15.01.2015 Views

CST Guide:

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section I: Research Areas<br />

These protein targets represent key<br />

nodes within angiogenesis signaling<br />

pathways and are commonly studied<br />

in angiogenesis research. Primary<br />

antibodies, antibody conjugates, and<br />

antibody sampler kits containing these<br />

targets are available from <strong>CST</strong>.<br />

Listing as of September 2014. See our<br />

website for current product information.<br />

M Monoclonal Antibody<br />

P Polyclonal Antibody<br />

E PathScan ® ELISA Kits<br />

S SignalSilence ® siRNA<br />

C Antibody Conjugate<br />

163<br />

2012–2014 citations<br />

<strong>CST</strong> antibodies for VEGF Receptor 2<br />

have been cited over 163 times in highimpact,<br />

peer-reviewed publications from<br />

the global research community.<br />

Commonly Studied Angiogenesis Targets<br />

Target M P E S C<br />

ADAMTS1<br />

•<br />

Angiopoietin-2<br />

•<br />

CA9<br />

•<br />

CBP<br />

• •<br />

Acetyl-CBP (Lys1535)/p300 (Lys1499) •<br />

CD31 (PECAM-1)<br />

•<br />

Cripto<br />

• •<br />

CYR61<br />

•<br />

DLL4<br />

•<br />

eNOS<br />

• •<br />

EphA2<br />

• •<br />

Phospho-EphA2 (Tyr594) •<br />

EphB1<br />

•<br />

Acidic FGF<br />

•<br />

FGF Receptor 1 • • • •<br />

FGF Receptor 2<br />

• • • •<br />

FGF Receptor 3<br />

• •<br />

FGF Receptor 4 • • •<br />

FIH<br />

•<br />

Gremlin<br />

•<br />

HIF-1α<br />

• •<br />

Hydroxy-HIF-1α (Pro564) • •<br />

HIF-1β/ARNT<br />

• •<br />

HO-1<br />

• •<br />

Integrin α6<br />

•<br />

Integrin αV<br />

•<br />

Integrin β1<br />

• •<br />

Integrin β3<br />

• •<br />

Integrin β5<br />

• •<br />

Jagged1<br />

•<br />

Maspin<br />

•<br />

MMP-2<br />

• •<br />

MMP-7<br />

•<br />

MMP-9<br />

• •<br />

NDRG1 • • •<br />

Select Citations:<br />

Whiteus, C. et al. (2014) Perturbed neural activity disrupts<br />

cerebral angiogenesis during a postnatal critical period.<br />

Nature 505, 407−411.<br />

Behjati, S. et al. (2014) Recurrent PTPRB and PLCG1 mutations<br />

in angiosarcoma. Nat. Genet. 46, 376−379.<br />

Chen, P.Y., Qin, L., Zhuang, Z.W., Tellides, G., Lax, I.,<br />

Schlessinger, J., Simons, M. (2014) The docking protein<br />

FRS2alpha is a critical regulator of VEGF receptors signaling.<br />

Proc. Natl. Acad. Sci. USA 111, 5514−5519.<br />

Ria, R. et al. (2014) HIF-1alpha of bone marrow endothelial<br />

cells implies relapse and drug resistance in patients with<br />

multiple myeloma and may act as a therapeutic target. Clin.<br />

Cancer Res. 20, 847−858.<br />

Blosser, W. et al. (2014) A method to assess target gene involvement<br />

in angiogenesis in vitro and in vivo using lentiviral<br />

vectors expressing shRNA. PLoS One 9, e96036<br />

Riquelme, E. et al. (2014) VEGF/VEGFR-2 Upregulates EZH2<br />

Expression in Lung Adenocarcinoma Cells and EZH2 Depletion<br />

Enhances the Response to Platinum-Based and VEGFR-<br />

2-Targeted Therapy. Clin. Cancer Res. 20, 3849−3861.<br />

Yang, Y. et al. (2013) GAB2 induces tumor angiogenesis in<br />

NRAS-driven melanoma. Oncogene 32, 3627−3637.<br />

Nakayama, M. et al. (2013) Spatial regulation of VEGF receptor<br />

endocytosis in angiogenesis. Nat. Cell Biol. 15, 249−260.<br />

Target M P E S C<br />

NDRG2<br />

•<br />

NDRG3<br />

•<br />

NDRG4<br />

•<br />

Neuropilin-2<br />

•<br />

Notch1 • •<br />

Cleaved Notch1 (Val1744) • • •<br />

Notch2<br />

•<br />

Notch3<br />

• •<br />

Notch4<br />

•<br />

NT5E/CD73<br />

• •<br />

PDGF Receptor α • • • •<br />

Phospho-PDGF Receptor α (Tyr754) •<br />

PDGF Receptor β • • •<br />

Phospho-PDGF Receptor β (Tyr740) •<br />

Phospho-PDGF Receptor β (Tyr771) •<br />

Phospho-PDGF Receptor β (Tyr1009) •<br />

PHD-2/Egln1<br />

• •<br />

RECK<br />

•<br />

Ron<br />

•<br />

Phospho-Ron (panTyr)<br />

•<br />

Spry1<br />

• •<br />

Tenascin C<br />

•<br />

TGF-β Receptor I<br />

•<br />

TGF-β Receptor III<br />

• •<br />

Tie2<br />

•<br />

TIMP1<br />

•<br />

TIMP2<br />

•<br />

TIMP3<br />

•<br />

uPAR<br />

• •<br />

VE-Cadherin<br />

• •<br />

VEGF Receptor 1<br />

•<br />

VEGF Receptor 2 • • • •<br />

VEGF Receptor 3<br />

• •<br />

VHL<br />

•<br />

Planas-Paz, L. et al. (2012) Mechanoinduction of lymph<br />

vessel expansion. EMBO J. 31, 788−804.<br />

Fang, L. et al. (2013) Control of angiogenesis by AIBPmediated<br />

cholesterol efflux. Nature 498, 118−122.<br />

Harris, N.C. et al. (2013) The propeptides of VEGF-D<br />

determine heparin binding, receptor heterodimerization, and<br />

effects on tumor biology. J. Biol. Chem. 288, 8176−8186.<br />

Mujahid, S. et al. (2013) MiR-221 and miR-130a regulate<br />

lung airway and vascular development. PLoS One 8,<br />

e55911.<br />

Singh, N.K. et al. (2013) Both Kdr and Flt1 play a vital role in<br />

hypoxia-induced Src-PLD1-PKCgamma-cPLA(2) activation<br />

and retinal neovascularization. Blood 121, 1911−1923.<br />

Gourlaouen, M. et al. (2013) Essential role for endocytosis<br />

in the growth factor-stimulated activation of ERK1/2 in<br />

endothelial cells. J. Biol. Chem. 288, 7467−7480.<br />

Breitbach, C.J. et al. (2013) Oncolytic vaccinia virus disrupts<br />

tumor-associated vasculature in humans. Cancer Res. 73,<br />

1265−1275.<br />

Tang, J.R. et al. (2013) The NF-kappaB inhibitory proteins<br />

IkappaBalpha and IkappaBbeta mediate disparate responses<br />

to inflammation in fetal pulmonary endothelial cells.<br />

J. Immunol. 190, 2913−2923.<br />

170 For Research Use Only. Not For Use in Diagnostic Procedures. See pages 302 & 303 for Pathway Diagrams, Application, and Reactivity keys.<br />

Angiogenesis Signaling in Tumor Neovascularization<br />

Endothelial<br />

Cell<br />

Key<br />

Angiopoietin 1<br />

Angiopoietin 2<br />

bFGF<br />

Ephrin<br />

PDGF<br />

SLIT<br />

VEGF<br />

Tie2<br />

EPH<br />

ROBO3<br />

ROBO1/2<br />

Pericyte<br />

Integrins<br />

MMPs<br />

Basement<br />

Membrane<br />

Tip Cell<br />

FGFR<br />

Integrins<br />

VEGFR2<br />

Akt<br />

4E-<br />

BP1<br />

Tie2<br />

Neuropilin<br />

elF4E1<br />

• Growth Factors<br />

• Cytokines<br />

• ECM Proteases<br />

Tumor Cell<br />

chapter 06: Development and differentiation<br />

PHDs<br />

Erk1/2<br />

HIF-1α<br />

Precursor<br />

Endothelial Cell<br />

OH<br />

HRE<br />

OH<br />

HIF-1α<br />

HIF-1α<br />

CBP/p300<br />

HIF-1β<br />

Normoxia<br />

HIF-1β<br />

Hypoxia<br />

Target Genes<br />

Platelet<br />

MMPs<br />

Nucleus<br />

PDGFR<br />

• Growth Factors<br />

• Cytokines<br />

• ECM Proteases<br />

Ets2<br />

HIF-1α<br />

Stat3<br />

Target Genes<br />

Tumor Associated<br />

Macrophage (TAM)<br />

Angiogenesis, the formation of new blood vessels from pre-existing blood vessels, plays a key role in tumorigenesis. When a small dormant tumor initiates angiogenesis,<br />

referred to as the ‘angiogenic switch’, it secretes factors that induce sprouting and chemotaxis of endothelial cells (ECs) towards the tumor mass. Within the hypoxic environment<br />

of the inner tumor mass the transcription factor Hypoxia-Inducible-Factor-1-α (HIF-1α) is stabilized and activates the expression of multiple genes contributing to the angiogenic<br />

process. HIF-1α induced proteins include Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF), which promote vascular permeability and EC<br />

growth, respectively. Other secreted factors, such as PDGF, angiopoietin 1 and angiopoietin 2 facilitate chemotaxis, while ephrins guide newly formed blood vessels through<br />

maintenance of cell-cell separation. Other HIF-1α induced gene products include matrix metalloproteinases (MMPs) that breakdown the extracellular matrix to facilitate EC<br />

migration and release associated growth factors. Certain integrins such as αVβ3 found on the surface of angiogenic ECs help the sprouting ECs adhere to the provisional Extracellular<br />

Matrix (ECM), migrate and survive. Factors secreted into the microenvironment surrounding the tumor activate tumor-associated macrophages (TAMs), that subsequently<br />

produce angiogenic factors, such as VEGF and MMPs, further promoting angiogenesis. Pericytes function as support cells enveloping the basolateral surface of ECs and regulate<br />

vasoconstriction and dilation under normal physiologic conditions. During the process of tumor angiogenesis sprouting vessels lack pericytes, which are later recruited by<br />

ECs to provide structural support that indirectly promotes tumor survival. For example, PDGF secreted by ECs acts as a ligand for PDGF receptor located on the pericyte<br />

membrane, causing pericytes to produce and secrete VEGF that signals through the endothelial VEGF receptor.<br />

Select Reviews:<br />

Folkman, J. (2007) Nat. Rev. Drug Disc. 6, 273–286. • Guo, C., Buranych, A., Sarkar, D., et al. (2013) Vasc. Cell. 5, 20. • Keith, B., Johnson, R.S., and Simon, M.C.<br />

(2012) Nat. Rev. Cancer 12, 9–22. • Klagsbrun, M. and Eichmann, A. (2005) Cytokine and Growth Factor Rev. 16, 535–548. • Raza, A., Franklin, M.J., and Dudek, A.Z.<br />

(2010) J. Hematol. 85, 593–598. • Sakurai, T. and Kudo, M. (2011) Oncology 81 Suppl. 1, 24–29. • Senger, D.R. and Davis, G.E. (2011) Cold Spring Harb. Perspect. Biol.<br />

3, a005090. • van Hinsbergh, V.W. and Koolwijk, P. (2008) Cardiovasc. Res. 78, 203–212.<br />

© 2008–2015 Cell Signaling Technology, Inc. • We would like to thank Prof. Diane Bielenberg, Harvard Medical School, Children’s Hospital, Boston, MA, for reviewing this diagram.<br />

www.cellsignal.com/cstpathways 171

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!