15.01.2015 Views

CST Guide:

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

18 Investigation<br />

Section III: Workflow Tools<br />

using motif and post-translational<br />

modification-specific antibodies<br />

Motif and post-translational modification (PTM) antibodies<br />

can help answer two major scientific questions.<br />

1. How can I measure global changes in PTMs or protein kinase activity in response<br />

to cellular treatments<br />

2. How can I investigate PTMs on a protein of interest without complex in vivo labeling<br />

experiments or where no target-specific antibody is available<br />

Post-translational modifications of proteins catalyzed by kinases, acetylases, methylases, ubiquitin<br />

ligases, and other enzymes are key regulators of cell signaling and can be valuable targets for therapeutic<br />

intervention in disease states. Antibodies recognizing specific protein modification sites (e.g.<br />

Phospho-Akt, Acetyl-Histone) are well-known and valuable tools for studying PTMs. To augment these<br />

tools, <strong>CST</strong> has developed motif and PTM-specific antibodies, a distinct class of PTM reagents that<br />

have a broader target specificity and can therefore be used for a different set of applications.<br />

Motif Antibodies<br />

PTMs catalyzed by a specific modification enzyme are often constrained to a peptide sequence pattern,<br />

or motif, that reflects the substrate specificity of that enzyme. For example, substrates of the<br />

protein kinase Akt generally contain an RXRXXS motif in which Akt phosphorylates the serine residue.<br />

Antibodies that detect the motif RXRXXpS can be used to detect a broad spectrum of Akt substrates.<br />

Motif antibodies, proprietary to <strong>CST</strong>, recognize a modified residue in the context of a specific peptide<br />

sequence motif. These highly specialized antibodies were originally developed for the identification<br />

and quantification of PTMs catalyzed by kinases from several branches of the human kinome. More<br />

recently, individual motif antibodies have been developed to recognize several other post-translational<br />

modifications such as methyl-arginine and caspase cleavage sites.<br />

PTM-specific Antibodies<br />

PTM-specific antibodies differ from motif antibodies in that they recognize a specific protein posttranslational<br />

modification, but are not restricted to a specific sequence motif surrounding the modification<br />

site. Examples of PTM-specific antibodies from <strong>CST</strong> include Phospho-Tyrosine (P-Tyr-1000) Rabbit<br />

mAb #8954 and Acetylated-Lysine (Ac-K 2 -100) Rabbit mAb #9814. Together, motif and PTM-specific<br />

antibodies provide a robust toolbox for the identification and classification of PTMs and their effects on<br />

cellular regulation.<br />

How can motif and PTM-specific antibodies be used<br />

• Quantitatively identify the PTM alterations of cellular proteins due to up- or down-regulation<br />

of a specific kinase, acetylase, methylase, nitrosylase, or ubiquitin ligase.<br />

• Motif and PTM antibodies can be used in early-stage investigations where a high quality<br />

antibody may not be available for a specific modified protein target. Assay target-specific<br />

PTM alterations via immunoprecipitation (IP) enrichment of the target protein followed by<br />

western blot (WB) analysis using the motif or PTM-specific antibody.<br />

• Screen candidate therapeutics using in vitro kinase and phosphatase assays based on a<br />

motif or PTM-specific antibody.<br />

One example of the application of a motif antibody involves the response of Jurkat cells to the PP1 and<br />

PP2A protein phosphatase inhibitor Calyculin A. The response was studied by 2D gel electrophoresis<br />

followed by WB analysis using a <strong>CST</strong> motif antibody recognizing the phospho-serine 14-3-3 binding<br />

motif. The data reveal a pronounced increase in overall phosphorylation levels. Based on this initial<br />

study, individual proteins of interest are selected for further study.<br />

Specific kinases in the human kinome phosphorylate<br />

target proteins at distinct substrate sequence motifs.<br />

CHED<br />

Haspin<br />

STLK3<br />

MAST4<br />

chapter 18: Investigation<br />

TK<br />

FGFR2 FGFR3<br />

TrkC<br />

EphB2<br />

TrkB<br />

FGFR1<br />

FGFR4<br />

EphB1<br />

TrkA<br />

FLT1/VEGFR1<br />

ATM<br />

EphA5<br />

KDR/VEGFR2<br />

MuSK ROR2<br />

Fms/CSFR<br />

Atypical<br />

ROR1<br />

EphB3<br />

Ret<br />

Kit<br />

EphA3<br />

DDR2<br />

Mer<br />

ATM<br />

EphA4<br />

DDR1<br />

Tyro3/<br />

Axl<br />

FLT4<br />

Sky<br />

ATR<br />

PDGFRα<br />

EphA6<br />

IGF1R IRR<br />

FLT3<br />

PDGFRβ<br />

mTOR/FRAP<br />

InsR<br />

Yes<br />

EphB4<br />

Met<br />

EGFR<br />

PIKK<br />

HER2/ErbB2<br />

Ron<br />

DNAPK<br />

Src<br />

MLK3<br />

Ros<br />

SMG1<br />

EphA7<br />

ALK<br />

MLK1<br />

Lyn<br />

LTK<br />

Tie2<br />

Tie1<br />

TRRAP<br />

HCK<br />

Fyn<br />

RYK<br />

HER4<br />

EphA8<br />

MLK4<br />

CCK4/PTK7<br />

TKL<br />

MLK2<br />

Lck<br />

Fgr<br />

Ack Tnk1 Tyk2<br />

Jak1<br />

HER3<br />

Jak2<br />

EphA2<br />

Jak3<br />

BLK<br />

ANKRD3 SgK288<br />

DLK<br />

Syk Zap70/SRK<br />

EphA1<br />

PYK2/FAK2<br />

LZK<br />

FAK<br />

Lmr1<br />

ALK4<br />

ITK<br />

Lmr2<br />

C-Raf/Raf1<br />

FRK<br />

TGFβR1<br />

ZAK<br />

BRaf<br />

TEC<br />

EphB6<br />

KSR<br />

Srm<br />

RIPK2<br />

KSR2<br />

TXK<br />

Brk<br />

BTK<br />

Lmr3<br />

ALK7<br />

IRAK3<br />

IRAK1<br />

LIMK1<br />

ARaf<br />

BMPR1B<br />

Etk/BMX<br />

EphA10<br />

LIMK2 TESK1 ILK<br />

BMPR1A<br />

CTK<br />

RIPK3<br />

TSK2<br />

TAK1<br />

HH498<br />

ALK1<br />

CSK CK2a1<br />

PAK1<br />

ALK2<br />

Abl2/Arg<br />

IRAK2<br />

ActR2<br />

Abl Fes<br />

ActR2B<br />

STE<br />

Fer<br />

RIPK1<br />

Jak3~b<br />

TGFβR2<br />

LRRK2<br />

MEKK2/MAP3K2<br />

Jak2~b<br />

LRRK1<br />

MISR2<br />

MEKK3/MAP3K3<br />

Tyk2~b<br />

SuRTK106<br />

IRAK4<br />

BMPR2<br />

ASK/MAP3K5<br />

ANPα/NPR1<br />

MAP3K8<br />

Jak1~b<br />

MAP3K7<br />

ANPβ/NPR2<br />

KHS1<br />

MOS<br />

KHS2<br />

HSER<br />

SgK496<br />

WNK1<br />

WNK3<br />

MEKK6/MAP3K6<br />

DYRK2<br />

Mst4<br />

PBK<br />

MAP3K4<br />

DYRK3<br />

GUCY2D<br />

WNK2<br />

DYRK4<br />

DYRK1A<br />

NRBP1<br />

GUCY2F<br />

NRBP2 MEKK1/MAP3K1 OSR1<br />

DYRK1B<br />

WNK4<br />

MLKL<br />

PERK/PEK<br />

SgK307<br />

SLK<br />

PKR<br />

LOK<br />

HIPK1 HIPK3<br />

GCN2 SgK424<br />

TAO1<br />

SCYL3 TAO2<br />

HIPK2<br />

SCYL1<br />

Tpl2/COT<br />

SCYL2<br />

NIK<br />

TAO3<br />

PAK1<br />

CLK4 HIPK4<br />

PRP4<br />

HRI<br />

PAK3<br />

CLIK1<br />

PAK2<br />

IRE1<br />

CLK2 CLK1<br />

PAK4<br />

MAP2K5<br />

PAK5/PAK7<br />

CLIK1L<br />

IRE2<br />

CLK3<br />

TBCK<br />

PAK6<br />

MAP2K7<br />

MEK1/MAP2K1<br />

RNAseL<br />

GCN2~b<br />

MEK2/MAP2K2<br />

TTK<br />

MSSK1<br />

SgK071<br />

KIS<br />

GRK2<br />

CMGC<br />

SRPK2<br />

MYT1<br />

SEK1/MAP2K4 MKK3/MKK6<br />

SRPK1<br />

CK2α1<br />

Wee1<br />

MAK<br />

CK2α2<br />

SgK196<br />

CDC7<br />

Wee1B<br />

CK1δ<br />

ICK<br />

PRPK<br />

TTBK1<br />

CK1ε<br />

GSK3β<br />

MOK<br />

TTBK2<br />

GSK3α<br />

CK1α1<br />

CDKL3<br />

CK1α2<br />

CDKL2<br />

PINK1<br />

SgK493<br />

SgK269<br />

VRK3<br />

CK1γ2<br />

CDKL1 CDKL5<br />

ERK7<br />

SgK396<br />

SgK223<br />

CDKL4 Erk4<br />

Slob<br />

CK1γ1<br />

Erk3<br />

SgK110<br />

PIK3R4<br />

CK1γ3<br />

NLK<br />

SgK069<br />

Bub1<br />

Erk5<br />

SBK<br />

BubR1<br />

Erk1/<br />

IKKα<br />

p44MAPK<br />

IKKβ<br />

VRK1<br />

CDK7<br />

IKKε<br />

VRK2<br />

Erk2/<br />

Erk2<br />

CK1<br />

PLK4<br />

PITSLRE<br />

TBK1/NAK<br />

p42MAPK p38γ<br />

MPSK1<br />

JNK1<br />

p38δ<br />

JNK2<br />

TLK2<br />

JNK3 CDK10<br />

GAK<br />

TLK1<br />

PLK3<br />

p38β<br />

AAK1<br />

CDK8 CDK11<br />

CAMKK1<br />

ULK3<br />

PLK1<br />

p38α<br />

PLK2<br />

CDK4<br />

CCRK<br />

BIKE<br />

CAMKK2<br />

BARK1/GRK2<br />

CDK6<br />

ULK1<br />

BARK2/GRK3 RHOK/GRK1<br />

Fused<br />

GRK5<br />

PFTAIRE2<br />

SgK494<br />

ULK2 ULK4<br />

GRK6 GRK4<br />

PFTAIRE1<br />

CDK9<br />

Nek6<br />

RSKL1<br />

PCTAIRE2<br />

Nek7 Nek10<br />

SgK495<br />

PASK<br />

PDK1<br />

RSKL2<br />

Nek8<br />

MSK1<br />

RSK1/p90RSK<br />

PCTAIRE1<br />

CDK5 CRK7<br />

PCTAIRE3<br />

Nek9<br />

LKB1<br />

MSK2<br />

RSK4 RSK2<br />

Chk1<br />

p70S6K<br />

RSK3<br />

Nek2<br />

Akt2/PKBβ<br />

AurA/Aur2<br />

p70S6Kβ<br />

Akt1/PKBα<br />

cdc2/CDK1<br />

Nek11<br />

CDK3<br />

CDK2<br />

Nek4<br />

AurB/Aur1<br />

Trb3 Pim1<br />

AurC/Aur3<br />

Pim2<br />

LATS1<br />

Nek3<br />

Pim1Trb2<br />

Pim3<br />

Nek5<br />

Trad Trio<br />

LATS2<br />

NDR1<br />

Trb1<br />

Obscn~b<br />

NDR2<br />

Nek1<br />

YANK1<br />

SPEG~b<br />

MAST3<br />

MASTL<br />

Obscn<br />

STK33<br />

YANK2 PKN1<br />

YANK3<br />

SPEG<br />

TTN<br />

MAST2<br />

SgK085<br />

caMLCK<br />

MAPKAPK2<br />

skMLCK<br />

smMLCK<br />

DRAK2<br />

DRAK1<br />

DAPK2<br />

DAPK3<br />

DAPK1<br />

SSTK<br />

TSSK3<br />

TSSK1<br />

TSSK2<br />

AMPKα2<br />

AMPKα1<br />

BRSK2<br />

CAMK<br />

BRSK1<br />

SNARK<br />

ARK5<br />

QSK<br />

SNRK<br />

NIM1<br />

SIK<br />

QIK<br />

TSSK4<br />

MELK<br />

MARK4<br />

MARK3<br />

MARK1<br />

MARK2<br />

HUNK<br />

PKD2/PKCµ<br />

PKD1<br />

PKD3/PKCν<br />

MNK1<br />

MNK2<br />

RSK4~b<br />

RSK1~b<br />

RSK2~b<br />

RSK3~b<br />

CASK<br />

MAPKAPK5<br />

MAPKAPK2<br />

MAPKAPK3<br />

MSK2~b<br />

MSK1~b<br />

Chk2/Rad53<br />

STRAD/STLK5<br />

STLK6<br />

CaMKIβ<br />

CaMKIγ<br />

MAST1<br />

DCAMKL3<br />

DCAMKL1<br />

DCAMKL2<br />

VACAMKL<br />

PhKγ1<br />

PhKγ2<br />

PSKH1<br />

CaMKIIγ<br />

PSKH2<br />

CaMKIIα<br />

CaMKIIβ<br />

CaMKIIδ<br />

CaMKIV<br />

CaMKIα<br />

CaMKIδ<br />

GRK7<br />

HPK1<br />

GCK<br />

Akt3/PKBγ<br />

SGK1<br />

SGK2<br />

SGK3<br />

PKG2<br />

PKN1/PRK1<br />

PKG1<br />

PKN2/PRK2<br />

PKN3<br />

PRKY<br />

PKCδ<br />

PKCθ<br />

PRKX<br />

PKCη<br />

PKCε<br />

PKCι<br />

PKCζ<br />

PKAγ<br />

PKAα<br />

PKCγ<br />

PKAβ<br />

AGC<br />

ROCK1<br />

PKCα<br />

ROCK2<br />

PKCβ<br />

DMPK<br />

CRIK<br />

DMPK2<br />

MRCKβ<br />

MRCKα<br />

Representative phosphorylation motifs from the PhosphoSitePlus ® online resource. Logos for individual motifs are superimposed on the kinase dendrogram developed in collaboration<br />

between Gerard Manning and Cell Signaling Technology (1). These and over 100 other kinase motifs can be generated for kinases that have 15 or more unique protein substrates reported<br />

in the literature, and these are curated into the PhosphoSitePlus ® knowledge base (2).<br />

References<br />

1. Manning, G., et al. (2002) Science 298, 1912–1934.<br />

2. Hornbeck, P.V., et al. (2012) Nucleic Acids Res. 40, 261–270.<br />

NRK/ZC4<br />

Mst1<br />

Mst2<br />

TNIK/ZC2<br />

MYO3A<br />

MYO3B<br />

YSK1<br />

Mst3<br />

HGK/ZC1<br />

MINK/ZC3<br />

Akt<br />

254 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

www.cellsignal.com/investigation<br />

255

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!