt<br />

Raf<br />

PKA<br />

DAG<br />

ROCK LATS1/2 GSK-3β<br />

Ca 2+<br />

SOS<br />

MLK WASP<br />

PAK<br />

PKC<br />

JNK p38 β-catenin CREB<br />

GSK-3 Erk<br />

Ras<br />

Glycogen and<br />

Actin<br />

Fatty Acid<br />

JNK<br />

Remodeling<br />

Synthesis<br />

LATS1/2<br />

Raf<br />

Bad mTOR IKK<br />

Survival Protein<br />

Bcl-2<br />

Synthesis<br />

YAP/TAZ<br />

p53<br />

Inactive<br />

NF-κB<br />

RTK<br />

G Protein-Coupled Receptor Signaling to MAP Kinase/Erk<br />

Gi-Coupled<br />

Receptor<br />

Dynamin<br />

G i<br />

βγ<br />

PLCβ<br />

β-Arrestin GRK2<br />

Src<br />

PI3Kγ<br />

Receptor<br />

Internalization<br />

endosome<br />

H+<br />

JNK3<br />

Focal Adhesions<br />

Catecholamines<br />

MP<br />

Src-like<br />

Src c-Raf<br />

β-Arrestin1 MEK<br />

Erk<br />

C-TAK1<br />

TH<br />

PKC<br />

RTKs<br />

IMP<br />

Src<br />

GRB2<br />

RasGEF<br />

SOS<br />

Ras<br />

GAP<br />

MEK1/2<br />

KSR<br />

Src<br />

FAK<br />

Gα<br />

PLCβ q<br />

PYK2<br />

GTP<br />

RACK1<br />

IP 3<br />

[Ca 2+ ]<br />

PKC<br />

Ras<br />

c-Raf<br />

Erk1/2<br />

Integrins<br />

Ras<br />

GRP<br />

CaMKII,-IV<br />

Ras<br />

GRF<br />

c-Raf B-Raf<br />

Heterodimer<br />

Gq-Coupled<br />

Receptor<br />

Syn<br />

GAP<br />

RGS<br />

EPAC<br />

Rap1<br />

B-Raf<br />

DUSP6<br />

cPLA 2<br />

Synapsins<br />

AC<br />

Gα s<br />

GTP<br />

[cAMP]<br />

PKA<br />

Gs-Coupled<br />

Receptor<br />

RGS<br />

Bcl-xL<br />

Erk<br />

YAP/TAZ<br />

Cytoplasm<br />

Erk1/2 p90RSK<br />

PEA-15<br />

p90RSK<br />

cdc25<br />

c-Myc<br />

p53<br />

c-Fos<br />

c-Jun<br />

YAP/TAZ<br />

G protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors (7-TMR), form the largest family of cell membrane receptors with over 800 members.<br />

GPCRs transmit extracellular signals initiated by ligands such as neurotransmitters, hormones, chemokines, and various lipid mediators to the cell interior through coupling to<br />

heterotrimeric G proteins. G proteins consist of a GDP-bound Gα subunit complexed to β and γ subunits. Upon ligand binding, the α subunit exchanges GDP for GTP, causing<br />

Gα activation, dissociation from the β/γ subunits, and initiation of signaling pathways that regulate numerous cellular responses, including proliferation, apoptosis, and cytoskeletal<br />

rearrangements. There are four classes of Gα proteins, each with a unique signaling profile: Gαs, Gαi, Gαq, and Gα12/13. Gαs-coupled receptors activate adenylate<br />

cyclase, generating cAMP and signaling through PKA . Gαi-coupled receptors inhibit AC and activate CDC42 and PI3K/Akt. Gαq signals through phospholipase C β (PLCβ),<br />

Rac, and RhoA to regulate cell proliferation and survival by MAPK pathways and actin remodeling via Rock. Gα12/13 activates RhoA, leading to cytoskeletal rearrangements<br />

as well as activation of the JNK, p38, and Hippo pathways. The β/γ subunits, particularly those associated with Gαi, can initiate signaling independent of Gα proteins, resulting<br />

in regulation of Akt, PLCβ, and various ion channels. In certain cell types, GPCRs can transactivate receptor tyrosine kinases (RTKs) such as EGFR, PDGFR, and VEGFR,<br />

thereby activating classical pathways of cell proliferation and survival. Termination of GPCR signaling occurs through phosphorylation by GPCR kinases (GRKs) and binding of<br />

β-arrestin proteins, which leads to clathrin-mediated receptor internalization and degradation or recycling. β-arrestins can also propagate signals independent of Gα proteins,<br />

initiating MAPK/Erk, Akt, and RhoA pathways.<br />

Select Reviews:<br />

Audet, M. and Bouvier, M. (2012) Cell 151, 14−23. • Entschladen, F., Zänker, K.S., and Powe, D.G. (2011) Cell Cycle 10, 1086−1091. • Kahn, S.M., Sleno, R., Gora, S.<br />

et al. (2013) Pharmacol. Rev. 65, 545–577. • Lappano, R. and Maggiolini, M. (2012) Acta. Pharmacol. Sin. 33, 351−362. • Lappano, R. and Maggiolini, M. (2011) Nat.<br />

Rev. Drug Discov. 10, 47−60. • O’Havre, M., Degese, M.S., and Gutkind, J.S. (2014) Curr. Opin. Cell Biol. 27C, 126−135. • Raiagopal, S., Raiagopal, K., and Lefkowitz,<br />

R.J. (2010) Nat. Rev. Drug Discov. 9, 373−386. • Shukla, A.K., Xiao, K., and Lefkowitz, R.J. (2011) Trends Biochem. Sci. 36, 457−469. • Smrcka, A.V. (2008) Cell. Mol.<br />

Life Sci. 65, 2191−2214. • Yu, F.X. and Guan, K.L. (2013) Genes Dev. 27, 355−371.<br />

CREB<br />

NF-κB<br />

Erk<br />

Nucleus<br />

Nucleus<br />

p90RSK<br />

Transcription<br />

Erk1/2<br />

FoxO3<br />

Tumorigenesis<br />

MSK1/2<br />

MAPKAPK2<br />

Progression<br />

of Cell Cycle<br />

G protein-coupled receptors (GPCRs) are activated by a wide variety of external stimuli. Upon receptor activation, the G protein exchanges GDP for GTP, causing the dissociation<br />

of the GTP-bound α and β/γ subunits and triggering diverse signaling cascades. Receptors coupled to different heterotrimeric G protein subtypes can utilize different scaffolds<br />

to activate the small G protein/ MAPK cascade, employing at least three different classes of Tyr kinases. Src family kinases are recruited following activation of PI3Kγ by β/γ<br />

subunits. They are also recruited by receptor internalization, crossactivation of receptor Tyr kinases, or by signaling through an integrin scaffold involving Pyk2 and/or FAK.<br />

GPCRs can also employ PLCβ to mediate activation of PKC and CaMKII, which can have either stimulatory or inhibitory consequences for the downstream MAPK pathway.<br />

Select Reviews:<br />

Aoki, Y., Niihori, T., Narumi, Y., Kure, S., and Matsubara, Y. (2008) Hum. Mutat. 29, 992–1006. • Caunt, C.J., Finch, A.R., Sedgley, K.R., and McArdle, C.A. (2006) Trends<br />

Endocrinol. Metab. 17, 276–283. • Goldsmith, Z.G. and Dhanasekaran, D.N. (2007) Oncogene 26, 3122–3142. • Kim, E.K. and Choi, E.J. (2010) Biochim. Biophys. Acta.<br />

1802, 396–405. • McKay, M.M. and Morrison, D.K. (2007) Oncogene 26, 3113–3121.<br />

© 2014–2015 Cell Signaling Technology, Inc. • We would like to thank Dr. Jonathan Violin, Trevena Inc., King of Prussia, PA for reviewing this diagram.<br />

78 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Prof. John Blenis, Harvard Medical School, Boston, MA, for reviewing this diagram.<br />

www.cellsignal.com/cstpathways 79

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!