12.11.2012 Views

How did fins evolve? How did limbs evolve? Fin Fold Hypothesis for ...

How did fins evolve? How did limbs evolve? Fin Fold Hypothesis for ...

How did fins evolve? How did limbs evolve? Fin Fold Hypothesis for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>How</strong> <strong>did</strong> <strong>fins</strong> <strong>evolve</strong>? <strong>How</strong> <strong>did</strong> <strong>limbs</strong> <strong>evolve</strong>?<br />

Fossil “Agnathan”<br />

Petraspis<br />

Gnathostomes: mobile, paired pectoral & pelvic <strong>fins</strong><br />

Fossil Placodermi:<br />

Dunkleosteus<br />

Kardong Fig. 9.5<br />

Fossil Acanthodii: Climatius<br />

Fossil Chondrichthyes: Cladoselache<br />

Lecture 5, Exam 2, Biol. 453 - Comp. Vert. Anat.,<br />

Autumn 2012; Read in Kardong Ch. 9. pg. 325-350.<br />

“Archipterygium” <strong>Hypothesis</strong> <strong>for</strong> Paired <strong>Fin</strong> Evolution<br />

Towers & Tickle, 2009<br />

Apical ectodermal ridges (AER) define<br />

distal edge of gill arches, <strong>fins</strong> & <strong>limbs</strong>:<br />

Shared regulatory genes:<br />

retinoic acid (RA), sonic hedgehog<br />

(Shh) & fibroblast growth factor (Fgf8)<br />

Model to convert gill arch into a fin<br />

Skate Gill arch (I) Skate fin (J) Chick limb (K)<br />

Gillis, Dahn, & Shubin, 2009<br />

<strong>Fin</strong> <strong>Fold</strong> <strong>Hypothesis</strong> <strong>for</strong> Paired <strong>Fin</strong> Evolution<br />

Hypothetical ancestral vertebrate with<br />

paired, ventrolateral fin folds<br />

Scapulocoracoid<br />

Ischiopubic<br />

Serial homology in fin design<br />

Which HOX genes are expressed in the<br />

pectoral & pelvic <strong>fins</strong>/<strong>limbs</strong>?<br />

Chick<br />

Pectoral<br />

Chick<br />

Pelvic<br />

Compare the <strong>fins</strong> of the Chondrichthyes with other fishes<br />

Compare with Kardong Fig. 9.10, 9.11, 9.13<br />

Fossil Shark:<br />

Hybodus<br />

White-tip<br />

Reef Shark<br />

http://www.arkive.org/whitetip-reef-shark/triaenodon-obesus/video-11.html


<strong>How</strong> were <strong>fins</strong> modified in Actinopterygians?<br />

Actinopterygians<br />

Ischiopubic<br />

http://www.arkive.org/threadfin-butterflyfish/chaetodon-auriga/video-00.html<br />

When <strong>did</strong> the first tetrapods appear?<br />

Niedz´wiedzki, et al. 2010;<br />

Janvier & Clément. 2010.<br />

Scale bars = 10 mm.<br />

Tracks from marine<br />

shoreline, Poland.<br />

Holland, 2012<br />

A recent phylogeny of the “tetrapodomorphs”<br />

Tetrapodomorph fossil “fish”<br />

phylogeny based on 81<br />

morphological characters.<br />

<strong>How</strong> <strong>did</strong> pterygiophores alter in the evolution of tetrapods?<br />

Coelacanth Tetrapodomorphs Dipnoan<br />

Asymmetric<br />

radials<br />

Uniserial <strong>Fin</strong>s<br />

Raff, 2007


<strong>How</strong> do pectoral girdles differ in fish & tetrapods?<br />

Sarcopterygian Fossil Tetrapod Early Amniote<br />

New post.<br />

coracoid<br />

Cleithrum<br />

lost<br />

Added<br />

scapular<br />

spine<br />

Synapsida Mammalia: Prototheria Mammalia: Theria<br />

What germ layers contribute to the appendicular skeleton?<br />

Epimere/Paraxial: Dermatome<br />

Dermal bones in pectoral girdle<br />

Dorsal <strong>fins</strong><br />

Hypomere (Somatic Layer):<br />

Pectoral girdle (part)<br />

Pelvic girdle<br />

Pectoral <strong>fins</strong>/<strong>limbs</strong><br />

Pelvic <strong>fins</strong>/<strong>limbs</strong><br />

<strong>How</strong> do pelvic girdles of fish & tetrapods differ?<br />

Fossil Sarcopterygian: Ischiopubic plates<br />

Early Synapsid<br />

Therapsid<br />

Early Tetrapod: ilium<br />

attachment to sacral vert.<br />

Mammals<br />

<strong>How</strong> do endochondral & membranous (dermal) bone growth differ?<br />

Cartilage Endochondral Bone Formation<br />

Compact Bone<br />

Membranous (Dermal) Bone Formation


What are the epiphyseal regions on long bones?<br />

Endochondral Bone Development: Mammal<br />

Selected References<br />

Carollia:<br />

Fruit Bat<br />

Ahlberg PE, Clack JA & Blom H. 2005. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 437:137-140.<br />

Ahn D, & Ho RK. 2008. Tri-phasic expression of posterior Hox genes during development of pectoral <strong>fins</strong> in zebrafish: Implications <strong>for</strong> the evolution of vertebrate paired appendages. Dev Biol. 322(1):220-233.<br />

Baier DB, Gatesy SM, & Jenkins Jr, FA. 2007. A critical ligamentous mechanism in the evolution of avian flight. Nature 445:307-310.<br />

Boisvert CA, Mark-Kurik E, Ahlberg PE. 2008. The pectoral fin of Panderichthys and the origin of digits. Nature. 456(7222):636-638.<br />

Botha-Brink J, & Angielczyk KD. 2010. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, Anomodontia) explain their success be<strong>for</strong>e and after the end-Permian extinction? Zool. J Linn.<br />

Soc. 160:341–365.<br />

Canoville A, & Laurin M. 2010. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linnean Soc 100:384–406.<br />

Davis MC, Dahn RD, & Shubin NH. 2007. An autopodial-like pattern of Hox expression in the <strong>fins</strong> of a basal actinopterygian fish. Nature 447:473-477.<br />

Daeschle, EB, Shubin NH, & Jenkins FA, Jr. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440:757-763.<br />

Dean MN., & Summers AP. 2006. Mineralized cartilage in the skeleton of Chondrichthyan fishes. Zoology 109:164-168.<br />

Dean MN, Mull CG, Gorb SN, & Summers AP. 2009. Ontogeny of the tessellated skeleton: insight from the skeletal growth of the round stingray Urobatis halleri. J Anat. 215(3):227–239.<br />

Erickson GM 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology and Evolution 20(12):677-684.<br />

Erickson GM 2005. Dinosaur growth. AccessScience, ©McGraw-Hill Companies http://www.accessscience.com/popup.aspx?id=YB050600&name=print<br />

Freitas R, Zhang GJ, & Cohn MJ. 2007. Biphasic Hoxd gene expression in shark paired <strong>fins</strong> reveals an ancient origin of the distal limb domain, PLoS ONE 2(8): e754.<br />

Gillis JA, Dahn RD, & Shubin NH. 2009 . Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. PNAS 106(14):5720–5724.<br />

Holland T. 2012. Pectoral girdle and fin anatomy of Gogonasus andrewsae long, 1985: Implications <strong>for</strong> tetrapodomorph limb evolution. J Morph. Early View (published be<strong>for</strong>e inclusion in an issue)<br />

http://onlinelibrary.wiley.com/doi/10.1002/jmor.20078/full<br />

Hutchinson JR & Allen V. 2009. The evolutionary continuum of limb function from early theropods to birds. Naturwissenschaften 96:423–448.<br />

Janvier P & Clément G. 2010. Muddy tetrapod origins. Nature 463(7):40-41.<br />

Johansonn Z, et. al. 2007. Fish <strong>Fin</strong>gers: Digit Homologues in Sarcopterygian Fish <strong>Fin</strong>s. J Exp Zoolog B Mol Dev Evol. 308(6):757-768.<br />

Kriloff A, Germain D, Vincent P, et al. 2008. Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. J Evol. BIol. 21(3):807-826.<br />

Kronenberg HM. 2003. Developmental regulation of the growth plate. Nature 423:332-336.<br />

Laroche M. 2008. Treatment of osteoporosis: all the questions we still cannot answer. Am J Medicine. 121(9):744-747.<br />

Martin RA. 2010. Skeleton in the corset. Biology of Sharks & Rays. ReefQuest Centre <strong>for</strong> Shark Research. http://www.elasmo-research.org/education/white_shark/skeleton.htm<br />

Mukherjee D, Ray S, & Sengupta DP. 2010. Preliminary observations on the bone microstructure, growth patterns, and life habits of some Triassic temnospondyls from India. J Vert Paleontology 30(1):78-93.<br />

Murphy DC. 2006. Tetrapods Answer. The Devonian Times. http://www.devoniantimes.org/opportunity/tetrapodsAnswer.html<br />

Niedz´wiedzki G. et al. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463(7):43-48.<br />

Pourlis AF, & Antonopoulos,J. 2011. The ossification of the pectoral girdle and wing skeleton of the Quail (Coturnix coturnix japonica). Anat. Histol. Embryol. 40:219–225.<br />

Qiang, J, Zhexi L, & Shu-a J. 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398:326-330.<br />

Raff RA. 2007. Written in stone: fossils, genes and evo–devo. Nature Reviews: Genetics 8:911-920.<br />

Ray S, Mukherjee D, & Bandyopadhyay S. 2009. Growth patterns of fossil vertebrates as deduced from bone microstructure: case studies from India. J. Biosci. 34:661–672.<br />

Sanchez S, et al. 2010. Limb-bone histology of temnospondyls: implications <strong>for</strong> understanding the diversification of palaeoecologies and patterns of locomotion of Permo-Triassic tetrapods. J . Evol. Biol.<br />

23:2076–2090.<br />

Scheye, TM, Klein N, & Sander PM. 2010. Developmental palaeontology of Reptilia as revealed by histological studies. Seminars in Cell & Developmental Biology 21:462–470.<br />

Shubin , NH, Daeschler EB, & Jenkins FA, Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440:764-771.<br />

Shubin N, Tabin C, & Carroll S. 2000. Fossils, Genes and the Evolution of Animal Limbs. In Gee, H., ed. 2000. Shaking the Tree: Readings from Nature in the History of Life.<br />

Shubin N, Tabin, C, & Carroll S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:818-823.<br />

Science Museum of Minnesota. 2003. Dinosaur Bone Histology. http://ltc.smm.org/histology/<br />

Slomianka L. 2009. Blue Histology – Skeletal Tissues – Bone. School of Anatomy and Human Biology - The University of Western Australia. http://www.lab.anhb.uwa.edu.au/mb140/corepages/bone/bone.htm<br />

Tamura K, Yonei-Tamura S, Yano T, Yokoyama H, & Ide H. 2008. The autopod: Its <strong>for</strong>mation during limb development. Development, Growth & Differentiation 50(s1): S177-S187.<br />

Towers M, & Tickle C. 2009. Generation of pattern and <strong>for</strong>m in the developing limb. Int. J. Dev. Biol. 53:805-812.<br />

Vickaryous MK & Hall BK 2006. Homology of the reptilian coracoid and a reappraisal of the evolution and development of the amniote pectoral apparatus. J. Anat. 208:263-285.<br />

Wisenden B. 2005. Chapter 7: The Skeletal System: Appendicular Division. Evolution Atlas. Pearson Education. http://cwx.prenhall.com/bookbind/pubbooks/martini10/chapter7/custom2/deluxe-content.html<br />

<strong>How</strong> can bones be used to age a fossil & study growth?<br />

Scheyer, Klein, & Sander, 2010.<br />

Sketch of prosauropod, Plateosaurus engelhardti<br />

http://palaeo-electronica.org/2009_2/185/fig_14.htm<br />

Sampling is done by complete cross-sectioning or core-drilling of the bone at mid-diaphysis.<br />

(B) Polished section of humerus. (C) Close-up of the outer region of the cortex of that specimen.<br />

(D) Interpretative drawing of C. Note lines of arrested growth (LAGs).<br />

Review Questions<br />

1. Define appendicular skeleton. Describe the “Archipterygium & fin-fold hypotheses <strong>for</strong> the<br />

evolution of vertebrate <strong>fins</strong>/<strong>limbs</strong>. What evidence supports each hypothesis? Describe the<br />

HOX gene pattern within the appendicular skeleton.<br />

2. Compare the position & arrangement of girdle cartilages/bones in the Chondrichthyes,<br />

Actinopterygians, Sarcopterygians & early tetrapods. What is the advantage of the derived<br />

Actinopterygian relocation of the pelvic <strong>fins</strong>? What design features are shared by the fossil<br />

Sarcopterygian fin bones & the tetrapod <strong>limbs</strong>?<br />

3. Diagram the major elements in an early tetrapod pectoral girdle. Why <strong>did</strong> it become free of<br />

the skull? Describe the 2 major trends amongst these bones with evolution of upright<br />

posture (which elements were enlarged, which were reduced?<br />

4. Diagram & compare the bones that <strong>for</strong>m the pelvic girdle of a fossil sarcopterygian & of an<br />

early fossil tetrapod. In the tetrapod, label the acetabulum (socket <strong>for</strong> the femur). What new<br />

connection is made in the tetrapod pelvic girdle? In general how <strong>did</strong> the relative size of<br />

ilium, ischium & pubis change with the evolution of upright posture in synapsids to<br />

mammals?<br />

5. Compare the growth of replacement (endochondral) bones & membranous (dermal) bones.<br />

Diagram a long bone in early development & label the diaphysis, epiphyses & epiphyseal<br />

disks. <strong>How</strong> can growth rates be studied in fossils like the dinosaurs? Diagram a transverse<br />

section of an embryo & label the regions of mesoderm. Describe & name the germ layer<br />

origin of the appendicular skeleton.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!