15.01.2015 Views

CST Guide:

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section I: Research Areas<br />

Translational Control: Overview<br />

eEF2K<br />

GTP<br />

eEF1<br />

Cap<br />

Cap<br />

eEF2<br />

GTP<br />

AUG<br />

eEF2 Control:<br />

Ca 2+<br />

cAMP<br />

mTORC1<br />

40S<br />

AUG<br />

60S<br />

eIF5B<br />

GDP<br />

Elongation<br />

40S<br />

60S<br />

Factor<br />

Release<br />

eIF3<br />

A (n)<br />

eIF1A<br />

Nascent<br />

Polypeptide<br />

ER Lumen<br />

Initiation Codon<br />

Recognition<br />

eIF2<br />

GDP<br />

A(n)<br />

eIF5<br />

Cap<br />

eIF1<br />

Polypeptide<br />

Chain<br />

eIF4 Control:<br />

Growth Factors (mTORC1),<br />

Hormones, Cytokines, Mitogens,<br />

Neuropeptides, Oxidative Stress<br />

48S<br />

AUG<br />

Cap<br />

eIF6<br />

eIF5B<br />

GTP<br />

60S<br />

A (n)<br />

Initiation<br />

Stress Granules<br />

P-bodies<br />

40S<br />

Scanning<br />

AAAAA<br />

DHX29<br />

miRNA<br />

60S<br />

48S<br />

Cap<br />

AUG<br />

eIF4B<br />

eRF1<br />

eRF3<br />

GTP<br />

A (n)<br />

ON<br />

eIF4F<br />

Cap<br />

PABP AUG<br />

A (n)<br />

Termination<br />

eIF2 Control:<br />

Viral Infection (dsRNA), (PKR)<br />

Amino Acid Starvation, UV Light (GCN2)<br />

Heme Deficiency (HRI)<br />

Heat Shock, ER Stress, Hypoxia (PERK)<br />

miRNA<br />

43S<br />

eIF2<br />

Met-tRNAi<br />

GTP<br />

eIF3<br />

40S<br />

Initiation<br />

Complex<br />

The synthesis of new proteins is a highly regulated process that allows rapid cellular responses to diverse stimuli at the post-transcriptional level. Nine key eukaryotic translation<br />

initiation factors (eIFs) catalyze the assembly of a functional ribosomal complex in two steps - first, the formation of the 48S complex from the 43S initiation complex<br />

and mRNA followed by its subsequent joining with the 60S subunit, enabling polypeptide chain formation. Of the many steps in translation, the rate-limiting step, initiation, is<br />

subjected to the most regulatory control. Many stimuli, such as growth factors and stress, either stimulate or inhibit specific eIFs. Aside from initiation, translation can also be<br />

attenuated during elongation. For instance, elevated levels of Ca 2+ or cAMP can block the action of eukaryotic elongation factor 2 (eEF2) via AMPK. Finally, upon recognition of<br />

a stop codon, eRF1 and eRF3 mediate termination of translation and ribosome disassembly and recycling.<br />

Select Reviews:<br />

Dever, T.E. and Green, R. (2012) Cold Spring Harb. Perspect. Biol. 4, a013706. • Gebauer, F., and Hentze, M.W. (2004) Nat. Rev. Mol. Cell Biol. 5, 827–835. • Hinnebusch,<br />

A.G. (2011) Microbiol. Mol. Biol. Rev. 75, 434–467. • Sonenberg, N. and Hinnebusch, A.G. (2009) Cell 136, 731–745. • Spirin, A.S. (2009) Biochemistry 48, 10688–<br />

10692. • Steitz, T.A. (2008) Nat. Rev. Mol. Cell Biol. 9, 242–253.<br />

eIF1A<br />

eIF1<br />

eIF5<br />

OFF<br />

Translational Control: Regulation of elF4E and p70 S6K<br />

Amino<br />

Acids<br />

GRB10<br />

Hormones, Growth Factors,<br />

Cytokines, Neuropeptides Mitogens Stress<br />

IRS-1<br />

PI3K<br />

RagA/B<br />

RagC/D<br />

4E-<br />

BP1 eIF4E<br />

Translation Off<br />

mTORC1<br />

GβL Raptor<br />

mTOR<br />

DEPTOR<br />

AMP:<br />

ATP<br />

LKB1<br />

AMPK<br />

PIP 3<br />

PDK1<br />

Akt<br />

TSC2<br />

TSC1 TBC1D7<br />

PRAS40 rapamycin<br />

FKBP12<br />

mTORC1<br />

mTORC2<br />

Sin1 PRR5<br />

Rictor GβL<br />

mTOR<br />

DEPTOR<br />

S6<br />

4E-<br />

BP1<br />

chapter 01: GENE EXPRESSION, EPIGENETICS, AND NUCLEAR FUNCTION<br />

PTEN<br />

mTORC2<br />

GSK-3<br />

Torin1<br />

PP242<br />

KU63794<br />

WYE354<br />

p70 S6K<br />

PDCD4<br />

eIF4B<br />

elF4A eIF4H<br />

MNK<br />

eIF4E eIF4G<br />

eIF4F<br />

Cap<br />

PABP<br />

AAAAA<br />

eIF4F<br />

LRP<br />

Wnt<br />

Frizzled<br />

Gα q/o<br />

Dvl<br />

Erk<br />

p90RSK<br />

PABP<br />

PAIP1<br />

PAIP2<br />

43S<br />

48S<br />

p38 MAPK<br />

eEF2K eEF2<br />

Translation Elongation On<br />

Translation On<br />

Translation is a tightly regulated process, and the mTORC1-S6K signaling axis plays a critical role in this control. The rate of translation initiation is predominantly determined<br />

by 5’ cap recognition by eIF4F, a trimeric protein complex composed of eIF4E, which binds the 5ʹ cap; eIF4A, a helicase necessary for unwinding complex secondary structure<br />

in the leader sequence; and eIF4G, a large scaffolding protein that delivers the mRNA to eIF3 and mediates mRNA circularization through association with polyA binding<br />

protein (PABP). Binding of eIF4F to the cap is hindered by eIF4E binding proteins (4EBPs), which, when hypophosphorylated, sequester eIF4E and prevent its association<br />

with eIF4G. However, in response to positive stimuli such as growth factors, mitogens, and amino acids, mTORC1 phosphorylates 4EBPs and relieves this inhibition, allowing<br />

the formation of eIF4F and subsequent initiation of translation. In addition, mTORC1 - alongside PDK1 - phosphorylates S6 kinase, which in turn phosphorylates numerous<br />

substrates involved in translation. These include S6 small ribosomal subunit; eIF4B, an activator of the eIF4A helicase; PDCD4, an eIF4A inhibitor that is inhibited by phosphorylation;<br />

and SKAR, an mRNA splicing factor. Aside from the mTORC1 pathway, the Ras-MAPK pathway is another major regulator of translation and is responsible for the<br />

phosphorylation of eIF4B as well as eIF4E, via MNK kinases.<br />

Select Reviews:<br />

Dowling, R.J., Topisirovic, I., Fonseca, B.D., and Sonenberg, N. (2010) Biophys. Acta. 1804, 433–439. • Fenton T.R. and Gout, I.T. (2011) Int. J. Biochem. Cell Biol. 43,<br />

47–59. • Graff, J.R., Konicek, B.W., Carter, J.H., and Marcusson, E.G. (2008) Cancer Res. 68, 631–634. • Holcik, M. and Sonenberg, N. (2005) Nat. Rev. Mol. Cell Biol. 6,<br />

318–327. • Huang, J. and Manning, B.D. (2008) Biochem. J. 412, 179–190. • Magnuson, B., Ekim, B., and Fingar, D.C. (2012) Biochem. J. 441, 1–21. • Ruvinsky, I.<br />

and Meyuhas, O. (2006) Trends Biochem. Sci. 31, 342–348. • Sonenberg, N. and Hinnebusch, A.G. (2009) Cell 136, 731–745.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Rachel Wolfson and Prof. David Sabatini, Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing this diagram.<br />

© 2002–2015 Cell Signaling Technology, Inc. • We would like to thank Rachel Wolfson and Prof. David Sabatini, Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing this diagram.<br />

36 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

www.cellsignal.com/cstpathways<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!