15.01.2015 Views

CST Guide:

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section I: Research Areas<br />

chapter 01: GENE EXPRESSION, EPIGENETICS, AND NUCLEAR FUNCTION<br />

UV treatment<br />

results in clustering<br />

of cytosolic stress<br />

granules containing<br />

the translation repressor<br />

protein TIAR.<br />

Local Translation<br />

Some mRNAs are transported in messenger ribonucleoprotein (mRNP) granules to their subcellular<br />

locations and translated on-site in response to localized signals, known as local translation. This often<br />

occurs during development, where protein gradients and varying expression patterns are necessary for<br />

cellular differentiation. mRNPs include stress granules that store mRNA bound to stalled preinitiation<br />

complexes and the translational repressors TIA-1 and TIAR until translational initiation can begin again<br />

or the mRNA is degraded. In addition, mRNPs also include cytoplasmic processing bodies (P-bodies)<br />

that function in mRNA turnover. Together, these elements can control translation, mRNA storage, and<br />

stability in localized sites.<br />

EDC4/Ge-1 is an essential component<br />

of cytoplasmic P-bodies responsible<br />

for mRNA decapping and degradation.<br />

EDC4/Ge-1 Antibody #2548: Confocal IF analysis of HeLa cells using<br />

#2548 (green). Actin filaments were labeled with DY-554 phalloidin (red).<br />

Blue pseudocolor= DRAQ5 ® #4084 (fluorescent DNA dye).<br />

Small noncoding RNAs<br />

Small noncoding RNAs are important regulators of gene expression in higher eukaryotes. Several<br />

classes of small RNAs, including short interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwiinteracting<br />

RNAs (piRNAs), have been identified. siRNAs are short segments (20–25 base pairs) of<br />

double stranded RNA that silence expression of a single gene through complementary base pairing<br />

that prevents target translation and/or promotes instability. siRNAs are commonly used in the research<br />

community for antibody validation testing or gene silencing studies.<br />

Similarly, microRNAs are about 21 nucleotides in length and have been implicated in many cellular<br />

processes such as development, differentiation, and stress response. miRNAs function together with the<br />

protein components of complexes called micro-ribonucleoproteins (miRNPs). Among the most important<br />

components in these complexes are argonaute proteins. Argonaute proteins participate in the various<br />

steps of microRNA-mediated gene silencing, such as repression of translation and mRNA turnover.<br />

Silencing of DDX5 expression using DDX5 siRNA.<br />

SignalSilence ® DDX5 siRNA I #8626 and SignalSilence ® DDX5 siRNA II #8627: WB analysis<br />

of extracts from HeLa cells, transfected with 100 nM SignalSilence ® Control siRNA (Unconjugated)<br />

#6568 (-), #8626 (+), or #8627 (+), using DDX5 (D15E10) XP ® Rabbit mAb #9877 (upper) or β-Actin<br />

(13E5) Rabbit mAb #4970 (lower). The DDX5 (D15E10) XP ® Rabbit mAb confirms silencing of DDX5<br />

expression, while the β-Actin (13E5) Rabbit mAb is used as a loading control.<br />

Mili binds to piwi-interacting RNA in male germ<br />

cells and is essential for spermatogenesis in mouse.<br />

Mili (D14F5) XP ® Rabbit mAb #5940: Confocal IF analysis of mouse testis using #5940 (green) and<br />

Pan-Keratin (C11) Mouse mAb #4545 (red). Blue pseudocolor = DRAQ5 ® #4084 (fluorescent DNA dye).<br />

TIAR (D32D3) XP ® Rabbit mAb #8509:<br />

Confocal IF analysis of HeLa cells, untreated<br />

(left) or UV-treated (right), using #8509<br />

(green). Actin filaments were labeled with<br />

DY-554 phalloidin (red). Blue pseudocolor =<br />

DRAQ5 ® #4084 (fluorescent DNA dye).<br />

kDa<br />

200<br />

140<br />

100<br />

80<br />

60<br />

50<br />

40<br />

30<br />

60<br />

50<br />

– +<br />

I<br />

II<br />

+<br />

DDX5<br />

β-actin<br />

DDX5 siRNA<br />

Select Reviews<br />

Adjibade, P. and Mazroui, R. (2014) Semin. Cell Dev. Biol. 34, 15–23. • Bar-Peled, L. and Sabatini, D.M. (2014) Trends Cell<br />

Biol. 24, 400−406. • Donnelly, N., Gorman, A.M., Gupta, S., et al. (2013) Cell Mol. Life Sci. 70, 3493−3511. • Emde, A.<br />

and Hornstein, E. (2014) EMBO J. 33,1428−1437. • Fabian, M.R., Payette, J., Holcik, M., et al. (2012) Nature 486, 126−129.<br />

• Hershey, J.W., Sonenberg, N., and Mathews, M.B. (2012) Cold Spring Harb. Perspect. Biol. 4, a011528. • Hinnebusch, A.G.<br />

and Lorsch, J.R. (2012) Cold Spring Harb. Perspect. Biol. 4, a011544. • Jung, H., Gkogkas, C.G., Sonenberg, N. et al. (2014)<br />

Cell 157, 26−40. • Kong, J. and Lasko, P. (2012) Nat. Rev. Genet. 13, 383−394. • Spilka, R., Ernst, C., Mehta, A.K., et al.<br />

(2013) Cancer Lett. 340, 9−21. • Thoreen, C.C. (2013) Biochem. Soc. Trans. 41, 913−916.<br />

Commonly Studied Translational Control Targets<br />

Target M P Target M P<br />

4E-BP1<br />

• • eIF4A<br />

• •<br />

Phospho-4E-BP1 • • eIF4B<br />

• • PABP1<br />

(Thr37/Thr46)<br />

Phospho-eIF4B (Ser406) • •<br />

Non-phospho-4E-BP1 • Phospho-eIF4B (Ser422) •<br />

(Thr46)<br />

eIF4E<br />

• • PABP2<br />

Phospho-4E-BP1 (Ser65) • •<br />

Phospho-eIF4E (Ser209) • PACT<br />

Phospho-4E-BP1 (Thr70) • •<br />

eIF4G<br />

• • Paip2A<br />

4E-BP2<br />

•<br />

Phospho-eIF4G (Ser1108) • PARN<br />

4EHP<br />

•<br />

eIF4GI<br />

• • PERK<br />

4E-T<br />

•<br />

eIF4G2/p97 • PKR<br />

ADAR1<br />

• •<br />

EIF4H<br />

• • PPIG<br />

Argonaute 1 • •<br />

eIF5<br />

•<br />

Argonaute 2 •<br />

eIF6<br />

• • PRP4K<br />

Argonaute 3 •<br />

ELAVL1/HuR • PTBP1<br />

Argonaute 4 •<br />

Exportin 5 • • Pumilio 1<br />

BRF1/2<br />

•<br />

FMRP<br />

• • Pumilio 2<br />

CLK3<br />

•<br />

FUS/TLS<br />

• RMP<br />

CNOT2<br />

•<br />

FXR1<br />

• • RPL11<br />

CNOT3<br />

•<br />

FXR2<br />

• •<br />

CNOT6<br />

•<br />

GCN2<br />

•<br />

Coilin<br />

•<br />

hnRNP A0 • •<br />

CPEB1<br />

•<br />

hnRNP A1 • •<br />

DCP1B<br />

•<br />

hnRNP C1/C2 •<br />

DDX3<br />

• •<br />

AUF1/hnRNP D •<br />

DDX4<br />

• •<br />

hnRNP E1<br />

•<br />

DDX5<br />

• •<br />

hnRNP LL<br />

•<br />

DDX6/RCK • •<br />

hnRNP K • •<br />

DGCR8<br />

•<br />

SAM68<br />

hnRNP Q/R • •<br />

DHX29<br />

• •<br />

SF2/ASF<br />

IMP1<br />

• •<br />

Dicer1<br />

• •<br />

SF3B1<br />

IWS1<br />

•<br />

Drosha<br />

•<br />

SKAR<br />

KHSRP<br />

• •<br />

EDC4/Ge-1<br />

•<br />

SKAR α/β<br />

La Antigen • •<br />

eEF1A<br />

• •<br />

SMN1<br />

LSm2<br />

•<br />

eEF2<br />

•<br />

Symplekin<br />

LysRS<br />

• •<br />

Phospho-eEF2 (Thr56) •<br />

TFEB<br />

MAPBPIP/ROBLD3/p14 •<br />

eEF2k<br />

•<br />

THEX1<br />

MAPKSP1/MP1 •<br />

Phospho-eEF2k (Ser366) •<br />

MetAP2 •<br />

eIF1<br />

•<br />

TIAR<br />

Mili<br />

• •<br />

eIF2α<br />

• •<br />

U2AF1<br />

Miwi<br />

• •<br />

Phospho-eIF2α (Ser51) • •<br />

Upf1<br />

Mnk1<br />

•<br />

eIF2B-ε<br />

•<br />

Upf2<br />

Phospho-Mnk1 •<br />

eIF3A<br />

• •<br />

XBP-1s<br />

(Thr197/202)<br />

eIF3C<br />

•<br />

XRN2<br />

MRPL11 • •<br />

eIF3H<br />

•<br />

ZPR1<br />

NCBP1/CBP80 •<br />

eIF3J<br />

• • NRF1/TCF11 •<br />

eIF4A1<br />

• NRF2<br />

•<br />

Target M P<br />

NXF1<br />

Asymmetric-Methyl-PABP1<br />

(Arg455/Arg460)<br />

Phospho-PPIG (Ser376)<br />

S6 Ribosomal Protein<br />

Phospho-S6 Ribosomal<br />

Protein (Ser235/Ser236)<br />

Phospho-S6 Ribosomal<br />

Protein (Ser240/Ser244)<br />

Ribosomal Protein L7a<br />

Ribosomal Protein L13a<br />

Ribosomal Protein L26<br />

Ribosomal Protein S3<br />

THOC4/ALY<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

• •<br />

•<br />

•<br />

• •<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

• •<br />

•<br />

• •<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

•<br />

These protein targets represent key<br />

nodes within translational control<br />

signaling pathways and are commonly<br />

studied in translational control research.<br />

Primary antibodies, antibody conjugates,<br />

and antibody sampler kits containing<br />

these targets are available from <strong>CST</strong>.<br />

Listing as of September 2014. See our<br />

website for current product information.<br />

M Monoclonal Antibody<br />

P Polyclonal Antibody<br />

207<br />

2012–2014 citations<br />

<strong>CST</strong> antibodies for Phospho-S6<br />

Ribosomal Protein (Ser235/236)<br />

have been cited over 207 times in<br />

high-impact, peer-reviewed publications<br />

from the global research community.<br />

Select Citations:<br />

Wong, C.C. et al. (2014) Inactivating<br />

CUX1 mutations promote tumorigenesis.<br />

Nat. Genet. 46, 33−38.<br />

Kurachi, M. et al. (2014) The<br />

transcription factor BATF operates as<br />

an essential differentiation checkpoint<br />

in early effector CD8+ T cells. Nat.<br />

Immunol. 15, 373−383.<br />

Mouw, J.K. et al. (2014) Tissue<br />

mechanics modulate microRNAdependent<br />

PTEN expression to<br />

regulate malignant progression.<br />

Nat. Med. 20, 360−367.<br />

Agarwal, A. et al. (2014) Antagonism<br />

of SET using OP449 enhances the<br />

efficacy of tyrosine kinase inhibitors<br />

and overcomes drug resistance in<br />

myeloid leukemia. Clin. Cancer Res.<br />

20, 2092−2103.<br />

Koo, J. et al. (2014) Maintaining<br />

glycogen synthase kinase-3 activity<br />

is critical for mTOR kinase inhibitors<br />

to inhibit cancer cell growth. Cancer<br />

Res. 7, 2555−2568.<br />

Fay, M.M. et al. (2014) Enhanced<br />

Arginine Methylation of Programmed<br />

Cell Death 4 Protein during Nutrient<br />

Deprivation Promotes Tumor<br />

Cell Viability. J. Biol. Chem. 289,<br />

17541−17552.<br />

34 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

www.cellsignal.com/csttranslational<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!