12.11.2012 Views

What does the fossil record tell us about bird evolution?

What does the fossil record tell us about bird evolution?

What does the fossil record tell us about bird evolution?

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>What</strong> <strong>does</strong> <strong>the</strong> <strong>fossil</strong> <strong>record</strong><br />

<strong>tell</strong> <strong>us</strong> <strong>about</strong> <strong>bird</strong> <strong>evolution</strong>?<br />

http://www.luisrey.ndtilda.co.uk/html/chin1to4.htm<br />

Bhullar, Marugán-Lobón, Racimo, et al. 2012.<br />

Biol. 452<br />

Lecture 2<br />

Summer 2012<br />

Read in Pough:<br />

Ch. 16:398-401, 407-408,<br />

410-411, 428-436;<br />

Ch. 17:439-442<br />

Ornithischia<br />

Dinosauria<br />

Saurischia<br />

Compare <strong>the</strong> 2 dinosaur pelvis designs to that in <strong>bird</strong>s.<br />

Hutchinson &<br />

Allen, 2009.<br />

pubis<br />

femur<br />

Anterior to <strong>the</strong> right<br />

Saurischia:<br />

Carnotaur<strong>us</strong><br />

Saurischians are<br />

ancestors of <strong>bird</strong>s<br />

Ornithischia:<br />

Stegasaur<strong>us</strong><br />

Posteriorly<br />

directed pubis<br />

Aves<br />

ilium<br />

Anteriorly<br />

directed<br />

pubis (pu)<br />

Saurischia:<br />

Sauropods<br />

Ornithischia:<br />

Stegasaur<strong>us</strong><br />

<strong>What</strong> traits define <strong>the</strong> clade Dinosauria?<br />

Upright posture; swan-like, S-shaped neck<br />

How was <strong>the</strong> ancestral dinosaur skull modified in <strong>bird</strong> <strong>evolution</strong>?<br />

Diapsid skulls: pair of temporal fenestrae<br />

Alligator<br />

Upper & lower temporal fenestrae<br />

Tyrannosaur<strong>us</strong><br />

Velociraptor<br />

Archaeopteryx<br />

http://www.oucom.ohiou.edu/dbms-witmer/dinoskulls02.htm


<strong>What</strong> evidence suggests that <strong>bird</strong>s have paeodmorphic skulls?<br />

Embryo<br />

Juveniles<br />

Bhullar, Marugán-Lobón, Racimo, et al. 2012.<br />

<strong>What</strong> is heterochronic <strong>evolution</strong>?<br />

Alligator<br />

Coelophysis<br />

Archaeopteryx<br />

Adults<br />

Describe how <strong>the</strong> brain’s volume & <strong>the</strong> premaxilla’s shape<br />

change in this <strong>evolution</strong>ary series.<br />

Bhullar, Marugán-Lobón, Racimo, et al. 2012.<br />

Within each lineage, how <strong>does</strong> <strong>the</strong> skull shape change<br />

during development (juvenile to adult)?<br />

Bhullar, Marugán-Lobón, Racimo, et al. 2012.<br />

Archaeopteryx<br />

Microraptor<br />

Arrows indicate ontogeny<br />

(developmental changes)<br />

Principal Components:<br />

analysis of numero<strong>us</strong><br />

measurements of <strong>the</strong> skull<br />

Enlarged eyes may have led to cranial kinesis in Aves.<br />

Xu, You, Du, & Han, 2011<br />

Alonso et al, 2004<br />

Lower temporal fenestra opens to eye socket<br />

Caspian Tern Skull


Describe <strong>the</strong> cranial kinesis of <strong>the</strong>se <strong>bird</strong> skulls.<br />

Herring Gull<br />

Miller, 2002<br />

When did 1-way airflow & airsacs (as seen in <strong>bird</strong>s) evolve?<br />

How could pneumatic bones facilitate <strong>evolution</strong> of large body size or flight?<br />

O'Connor &<br />

Claessens, 2005.<br />

Bird Theropod<br />

http://people.eku.edu/ritchisong/<strong>bird</strong>respiration.html<br />

Farmer &<br />

Sanders, 2010<br />

http://people.eku.edu/ritchisong/<strong>bird</strong>respiration.html<br />

Archosaur: Alligator Lungs<br />

Louchart & Viriot, 2011<br />

When & why did tooth loss evolve in Dinosaurs?<br />

This is not a complete phylogeny,<br />

it shows only taxa with tooth loss.<br />

Proventricul<strong>us</strong><br />

Gizzard<br />

Louchart & Viriot, 2011<br />

Wings O, & Sander PM. 2007.<br />

Birds: Two-part stomach<br />

Wings, 2007<br />

Bird Gizzard with grit (gastroliths)


<strong>What</strong> did o<strong>the</strong>r Mesozoic<br />

<strong>bird</strong>s look like?<br />

O’Connor, Chiappe, & Bell, 2011<br />

Review Questions<br />

Pygostylia: Pygostyle series of short,<br />

f<strong>us</strong>ed tail vertebrae, supports tail fea<strong>the</strong>rs<br />

Changchengornis drawing<br />

Ornithurae: “Modern”<br />

pygostyle, ploughshare – shape<br />

Keeled<br />

Sternum<br />

Ichthyornis<br />

1. List 2 derived traits shared by all dinosaurs. Describe <strong>the</strong> design of <strong>the</strong> femur & hip<br />

necessary for upright posture. Compare <strong>the</strong> design of <strong>the</strong> pelvis of <strong>the</strong> Ornithiscian &<br />

Saurischian dinosaurs. How was <strong>the</strong> Saurischian (ie. <strong>the</strong>ropod) pelvis modified in <strong>the</strong><br />

<strong>evolution</strong> of <strong>bird</strong>s?<br />

2. Describe <strong>the</strong>se modifications in <strong>the</strong> ancestral diapsid skull in <strong>the</strong> <strong>evolution</strong> of <strong>bird</strong>s: loss of<br />

lower temporal arch, eye & brain enlargement, & modification of <strong>the</strong> premaxilla. Explain<br />

heterochrony & why scientists consider <strong>the</strong> <strong>bird</strong> skull to be paedomorphic. Explain <strong>the</strong><br />

benefits of cranial kinesis.<br />

3. <strong>What</strong> are <strong>the</strong> benefits to tooth loss & beak formation? Explain how <strong>bird</strong>s mechanically<br />

process <strong>the</strong>ir food if <strong>the</strong>y can’t chew it. <strong>What</strong> evidence suggests that some <strong>the</strong>ropod<br />

dinosaurs had gizzards. Describe <strong>the</strong> evidence that suggests that some ancestors of <strong>bird</strong>s<br />

had air sacs & 1-way air-flow through <strong>the</strong>ir lungs, similar to <strong>bird</strong>s today. In what clade(s)<br />

has this evidence been found?<br />

4. How diverse were Mesozoic <strong>bird</strong>s? Describe <strong>the</strong> recent molecular phylogeny of modern<br />

<strong>bird</strong>s. Does it support <strong>the</strong> divergence of modern orders of <strong>bird</strong>s prior to <strong>the</strong> Cretaceo<strong>us</strong>-<br />

Tertiary boundary (K-T)? Are <strong>the</strong>re numero<strong>us</strong> <strong>fossil</strong>s to support this concl<strong>us</strong>ion? Are all<br />

traditionally named orders of <strong>bird</strong>s monophyletic based on <strong>the</strong> Pachecoet al., 2011 data?<br />

When did orders of<br />

Neoaves <strong>bird</strong>s arise?<br />

During <strong>the</strong> Cretaceo<strong>us</strong> or after<br />

<strong>the</strong> K-T mass extinction?<br />

K-T = end of Cretaceo<strong>us</strong> (Mesozoic Era) &<br />

start of Cenozoic Era (Tertiary Epoch)<br />

Analysis <strong>us</strong>ing Mitochondrial DNA<br />

Pacheco, et al, 2011.<br />

Selected References<br />

1. Alonso PD, Milner AC, Ketcham RA, Cookson MJ, & Rowe TB. 2004. The avian nature of <strong>the</strong> brain and inner ear of Archaeopteryx. Nature 430:666-669.<br />

2. Baier DB, Gatesy SM, & Jenkins Jr, FA. 2007. A critical ligamento<strong>us</strong> mechanism in <strong>the</strong> <strong>evolution</strong> of avian flight. Nature 445:307-310.<br />

3. Bhullar B-AS, Marugán-Lobón F, Racimo F, et al. 2012. Birds have paedomorphic dinosaur skulls. Nature. published online May 27, 2012. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature11146.html<br />

4. Boggs D, Jenkins F, Dial K. 1997. The effects of <strong>the</strong> wingbeat cycle on respiration in Black-billed Magpies (Pica pica). J Exp Biol. 200(Pt 9):1403-1412<br />

5. Brown JW, et al. 2008. Strong mitochondrial DNA support for a Cretaceo<strong>us</strong> origin of modern avian lineages. BMC Biol. 6:6.<br />

6. Chatterjee S. 1997. The Rise of Birds. Baltimore, MD: Johns Hopkins University Pres.<br />

7. Chatterjee S, & Templin RJ. 2007. Biplane wing planform and flight performance of <strong>the</strong> fea<strong>the</strong>red dinosaur Microraptor gui. PNAS 104(5):1576-1580.<br />

8. Chiappe LM. 2009. Downsized dinosaurs: The <strong>evolution</strong>ary transition to modern <strong>bird</strong>s. Evo Edu Outreach 2:248–256.<br />

9. Choiniere JN, et al. 2010. A basal alvarezsauroid <strong>the</strong>ropod from <strong>the</strong> early late Jurassic of Xinjiang, China. Science 327(571):571-574.<br />

10. Clarke JA, Tamb<strong>us</strong>si CP, Noriega JI, Erickson GM, Ketcham RA. 2005. Definitive <strong>fossil</strong> evidence for <strong>the</strong> extant avian radiation in <strong>the</strong> Cretaceo<strong>us</strong>. Nature. 433(7023):305-308.<br />

11. Codd JR. 2010. Uncinate processes in <strong>bird</strong>s: morphology, physiology and function. Comp Biochem Physiol A Mol Integr Physiol. 156(3):303-308.<br />

12. Codd JR, Manning PL, Norell MA, & Perry SF. 2008. Avian-like breathing mechanics in maniraptoran dinosaurs. Proc. R. Soc. B 275:157–161.<br />

13. Dyke GJ, & Van Tuinen M. 2004. The <strong>evolution</strong>ary radiation of modern <strong>bird</strong>s (Neorni<strong>the</strong>s): reconciling molecules, morphology and <strong>the</strong> <strong>fossil</strong> <strong>record</strong>. Zoological Journal of <strong>the</strong> Linnean Society 141:153–177.<br />

14. Ericson PGP, et. al. 2006. Diversification of Neoaves: integration of molecular sequence data and <strong>fossil</strong>s. Biol Lett. 2(4): 543–547.<br />

15. Feduccia A. 2003a. ‘Big bang’ for tertiary <strong>bird</strong>s? TRENDS in Ecology and Evolution 18(4):172-176.<br />

16. Feduccia A. 2003b. Response to Dyke, and Van Tuinen, et. al.: ‘Big bang’ for Tertiary <strong>bird</strong>s? TRENDS in Ecology and Evolution 18(9):443-444.<br />

17. Farmer CG, Sanders K. 2010. Unidirectional airflow in <strong>the</strong> lungs of alligators. Science. 327(5963):338-340.<br />

18. Fountaine TM, Benton MJ, Dyke GJ, Nudds RL. 2005. The quality of <strong>the</strong> <strong>fossil</strong> <strong>record</strong> of Mesozoic <strong>bird</strong>s. Proc Biol Sci. 272(1560):289-294.<br />

19. Fritz J, Kienzle E, Hummel J, et al. 2011. Gizzard vs. teeth, it's a tie: food-processing efficiency in herbivoro<strong>us</strong> <strong>bird</strong>s and mammals and implications for dinosaur feeding strategies. Paleobiology 37:577-586.<br />

20. Glen CL, & Bennett MB. 2007. Foraging modes of Mesozoic <strong>bird</strong>s and non-avian <strong>the</strong>ropods. Current Biology 17(21):R911-R912.<br />

21. Hackett SJ, et. al. 2008. A phylogenomic study of <strong>bird</strong>s reveals <strong>the</strong>ir <strong>evolution</strong>ary history. Science 320(5884):1763-1768.<br />

22. Hu D, Hou L, Zhang L, Xu X. 2009. A pre-Archaeopteryx troodontid <strong>the</strong>ropod from China with long fea<strong>the</strong>rs on <strong>the</strong> metatars<strong>us</strong>. Nature 461(7264):640-643.<br />

23. Hutchinson, JR & Allen V. 2009. The <strong>evolution</strong>ary continuum of limb function from early <strong>the</strong>ropods to <strong>bird</strong>s. Naturwissenschaften 96:423–448.<br />

24. Jenkins FA Jr, KP Dial KP, Goslow GE Jr. 1988. A cineradiographic analysis of <strong>bird</strong> flight: <strong>the</strong> wishbone in starlings is a spring. Science. 241(4872):1495-1498.<br />

25. Li C, et al. 2006. An un<strong>us</strong>ual archosaurian from <strong>the</strong> marine Triassic of China, Naturwissenschafte 93(4):200-206.<br />

26. Louchart A, & Viriot L. 2011. From snout to beak: <strong>the</strong> loss of teeth in <strong>bird</strong>s. TREE 26(12):663–673. ley & Sons Publ.<br />

27. Makovicky PJ, & Zanno LE. 2011. Theropod diversity and <strong>the</strong> refinement of avian characteristics. Chap. 1 in Living Dinosaurs: The Evolutionary History of Modern Birds, 1 st Ed, editors Dyke G & Kaiser G.<br />

28. Mayr G, Pohl B, Peters DS. 2005. A well-preserved Archaeopteryx specimen with <strong>the</strong>ropod features. Science 310(5753):1483-1486.<br />

29. Miller SS. 2002. Dynamical models of cranial kinesis. MS. Thesis, Texas Tech University, Lubbock TX. pp. 1-33.<br />

30. Nesbitt SJ, et al. 2009. The <strong>the</strong>ropod furcula. J. Morphol. 270:856–879.<br />

31. O’Connor J, Chiappe LM, & Bell A. 2011. Chapter 3. Pre-modern <strong>bird</strong>s: avian divergences in <strong>the</strong> Mesozoic. in Living Dinosaurs: The Evolutionary History of Modern Birds, 1 st Ed. Editors Dyke G, & Kaiser G.<br />

32. O'Connor PM, & Claessens, LPAM. 2005. Basic avian pulmonary design and flow-through ventilation in non-avian <strong>the</strong>ropod dinosaurs. Nature 436:253-256.<br />

33. O'Connor PM. 2006. Postcranial pneumaticity: an evaluation of soft-tissue influences on <strong>the</strong> postcranial skeleton and <strong>the</strong> reconstruction of pulmonary anatomy in archosaurs. J Morphol. 267(10):1199-1226.<br />

34. Pacheco MA, Battistuzzi FU, Lentino M, et al. 2011. Evolution of modern <strong>bird</strong>s revealed by mitogenomics: timing <strong>the</strong> radiation and origin of major orders. Mol Biol Evol. First published online: January 17, 2011.<br />

35. Phillips MJ, Gibb GC, Crimp EA, & Penny D. 2010. Tinamo<strong>us</strong> and Moa flock toge<strong>the</strong>r: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst. Biol. 59(1):90–107.<br />

36. Richison G. 2011. Introduction to Birds. Ornithology, BIO 554/754, Eastern Kentucky Univ. http://people.eku.edu/ritchisong/554notes1.html<br />

37. Richison G. 2011. Bird Biogeography. BIO 554/754, Eastern Kentucky Univ. http://people.eku.edu/ritchisong/<strong>bird</strong>biogeography1.htm<br />

38. Richison G. 2011. Avian Respiration. Ornithology, BIO 554/754, Eastern Kentucky Univ. http://people.eku.edu/ritchisong/<strong>bird</strong>respiration.html<br />

39. Sereno PC et. al. 2008. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLOS One 3(9):e3303.<br />

40. Sullivan C, Hone DWE, Xu X, Zhang F. 2010. The asymmetry of <strong>the</strong> carpal joint and <strong>the</strong> folding in maniraptoran <strong>the</strong>ropod dinosaurs. Proc. R. Soc. B. 277(1690):2027-2033.<br />

41. Wedel MJ 2009. Evidence for <strong>bird</strong>-like air sacs in saurischian dinosaurs. J Exper. Zool. 311A:611-628.<br />

42. Turner AH, et al. 2007. A basal Dromaeosaurid and size <strong>evolution</strong> preceding avian flight. Science 317(5843):1378-1381.<br />

43. Wings O. 2007. A review of gastrolith function with implications for <strong>fossil</strong> vertebrates and a revised classification. Acta Palaeontologica Polonica 52(1):1–16.<br />

44. Wings O, & Sander PM. 2007. No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proc. R. Soc. B 274:635-640.<br />

45. Young, RL, Bever GS, Wang Z, & Wagner GP. 2011. Identity of <strong>the</strong> avian wing digits: problems resolved and unsolved. Developmental Dynamics 240:1042–1053.<br />

46. Zanno LE & Makovicky PJ. 2011. Herbivoro<strong>us</strong> ecomorphology and specialization patterns in <strong>the</strong>ropod dinosaur <strong>evolution</strong>. PNAS 108(1):232-237.<br />

47. Zhou Z. 2004. The origin and early <strong>evolution</strong> of <strong>bird</strong>s: discoveries, disputes and perspectives from <strong>fossil</strong> evidence. Naturwissenschaften. 91(10):455-471.<br />

48. Zhou Z. 2005. Discovery of an ornithurine <strong>bird</strong> and its implication for Early Cretaceo<strong>us</strong> avian radiation. PNAS 102(52)18998-19002.<br />

Strigiformes<br />

Psittaciformes<br />

Coraciiformes<br />

Passeriformes<br />

Columbiformes<br />

Falconiformes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!