15.01.2015 Views

CST Guide:

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section I: Research Areas<br />

chapter 02: Signaling<br />

mTOR Signaling<br />

GRB10<br />

Sin1<br />

Torin1<br />

PP242<br />

KU63794<br />

WYE354<br />

PRR5<br />

mTORC2<br />

Rictor GβL<br />

mTOR<br />

DEPTOR<br />

SGK1<br />

rapamycin<br />

FKBP12<br />

PKCα<br />

PRAS40<br />

p70S6K<br />

Cell Growth<br />

IRS-1<br />

Akt<br />

TSC1<br />

TSC2<br />

TBC1D7<br />

Rheb<br />

mTORC1<br />

GβL<br />

Raptor<br />

mTOR<br />

DEPTOR<br />

FIP200<br />

Atg13<br />

ULK<br />

Glucose<br />

PIP 3 PIP 2<br />

AMP: ATP<br />

Growth Factors,<br />

Hormones,<br />

AICAR<br />

Cytokines, etc.<br />

Stress<br />

Hypoxia<br />

PI3K<br />

Dvl<br />

DNA<br />

Damage<br />

PDK1<br />

Ras<br />

PTEN<br />

p53<br />

Autophagy<br />

eIF4G<br />

GATOR2<br />

54 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

4E-<br />

BP1/2<br />

mRNA<br />

Translation<br />

Proliferation<br />

LRP<br />

Erk<br />

RSK<br />

GSK-3<br />

REDD1/2<br />

AMPK<br />

Lipin 1<br />

Wnt<br />

Frizzled<br />

Gα q/o<br />

mTORC1<br />

Translocation<br />

to Lysosome<br />

Lipid Synthesis<br />

LKB1<br />

Sestrin-1/2<br />

LAMTOR<br />

1/2/3/4/5<br />

Ragulator<br />

Complex<br />

Rag A/B<br />

GTP<br />

Rag C/D<br />

GDP<br />

Ribosome<br />

Biogenesis<br />

TFEB<br />

PPARα<br />

HIF-1<br />

PGC-1α<br />

PPARγ<br />

SKAR<br />

mRNA Splicing<br />

metformin<br />

Glucose,<br />

Amino Acids<br />

V-ATPase<br />

Mios<br />

WDR59<br />

Lipogenesis<br />

SREBP-1<br />

Transcription<br />

Seh1L<br />

WDR24<br />

Sec13<br />

GATOR1<br />

DEPDC5 Nprl2<br />

Nprl3<br />

Lipid<br />

Metabolism<br />

FLCN<br />

FNIP1/2<br />

Autophagy/Lysosome<br />

Biogenesis<br />

VEGF/<br />

Angiogenesis<br />

Mitochondrial<br />

Metabolism<br />

Adipogenesis<br />

The mechanistic target of rapamycin (mTOR) is an atypical serine/threonine kinase that is present in two distinct complexes. The first, mTOR complex 1 (mTORC1), is<br />

composed of mTOR, Raptor, GβL, and DEPTOR and is inhibited by rapamycin. It is a master growth regulator that senses and integrates diverse nutritional and environmental<br />

cues, including growth factors, energy levels, cellular stress, and amino acids. It couples these signals to the promotion of cellular growth by phosphorylating substrates<br />

that potentiate anabolic processes such as mRNA translation and lipid synthesis, or limit catabolic processes such as autophagy. The small GTPase Rheb, in its GTP-bound<br />

state, is a necessary and potent stimulator of mTORC1 kinase activity, which is negatively regulated by its GAP, the tuberous sclerosis heterodimer TSC1/2. Most upstream<br />

inputs are funneled through Akt and TSC1/2 to regulate the nucleotide-loading state of Rheb. In contrast, amino acids signal to mTORC1 independently of the PI3K/Akt axis to<br />

promote the translocation of mTORC1 to the lysosomal surface where it can become activated upon contact with Rheb. This process is mediated by the coordinated actions of<br />

multiple complexes, notably the v-ATPase, Ragulator, the Rag GTPases, and GATOR1/2. The second complex, mTOR complex 2 (mTORC2), is composed of mTOR, Rictor, GβL,<br />

Sin1, PRR5/Protor-1, and DEPTOR. mTORC2 promotes cellular survival by activating Akt, regulates cytoskeletal dynamics by activating PKCα, and controls ion transport and<br />

growth via SGK1 phosphorylation. Aberrant mTOR signaling is involved in many disease states including cancer, cardiovascular disease, and diabetes.<br />

Select Reviews:<br />

Dowling, R.J., Topisirovic, I., Fonseca, B.D., and Sonenberg, N. (2010) Biochim. Biophys. Acta. 1804, 433–439. • Dunlop, E.A. and Tee, A.R. (2009) Cell. Signal. 21,<br />

827–835. • Hoeffer, C.A. and Klann, E. (2010) Trends Neurosci. 33, 67–75. • Laplante, M. and Sabatini, D.M. (2013) J. Cell Sci. 126, 1713–1719. • Laplante, M. and<br />

Sabatini, D.M. (2012) Cell 149, 274–293. • Neufeld, T.P. (2010) Curr. Opin. Cell Biol. 22, 157–168. • Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011) Nat. Rev. Mol. Cell<br />

Biol. 12, 21–35.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Rachel Wolfson and Prof. David Sabatini, Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing this diagram.<br />

Akt Substrates<br />

MAPK, mTOR, and the PI3K/Akt pathways are key signaling pathways activated downstream of oncogenic receptor tyrosine<br />

kinases (RTKs). All of these pathways activate AGC kinase family members, including Akt, RSK, and p70 S6 kinases, whose<br />

protein substrates are phosphorylated at the RxRxxS/T motif.<br />

In a phosphoproteomic study co-authored by scientists in the Cell Signaling Technology (<strong>CST</strong>) Site Discovery Group (Moritz, A.<br />

et al. (2010) Sci. Signal 24,ra64), over 300 novel downstream substrates for these AGC family kinases were identified. The<br />

experimental approach involved the use of PhosphoScan ® , <strong>CST</strong>’s proprietary methodology for antibody-based peptide enrichment<br />

combined with tandem mass spectrometry for quantitative profiling of post-translational modifications. A key step was<br />

the development of a RxRxxS/T motif antibody, which was then used as an affinity reagent to selectively immunoprecipitate<br />

phosphorylated substrates of Akt, RSK, and p70 S6 kinases. The antibody was employed in PhosphoScan in three different<br />

cancer cell lines, dependent on either EGFR, c-Met, or PDGFR, allowing mapping of the signaling network downstream of these<br />

RTKs. Substrates included proteins involved in many cellular functions, including scaffolding, protein stability, metabolism, trafficking,<br />

and motility.<br />

Substrate<br />

GAP/GEF/Adaptors<br />

ARHGAP19<br />

ARHGEF12<br />

AS250<br />

TBC1D1<br />

TBC1D4<br />

Receptors/Transporters<br />

DR6 SLC20A2<br />

EPHA2 SLC9A1<br />

FGFR2<br />

SEMA4B<br />

TSC2<br />

CD2AP<br />

FRS2<br />

IRS1<br />

IRS2<br />

Adhesion/Cytoskeleton<br />

DSP PLEC1<br />

MLLT4 SVIL<br />

KIF21A PPP1R12A<br />

AMPKA<br />

Isoform<br />

RICTOR<br />

CABLES1<br />

LMO7<br />

Kinases<br />

WNK1<br />

PKD2<br />

HGK<br />

BRD2<br />

UO126<br />

EGFR<br />

Gefitinib Su11274 Gleevec<br />

Ras<br />

MEK<br />

RSK<br />

Energy/<br />

Metabolism<br />

PANK2<br />

PFKFB2<br />

OXR1<br />

GSK-3α<br />

GSK-3β<br />

PI3K<br />

Akt<br />

Met<br />

SGKs<br />

mTOR<br />

Wort<br />

S6K<br />

PDGFRα<br />

RNA Processing/<br />

Translation<br />

LARP1<br />

MEPCE<br />

RPS6<br />

EIF4ENIF1<br />

EDC3<br />

Published Data Human<br />

Organism Site Site Sequence (+/-7) PMID<br />

Rapa<br />

Chaperone/Ubiquitin<br />

CCT2<br />

DNAJC2<br />

SGTA<br />

NEDD4-2<br />

UBR4<br />

UBXN4<br />

NIPA<br />

TIF1-γ<br />

Survival<br />

AKT1S1<br />

BAD<br />

NDRG2<br />

NDRG3<br />

Transcription<br />

FOXO3<br />

GTF3C1<br />

IWS1<br />

TAF3<br />

TCF12<br />

Vesicle Trafficking<br />

C4orf16 REPS1<br />

GOLGA4 STX12<br />

NDRG1 STX7<br />

HDGF2<br />

TCF3<br />

BRD1<br />

SP100<br />

Substrate Function and<br />

Effect of Phosphorylation<br />

14-3-3 z Akt1 human S58 S58 VVGARRSsWRVVssI 11956222 A key regulatory protein in signal transduction,<br />

checkpoint control, apoptotic,<br />

and nutrient-sensing pathways; effect<br />

of phosphorylation is unknown<br />

acinus Akt1 human S1180 S1180 GPRsRsRsRDRRRKE 18559500,<br />

16177823<br />

Akt1 rat S1329 S1331 HSRSRSRsTPVRDRG 16177823<br />

Induces chromatin condensation during<br />

apoptosis; phosphorylation inhibits<br />

this process<br />

ACLY Akt1 mouse S455 S455 PAPSRtAsFsESRAD 16007201 Catalyzes the formation of acetyl-CoA<br />

and oxaloacetate (OAA) in the cytosol;<br />

phosphorylation enhances the catalytic<br />

activity of the enzyme<br />

ADRB2 Akt1 human S346 S346 LLCLRRssLKAyGNG 11809767 A receptor that binds epinephrine<br />

and norepinephrine, acting as a<br />

neuromodulator in the central nervous<br />

system and as a hormone in the<br />

vascular system; phosphorylation in<br />

response to insulin stimulation leads to<br />

sequestration of ADBR2<br />

Akt1 Akt1 human S246,<br />

T72<br />

S246,<br />

T72<br />

LSRERVFsEDRARFY,<br />

TERPRPNtFIIRCLQ<br />

Akt1 mouse S473 S473 RPHFPQFsYsAsGtA 11570877,<br />

10722653<br />

16549426 Activated by insulin and various growth<br />

and survival factors to function in a<br />

wortmannin-sensitive PI3 kinaseinvolved<br />

pathway controlling survival<br />

and apoptosis; autophosphorylation<br />

activates the kinase<br />

AMPKA1 Akt1 rat S485 S485 ATPQRSGsISNYRSC 16340011 Heterotrimeric complex that plays a<br />

key role in the regulation of energy<br />

homeostasis; phosphorylation regulates<br />

AMPK activity<br />

AMPKA2 Akt1 rat S491 S491 STPQRSCsAAGLHRP 16340011 Heterotrimeric complex that plays a<br />

key role in the regulation of energy<br />

homeostasis; phosphorylation regulates<br />

AMPK activity<br />

www.cellsignal.com/csttables 55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!