15.01.2015 Views

ECE 316, Fall 2005 Solutions to Problem Set 1 - for tutorials week of ...

ECE 316, Fall 2005 Solutions to Problem Set 1 - for tutorials week of ...

ECE 316, Fall 2005 Solutions to Problem Set 1 - for tutorials week of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ECE</strong> <strong>316</strong>, <strong>Fall</strong> <strong>2005</strong><br />

<strong>Solutions</strong> <strong>to</strong> <strong>Problem</strong> <strong>Set</strong> 1 - <strong>for</strong> tu<strong>to</strong>rials <strong>week</strong> <strong>of</strong> Sept. 19<br />

Lathi, Chapter 2, nos 1-3, 1-4, 1-7, 5-2, 5-6, 6-1<br />

Solution Lathi 1-3<br />

Consider the function g(t) = C cos(ω 0 t + θ). We can obtain the power by averaging g 2 (t)<br />

over one period, T 0 . Thus,<br />

P g = 1 ∫ T0<br />

C 2 cos 2 (ω 0 t + θ)dt = C2 ∫ T0<br />

(1 + cos(2ω 0 t + 2θ))dt = C2 T 0<br />

T 0 0<br />

2T 0 0<br />

2T 0<br />

where we use the fact that the integral <strong>of</strong> cos(2ω 0 t + 2θ) over a period T 0 is zero.<br />

= C2<br />

2 ,<br />

Solution Lathi 1-4<br />

As in the previous problem we can write:<br />

1 ∫ T/2<br />

P = lim T →∞ T<br />

= C2 1<br />

2<br />

+ C2 2<br />

1<br />

2<br />

+ lim T →∞ T<br />

= C2 1<br />

2<br />

+ C2 2<br />

1<br />

2<br />

+ lim T →∞ T<br />

−T/2 {C 1 cos(ω 0 t + θ 1 ) + C 2 cos(ω 2 t + θ 2 )} 2 dt<br />

∫ T/2<br />

−T/2 2C 1C 2 cos(ω 1 t + θ 1 ) cos(ω 2 t + θ 2 )dt<br />

1<br />

{cos(θ 2 1 − θ 2 ) + cos((ω 1 + ω 2 )t + θ 1 + θ 2 )}dt<br />

∫ T/2<br />

−T/2<br />

= C2 1<br />

2<br />

+ C2 2<br />

2<br />

+ C 1 C 2 cos(θ 1 − θ 2 )<br />

Solution Lathi 1-7<br />

Consider:<br />

1 ∫ T/2<br />

P g = lim T →∞ T<br />

= lim T →∞<br />

1<br />

T<br />

−T/2 g(t)g∗ (t)dt<br />

∫ T/2 ∑ ni=m ∑ nk=m<br />

−T/2<br />

D i Dke ∗ j(ω i−ω k )t dt.<br />

Clearly the integral <strong>for</strong> a term with i ≠ k will be zero (as the integrand can be expanded <strong>to</strong><br />

cos +j sin). Thus:<br />

n∑<br />

P g = |D i | 2 .<br />

i=m<br />

Solution Lathi 5-2<br />

1


From equation 2.31 the constant c is<br />

c = 1 ∫ 1<br />

g(t)x(t)dt =<br />

E x<br />

The energy in the error signal is then<br />

E ɛ =<br />

∫ 1<br />

0<br />

0<br />

∫ 1<br />

0<br />

t · 1dt = 1/2.<br />

(g(t) − 1 2 x(t))2 dt = 1 3 − 1 4 = 1 12 .<br />

Solution Lathi 5-6<br />

(a)<br />

(i) g 1 (t) ∼ (2, −1) (ii) g 2 (t) ∼ (−1, 2) (iii) g 3 (t) ∼ (0, −1)<br />

(iv) g 4 (t) ∼ (1, 2) (v) g 5 (t) ∼ (2, 1) (vi) g 6 (t) ∼ (3, 0).<br />

(b) We can determine if a pair <strong>of</strong> vec<strong>to</strong>rs is orthogonal by checking if the dot product <strong>of</strong><br />

the two vec<strong>to</strong>rs is equal <strong>to</strong> zero. It is easy <strong>to</strong> verify that the following pairs each have a dot<br />

product equal <strong>to</strong> zero: (i) and (iv); (ii) and (v); (iii) and (vi).<br />

Solution Lathi 6-1<br />

The correlation coefficient is given by c = √ 1 ∫ 1<br />

ExE 0 x(t)g(t)dt. Thus<br />

g<br />

c 1 =< x(t), g 1 (t) >= ∫ 1<br />

0 sin(2πt) sin(4πt)dt/√ E x E g1 = 0<br />

c 2 = − ∫ 1<br />

0 sin(2πt) sin(2πt)dt/√ E x E g2 = −1<br />

c 3 = 0<br />

c 4 = 2 ∫ 1/2<br />

0 sin(2πt)/ √ √<br />

2dt/ 1/2 · 1/2 = 2√ 2<br />

. π<br />

1. Determine which <strong>of</strong> the following signals are energy or power signals. For those that<br />

are energy signals, determine their energy. For those that are power signals determine their<br />

power.<br />

Solution<br />

(a) g 1 (t) = e −a|t| , −∞ < t < ∞, a > 0 (b) g 2 (t) = e a|t| , −∞ < t < ∞, a > 0<br />

(c) g 3 (t) = ∑ N<br />

i=1 a i e jnω 0t , −∞ < t < ∞<br />

(a) An energy signal since E g = ∫ ∞<br />

−∞ e−2a|t| dt = 2 ∫ ∞<br />

0 e −2a|t| dt = 1/a.<br />

(b) Neither an energy nor a power signal since the time average <strong>of</strong> the square <strong>of</strong> the signal<br />

goes <strong>to</strong> infinity.<br />

(c) As in a problem above this is a power signal with P g = ∑ N<br />

i=1 |a i | 2 .


2. A collection <strong>of</strong> (complex) functions {φ n (t), n = 0, ±1, ±2 · · · } is called an orthonormal<br />

set on the interval (0, T ) if<br />

∫ T<br />

(a) Show that the set <strong>of</strong> functions<br />

{<br />

√<br />

1/T 0 ,<br />

√<br />

2/T 0 cos(ω 0 t),<br />

0<br />

{<br />

1 m = n<br />

φ n (t)φ ∗ m(t)dt = δ mn<br />

0 otherwise.<br />

√<br />

2/T 0 sin(ω 0 t),<br />

√<br />

√<br />

2/T 0 cos(2ω 0 t), 2/T 0 sin(2ω 0 t), · · · }<br />

are orthonormal over any interval <strong>of</strong> the real line <strong>of</strong><br />

√<br />

length T 0 = 2π/ω 0 .<br />

(b) Show that the set <strong>of</strong> complex exponentials { 1/T 0 e jnω0t , n = 0, ±1, ±2, · · · } are orthonormal<br />

over any interval <strong>of</strong> the real line <strong>of</strong> length T 0 = 2π/ω 0 .<br />

Solution<br />

(a) This derives from the fact that<br />

∫ T0<br />

sin 2 (nω 0 t)dt =<br />

0<br />

∫ T0<br />

0<br />

cos 2 (nω 0 t)dt = T 0 /2<br />

and<br />

∫<br />

2 T0<br />

sin(nω 0 t) sin(mω 0 t)dt = 1 ∫ T0<br />

{cos((n − m)t − cos((n + m)t)}dt = 0 n ≠ m<br />

T 0 0<br />

T 0 0<br />

and similarly <strong>for</strong> other combinations <strong>of</strong> sin’s and cosines.<br />

(b) This follows directly from the previous part since the exponentials can be written in<br />

terms <strong>of</strong> sines and cosines by Euler’s relation.<br />

3. Compute the following complex quantities in polar <strong>for</strong>m:<br />

Solution<br />

(a) (1 + j) 3 (b) ( √ 3 + j 3 )(1 − j) (c) 2−j(6/√ 3)<br />

2+j(6/ √ 3)<br />

(d) j(1 + j)e jπ/6 (e) ejπ/3 −1<br />

1+j √ 3<br />

(a) (1 + j) = √ 2e jπ/4 and so (1 + j) 3 = 2 3/2 e j3π/4 .<br />

(b) j 3 = −j and so ( √ 3+j 3 )(1−j) = 2e −jθ√ 2e −jπ/4 = 2 3/2 e −j(θ+π/4) where θ = arctan −1 1/ √ 3 =<br />

π/6.<br />

(c) 2 − j(6/ √ 3) = 2(1 − j √ 3) = 2e −jπ/3 . Thus, we have (2e −jπ/3 )/(2e jπ/3 ) = e −j2π/3<br />

(d) √ 2e j11π/12<br />

(e) 1 2 ejπ/3<br />

4. Use Euler’s relation (e jθ = cos(θ) + j sin(θ)) <strong>to</strong> show that:<br />

(a) sin(θ) sin(φ) = 1 cos(θ − φ) − 1 cos(θ + φ)<br />

2 2<br />

(b) sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ)<br />

Solution


(a) Since e jθ e jφ = e j(θ+φ) = cos(θ + φ) + j sin(θ + φ) = (cos(θ) + j sin(θ)) · (cos(φ) + j sin(φ))<br />

the result is obtained by first using θ + φ and then θ − φ and equating real parts.<br />

(b) Similar <strong>to</strong> part (a) except equating complex parts.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!