15.01.2015 Views

CST Guide:

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section I: Research Areas<br />

8<br />

2012–2014 citations<br />

<strong>CST</strong> antibodies for Androgen Receptor<br />

have been cited over 8 times in<br />

high-impact, peer-reviewed publications<br />

from the global research community.<br />

Select Citations:<br />

Cuenca-Lopez, M.D. et al. (2014)<br />

Phospho-kinase profile of triple<br />

negative breast cancer and androgen<br />

receptor signaling. BMC Cancer<br />

14, 302.<br />

Boll, K. et al. (2013) MiR-130a,<br />

miR-203 and miR-205 jointly repress<br />

key oncogenic pathways and are<br />

downregulated in prostate carcinoma.<br />

Oncogene 32, 277−285.<br />

Krycer, J.R. et al. (2013) Does changing<br />

androgen receptor status during<br />

prostate cancer development impact<br />

upon cholesterol homeostasis PLoS<br />

One 8, e54007.<br />

Nie, H. et al. (2013) Acetylcholine<br />

acts on androgen receptor to promote<br />

the migration and invasion but inhibit<br />

the apoptosis of human hepatocarcinoma.<br />

PLoS One 8, e61678.<br />

Furu, K. et al. (2013) Tzfp represses<br />

the androgen receptor in mouse<br />

testis. PLoS One 8, e62314.<br />

Li, Y. et al. (2013) Functional domains<br />

of androgen receptor coactivator p44/<br />

Mep50/WDR77and its interaction<br />

with Smad1. PLoS One 8, e64663.<br />

Ota, H. et al. (2012) Testosterone<br />

deficiency accelerates neuronal<br />

and vascular aging of SAMP8 mice:<br />

protective role of eNOS and SIRT1.<br />

PLoS One 7, e29598.<br />

Krycer, J.R. et al. (2011) Cross-talk<br />

between the androgen receptor and<br />

the liver X receptor: implications for<br />

cholesterol homeostasis. J. Biol.<br />

Chem. 286, 20637−20647.<br />

Type II Nuclear Receptors<br />

Type II nonsteroid nuclear receptors include the thyroid hormone receptors (TRα and β), retinoic acid<br />

receptors (RARα, β, and γ), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors<br />

(PPARα, β, and γ). Members of this family heterodimerize with the retinoid X receptor (RXR). Prior to<br />

ligand binding, receptor heterodimers are located in the nucleus as part of complexes with histone<br />

deacetylases (HDACs) and other co-repressors that keep target DNA in a tightly wound conformation,<br />

preventing exposure to transacting factors. Ligand binding results in co-repressor dissociation,<br />

chromatin derepression, and transcriptional activation.<br />

RARγ1, a type II nuclear receptor that regulates expression<br />

of genes involved in cellular differentiation, proliferation, and<br />

apoptosis, is expressed in cancer cells and epidermal cells.<br />

RARγ1 (D3A4) XP ® Rabbit mAb #8965:<br />

WB analysis of extracts from various cell lines<br />

(A) using #8965. IHC analysis of paraffinembedded<br />

human skin (B) using #8965.<br />

Lanes<br />

1. HaCaT<br />

2. A-375<br />

3. BxPC-3<br />

4. T-47D<br />

5. SK-BR-3<br />

A<br />

kDa<br />

100<br />

80<br />

60<br />

50<br />

40<br />

1 2 3 4 5<br />

Orphan Nuclear Receptors<br />

Orphan nuclear receptors are nuclear receptors where the endogenous ligands have not been identified.<br />

Structural studies suggest that some of the orphan receptors may not bind ligands. This class of nuclear<br />

receptors includes small heterodimer partner (SHP), reverse orientation c-ErbA (Rev-Erbα and β),<br />

testicular receptor 2 and 4 (TR2 and 4), tailless homolog orphan receptor (TLX), photoreceptor-specific<br />

NR (PNR), chicken ovalbumin upstream promoter transcription factor 1 and 2 (COUP-TF1 and 2), Nur77,<br />

Nur-related protein 1 (NURR1), neuron derived orphan receptor 1 (NOR1), estrogen-related receptor<br />

(ERR α, β, and γ), and germ cell nuclear factor (GCNF). Most of these receptors regulate transcription<br />

by binding to their target DNA elements either as monomers or homodimers and recruiting chromatin<br />

modifying coactivators and the transcription machinery. Nur77 and NURR1 can also heterodimerize<br />

with RXRs and these heterodimers are able to respond to RXR ligands to regulate transcription.<br />

Rev-Erbα (E1Y6D) Rabbit mAb #13418: Chromatin IPs were performed<br />

with cross-linked chromatin from 4 x 10 6 Hep G2 cells and either 10 μl of<br />

#13418 or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP ® Enzymatic<br />

Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified<br />

by real-time PCR using human BMAL1 promoter primers, SimpleChIP ® Human<br />

NR1D1 Promoter Primers #13413, and SimpleChIP ® Human α Satellite<br />

Repeat Primers #4486. The amount of immunoprecipitated DNA in each<br />

sample is represented as a percent of the total input chromatin.<br />

Rev-Erbα (E1Y6D) Rabbit<br />

mAb #13418<br />

Normal Rabbit<br />

IgG #2729<br />

% of total input chromatin<br />

RARγ1<br />

Rev-Erbα, an orphan nuclear receptor involved in<br />

cell proliferation, differentiation, and circadian rhythms.<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

BMAL1<br />

NR1D1<br />

B<br />

α Satellite<br />

chapter 01: GENE EXPRESSION, EPIGENETICS, AND NUCLEAR FUNCTION<br />

Select Reviews<br />

Ahmadian, M., Suh, J.M., and Hah, N. et al. (2013) Nat. Med. 19, 557−566. • Bondesson, M., Hao, R., Lin, C.Y., Williams, C., and Gustafsson, J.A. (2014) Biochim.<br />

Biophys. Acta. Jun 17 [Epub ahead of print]. • Evans, R.M. and Mangelsdorf, D.J. (2014) Cell 157, 255−266. • Kojetin, D.J. and Burris, T.P. (2014) Nat. Rev. Drug Discov.<br />

13, 197−216. • Kurakula, K., Koenis, D.S., van Tiel, C.M., and de Vries, C.J. (2014) Biochim. Biophys. Acta. 1843, 2543–2555. • Manolagas, S.C., O’Brien, C.A., and<br />

Almeida, M. (2013) Nat. Rev. Endocrinol. 9, 699−712. • Zhou, W. and Slingerland, J.M. (2014) Nat. Rev. Cancer 14, 26−38.<br />

Nuclear Receptors Signaling<br />

HSP90<br />

Type I Steroid Receptors (Homodimers)<br />

NR<br />

NR<br />

NR<br />

NR<br />

HRE<br />

SBP<br />

HSP90<br />

Homodimerization<br />

SRC1/2 PRMT/<br />

CARM<br />

CBP/<br />

p300 PCAF<br />

RNA<br />

TBP TFIIB POLII<br />

TATA<br />

Plasma Membrane<br />

Cytoplasm<br />

Nucleus<br />

Transcriptional<br />

Activation<br />

Type IIa Non-steroid Receptors (RXR Heterodimers)<br />

Heterodimerization<br />

NcoR1<br />

SMRT<br />

RXR<br />

NR<br />

Ligand<br />

Plasma Membrane<br />

Cytoplasm<br />

Nucleus<br />

Type IIb Orphan Receptors (Monomers and Homodimers)<br />

NcoR1<br />

SMRT<br />

NR<br />

NR<br />

RXR<br />

NR<br />

HRE<br />

HDAC<br />

Complex<br />

No Ligand<br />

Transcriptional Repression<br />

NR<br />

NR<br />

HRE<br />

HDAC<br />

Complex<br />

SRC1/2<br />

PRMT/<br />

CARM<br />

CBP/<br />

p300 PCAF<br />

RNA<br />

TBP TFIIB POLII<br />

SRC1/2<br />

PRMT/<br />

CARM<br />

CBP/<br />

p300 PCAF<br />

RNA<br />

TBP TFIIB POLII<br />

Constitutive<br />

Transcriptional<br />

Repression<br />

Transcriptional<br />

Activation<br />

Nucleus<br />

Constitutive<br />

Transcriptional<br />

Activation<br />

Nur77, an orphan<br />

nuclear receptor<br />

involved in cell<br />

proliferation,<br />

differentiation,<br />

and apoptosis<br />

Nur77 (D63C5) XP ® Rabbit mAb #3960:<br />

Confocal IF analysis of Jurkat cells, untreated<br />

(left) or treated with TPA #4174 and A23187<br />

(right), using #3960 (green). Actin filaments<br />

were labeled with DY-554 phalloidin (red).<br />

© 2012–2015 Cell Signaling Technology, Inc.<br />

40 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

www.cellsignal.com/cstpathways 41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!