15.01.2015 Views

mag13.pdf (332 kB) - Acta Metallurgica Slovaca

mag13.pdf (332 kB) - Acta Metallurgica Slovaca

mag13.pdf (332 kB) - Acta Metallurgica Slovaca

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 362<br />

STATISTICAL COMPARISON OF DIFFERENT METHODS OF CALCULATION<br />

OF PARAMETERS DESCRIBING DYNAMIC RECRYSTALLIZATION<br />

Kubina T. 1 , Schindler I. 1 , Heger M. 1 , Plura J. 1 , Bořuta J. 2 , Dänemark J. 3 , Hadasik E. 4<br />

1 VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic,<br />

tomas.kubina@vsb.cz<br />

2 VÍTKOVICE - Research & Development, s.r.o., Pohraniční 31, 706 02 Ostrava, Czech<br />

Republic, josef.boruta@vitkovice.cz<br />

3 Třinecké železárny, a. s., Průmyslová 1000, 739 70 Třinec, Czech Republic,<br />

janusz.danemark@trz.cz<br />

4 Politechnika Śląska, Krasińskiego 8, 40-019 Katowice, Poland, eugeniusz.hadasik@polsl.pl<br />

STATISTICKÉ SROVNÁNÍ ROZDÍLNÝCH POSTUPŮ PŘI VÝPOČTU PARAMETRŮ<br />

POPISUJÍCÍCH DYNAMICKOU REKRYSTALIZACI<br />

Kubina T. 1 , Schindler I. 1 , Heger M. 1 , Plura J. 1 , Bořuta J. 2 , Dänemark J. 3 , Hadasik E. 4<br />

1 VŠB – Technická univerzita Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic,<br />

tomas.kubina@vsb.cz<br />

2 VÍTKOVICE - Výzkum a vývoj, s.r.o., Pohraniční 31, 706 02 Ostrava, Česká Republika,<br />

josef.boruta@vitkovice.cz<br />

3 Třinecké železárny, a. s., Průmyslová 1000, 739 70 Třinec, Česká Republika,<br />

janusz.danemark@trz.cz<br />

43 Politechnika Śląska, Krasińskiego 8, 40-019 Katowice, Polsko, eugeniusz.hadasik@polsl.pl<br />

Abstrakt<br />

V současné době program ENERGY 4.0, vyvinutý pro výpočet parametrů<br />

popisujících dynamickou rekrystalizaci (DRX), v sobě zahrnuje dvě metodiky výpočtu. Vstupní<br />

data pocházející z torzního plastometru SETARAM – VÍTKOVICE jsou nejdřív zpracovány<br />

konvenční metodou postupných lineárních regresí. V této fázi jsou vyloučeny teplotní hladiny<br />

při kterých není strukturní stav zkoušené oceli jednofázový. Následující automatický výpočet,<br />

využívající simplexní algoritmus nelineární regrese a, může jednotlivé parametry vyjádřit<br />

mnohem přesněji. Tento výpočet je více objektivnější a dosahuje menší statistické chyby,<br />

výsledné parametry ale ne vždy odpovídají fyzikálním předpokladům. V celkovém množství 22<br />

ocelí různého chemického složení od ocelí jednoduchého strukturního stavu přes mikrolegované<br />

oceli různých typů až k vysocelegovaným ocelím a korozivzdorným austenitickým ocelím.<br />

Klíčovým kritériem pro zařazení do vyhodnocované skupiny ocelí bylo zachování jednofázové<br />

struktury v celé oblasti zkušebních teplot. Máme tak možnost porovnat vliv obou metod na<br />

vypočtené parametry a taktéž přesnost obou metod na určení hodnot maximálního napětí a<br />

deformace v píku.<br />

Abstract<br />

Program ENERGY 4.0, developed for calculation of parameters describing dynamic<br />

recrystallization (DRX), includes now two ways of methodology of calculation. Input data<br />

coming from the torsion plastometer SETARAM - VÍTKOVICE is first processed by a<br />

conventional method of successive linear regressions. In this stage the exclusion of temperature


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 363<br />

levels is carried out, in which a state featured by one phase of tested steels is not maintained.<br />

The following automatic computation using the simplex algorithm of non-linear regression can<br />

make particular parameters for a description of DRX more precise. Those calculations are<br />

entirely objective and yield in the least statistical errors but their results can not always match up<br />

the physical-based idea. In total 22 steels of different chemical composition - from simple<br />

structural steels, through microalloyed steels of various types, high alloyed tool steels up to<br />

corrosion-resisting (stainless) austenitic steels - were included in the analyzed data set. A key<br />

(decisive) criterion for including in an evaluated group of steels was maintaining of mono-phase<br />

structural state in the whole range of evaluated temperatures of testing. One can compare<br />

influence of both methods on calculated parameters, as well as accuracy of both methods in<br />

determination of values of the maximum stress and peak to strain.<br />

Key words: Activation energy, hot forming, steel, dynamic recrystallization<br />

1. Fundamental theory for description of actiavtion energy<br />

Activation energy Q [J·mol -1 ] is an important material constant dependent on the<br />

chemical composition and microstructure of the hot formed material, deformation behaviour of<br />

which is largely influenced by this variable. Knowledge of its value is very useful, e.g. for<br />

description of dynamic recrystallization kinetics as well as stress-strain curves in continuous<br />

deformation. For finding out the Q-value, it is suitable to use a solution of modified equation [1]:<br />

⎡ − Q ⎤<br />

e & = C. exp⎢<br />

.[ sinh( α.<br />

σ )] n<br />

max<br />

R.<br />

T<br />

⎥<br />

(1)<br />

⎣ ⎦<br />

where ė [s -1 ] is strain rate; C [s -1 ], a [MPa -1 ] and n are other material constants, T [K] is<br />

deformation temperature, R = 8.314 Jmol -1·K -1 , σ max [MPa] is deformation resistance associated<br />

with the peak stress. The traditional way of assessing the constants in Eq. 1 was given e.g. in [1].<br />

The principle lies in the application of specific characteristics of the hyperbolic sine function.<br />

We suppose that Eq. 1 can be converted to the relationship<br />

⎡ − Q ⎤ n<br />

e& = C1 . exp⎢<br />

. σ max<br />

R.<br />

T ⎥ (2)<br />

⎣ ⎦<br />

for low stress values (i.e. a particular high temperature level), or to the relationship<br />

⎡ − Q ⎤<br />

e& = C2 . exp⎢<br />

.exp( β.<br />

σ max )<br />

.<br />

⎥<br />

(3)<br />

⎣ R T ⎦<br />

for high stress values (i.e. a selected low temperature level). The constants n and β can be gained<br />

when applying Eqs. 2 and 3, respectively. The key constant β enables to find the α-value,<br />

assuming that α = β / n.<br />

2. Calculation DRX parameters by software ENERGY 4.0<br />

2.1 System of Linear Regressions<br />

The above mentioned equations can be solved by a graphic method using multiple<br />

linear regression analysis. The computing program ENERGY 4.0 was developed (in language


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 364<br />

Delphi) [2,3] which has made more sophisticated work with the input data set possible. Such<br />

data table can be obtained from continuous torsion tests. In every row of that table, the<br />

calculated peak stress σ max [MPa] and strain to peak e p are given, depending on temperature and<br />

strain rate of individual torsion tests. Initially the experimental data is processed step-by-step<br />

using partial linear regressions after plotting the selected points in proper co-ordinates:<br />

• first the n-value is obtained as a slope of the regression line in co-ordinates ln σ - ln ė (a<br />

high temperature level);<br />

• then the β-value is determined in coordinates σ - ln ė (a low temperature level);<br />

• after calculation of the α-value, the final regression in complex co-ordinates 1/T – (ln ė<br />

- n·sinh(α·σ)) is realized utilizing all experimental data, and thus the constants Q and C<br />

can be obtained. Principles of work with the ENERGY 4.0 are described in work [4].<br />

2.2 Refining Calculations Using the Simplex Algorithm<br />

After elimination of the unfitting data, software Energy 4.0 enables to refine the<br />

calculations described above. Constants in Eq. 1 are determined by a non-linear regression<br />

considering two mutually independent variables - temperature and strain rate. The nonderivation<br />

methods of searching the extreme of proper function exhibited the best stability as<br />

well as agility of computation. Thus the simplex algorithm was adopted which gave results (i.e.<br />

values Q, C, a and n) in a few seconds [3]. Those calculations are entirely objective and yield in<br />

the least statistical errors but their results can not always match up the physical-based idea.<br />

Discussion of the results from both ways of calculation is included in part 3.<br />

2.3 Kinetics of Dynamic Recrystallization<br />

Peak strain e p is approximately linked up with the initiation of dynamic<br />

recrystallization. The e p -value depends very simply on the Zener-Hollomon's parameter Z [s -1 ]<br />

[5,6]:<br />

e<br />

p<br />

w<br />

= u ⋅ Z<br />

(4)<br />

The parameter Z involves the Q-value that represents the material factor (chemical<br />

composition, structure, etc.). It can be defined as the temperature-corrected strain rate [7]:<br />

⎛ Q ⎞<br />

Z = é ⋅exp ⎜ ⎟<br />

(5)<br />

⎝ R ⋅T<br />

⎠<br />

where T [K] is deformation temperature.<br />

ENERGY 4.0 using linear regression of Eq. 4 in logarithmic formulation computes<br />

constants u and w. These are determined in either case of previous calculations.<br />

3. Statistic evaluation of both computation methods<br />

Input data for calculation of kinematics of the dynamic recrystallization was measured<br />

on the torsion plastometer SETARAM. In total 22 steels of different chemical composition -<br />

from simple structural steels, through microalloyed steels of various types, high alloyed tool<br />

steels up to corrosion-resisting (stainless) austenitic steels - were included in the analyzed data<br />

set. Chemical composition of these steels is given in Tab. 1. A key (decisive) criterion for


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 365<br />

including in an evaluated group of steels was maintaining of mono-phase structural state in the<br />

whole range of evaluated temperatures of testing.<br />

Table 1 Target chemical composition of tested steels in wt. %<br />

11375 0.10 C – 0.29 Mn – 0.15 Si – 0.05 Al<br />

11523 0.18 C – 1.10 Mn – 0.54 Si – 0.05 Al<br />

Free-Cutting 0.13 C – 1.45Mn – 0.03 Si – 0.30 S<br />

X52<br />

0.10 C – 1.25 Mn – 0.35 Si – 0.02 Nb<br />

X60<br />

0.11 C – 1.36 Mn – 0.29 Si – 0.04 Nb<br />

X70<br />

0.10 C – 1.40 Mn – 0.39 Si – 0.04 V – 0.02 Nb<br />

X80<br />

0.09 C – 2.04 Mn – 0.57 Si – 0.23 Mo – 0.04 V – 0.03 Nb<br />

S700MC 0.12 C – 1.76 Mn – 0.53 Si – 0.14 V – 0.03 Nb – 0.003 B<br />

WB36<br />

0.16 C – 1.10 Mn – 0.40 Si – 0.52 Cu – 1.18 Ni – 0.21 Cr – 0.36 Mo – 0.03 Nb<br />

11MnSi6 0.084 C – 1.40 Mn – 0.86 Si<br />

23MnB4 0.22 C – 0.91 Mn – 0.07 Si – 0.28 Cr – 0.003 B<br />

14209 0.98 C – 1.04 Mn – 0.51 Si – 1.49 Cr<br />

15260 0.50 C – 0.80 Mn – 0.35 Si – 1.07 Cr<br />

SA387GR11 0.17C – 0.57 Mn – 0.53 Si – 0.36 Ni – 1.44 Cr – 0.59 Mo<br />

SiCrMoCu 0.23 C – 1.06 Mn – 1.00 Si – 0.16 Cu – 1.31 Cr – 0.31 Mo<br />

Superferrite 0.01 C – 0.51 Mn – 0.49 Si – 0.50 Ni –17.42 Cr – 3.8 Mo – 0.03 V – 0.07 Al – 0.07 Nb<br />

CrNi<br />

0.06 C – 0.69 Mn – 0.47 Si – 9.7 Ni – 17.2 Cr – 0.57 Mo<br />

CrMn<br />

0.48 C – 16.6 Mn – 0.57 Si – 0.27 Ni – 15.4 Cr<br />

5H17G17 0.50 C – 17.1 Mn – 0.57 Si – 16.7 Cr<br />

CrNiMo 0.02C – 0.67 Mn – 0.52 Si – 15.0 Ni – 18.1 Cr – 5.9 Mo<br />

CrNiMoN 0.03 C – 1.56 Mn – 0.52 Si – 5.35 Ni – 22.4 Cr – 2.7 Mo – 0.06 V –0.192 N<br />

19830 0.81 C – 0.23 Mn – 0.27 Si – 0.25 Ni – 4.03 Cr – 4.4 Mo – 2.03 V –5.37 W – 1.01 Co<br />

3.1 Calculated parameters describing DRX<br />

The first of statistic results is a mean deviation ∆ for activation energy Q defined as<br />

follows:<br />

m<br />

∑<br />

M<br />

A<br />

Qi<br />

− Qi<br />

i=<br />

1<br />

∆Q<br />

=<br />

(6)<br />

m<br />

where upper index M means a value calculated by means of a system of linear regressions, index<br />

A is used for designation of the automatic simplex method of calculation. The results for specific<br />

parameters are summarized in Tab. 2.<br />

Table 2 Summary of statistic results<br />

Parameter ∆ T-test Correlation<br />

Mean value P-value<br />

Correlation<br />

coefficient r<br />

P-value<br />

Q -29.467 0.0020 0.9641 0.0000<br />

α -0.524 0.2780 0.5600 0.0082<br />

n 0.00074 0.0047 0.669 0.0010<br />

logC -1.077 0.0019 0.906 0.0000<br />

u 0.0006 0.0290 0.999 0.0000<br />

w 0.0085 0.00002 0.995 0.0000<br />

Further t-test was carried out for the case of a difference between dual values. Here<br />

statistical significance of the difference between values gained by linear regression and


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 366<br />

automatic computation was monitored. It was tested whether the difference between these values<br />

equals zero for significance level α = 0,05. The less is the achieved significance level, so called<br />

P-value, the more unmaintainable, i.e. less credible, is the null hypothesis. The last test consisted<br />

in determination of correlation between both ways of calculation, again on the significance level<br />

α = 0,05. The values of correlation coefficient and P-value are shown in Tab. 2.<br />

From the values in Tab. 2 and a graphic expression of relations between values<br />

obtained for both methods of calculation (see Fig. 1) we can define the following conclusions.<br />

The activation energy Q has always been evaluated by the automatic simplex method in smaller<br />

values. The same is given for parameter α and a logarithmic value of coefficient C. From the t-<br />

test follows that a difference between parameters is statistically significant in the case of all<br />

parameters monitored, except for parameter α. More significant is here a comparison of<br />

correlation between both computational methods. In case of parameter α and n the correlation is<br />

less significant, which results from a limitation of the method that uses a system of linear<br />

equations where these parameters are numbered for selected temperature levels and affected by a<br />

small number of points used for calculation. High values of the correlation coefficient in case of<br />

parameters u and w can be attributed to the fact that the calculation is based on values of<br />

activation energy Q which sufficiently correlate between each other.<br />

Fig.1 Relationships between constants Q, n, a, C calculated by the multiple linear regression (upper index M) and nonlinear<br />

simplex method (upper index A)


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 367<br />

3.2 Comparison between measured and calculated values σ max and e p<br />

Relative deviations σ M max and σ A max from measured values of maximum stress of<br />

deformation σ max are positive and negative for both ways of calculation, their distribution is<br />

approximately symmetrical. In Fig. 2 is shown that ion case of automatic calculation the relative<br />

deviations from the value σ max are shifted to negative values. The arithmetic mean for relative<br />

deviations between the maximum stress of deformation calculated manually and the measured<br />

maximum stress of deformation equals 0.104 %.<br />

Correlation between measured and calculated values of the maximum stress is better<br />

for the automatic way of calculation (correlation coefficient r = 0.9969) than for the manual way<br />

of calculation (r = 0.9956). The same situation is in the case of variance (S M = 19369 against<br />

S A = 13343).<br />

When similar results for a size of strain to peak are compared, it is found out that the<br />

distribution of relative deviations for both methods of calculation is approximately symmetrical<br />

(see Fig. 3). The correlation between calculated and measured values of strain to peak is in both<br />

cases less significant than for the maximum stress. Correlation coefficient r = 0.9714 is exactly<br />

the same for both methods of calculation. The variance values are only slightly different, for<br />

manual calculation a value of S M = 1.2098, for automatic computation S A = 1.2118.<br />

Fig.2 Histograms for distribution rate of relative<br />

deviations of maximum stress for manual (M)<br />

and automatic (A) calculation<br />

Fig.3 Histograms for distribution rate of relative<br />

deviations of strain to peak for manual (M)<br />

and automatic (A) calculation<br />

4. Conclusions<br />

Software ENERGY 4.0 developed in environment Delphi makes it possible to<br />

calculate the activation energy in hot forming, together with other parameters necessary for<br />

description of maximum stress of deformation and strain to peak necessary for the start of<br />

dynamic recrystallization by means of the given equations.<br />

Parameters defining DRX were calculated in two ways, based on the same set of input<br />

data. A conventional way of the multiple linear regression in combination with interactive work<br />

in ENERGY 4.0 enabled that temperature regions with signs of phase transformations could be


<strong>Acta</strong> <strong>Metallurgica</strong> <strong>Slovaca</strong>, 11, 2005, 3 (362 - 368) 368<br />

eliminated. The non-linear regression using simplex algorithm is very fast and gives more<br />

accurate results for the whole group of evaluated steels [8]. It is more advantageous as far as<br />

numbering of constants for calculation of maximum deformation resistance is concerned. As for<br />

accuracy of the strain to peak determination, both methods are comparable.<br />

The difference between methods is in approach to the parameters entering the<br />

equations. In case of use of the multiple linear regression the values of activation energy are in<br />

the foreseen conventional limits. When the non-linear regression is used, the activation energy<br />

for steel grades 23MnB4, 11523, 14209 is even below the value of activation energy for autodiffusion<br />

of iron 270 kJ.mol-1. Then the activation energy loses its physical essence [9,10] and it<br />

becomes only one of material constants. However, the result consists in a desirable decreased<br />

difference between measured and predicted data [e p ;σ max ].<br />

Acknowledgement<br />

This work was carried out under project number MSM 6198910015, funded by the<br />

Ministry of Education, Youth and Sports of the Czech Republic.<br />

Literature<br />

[1] Sellars C. M., Tegart W. J. McG.: International <strong>Metallurgica</strong>l Review, 1972, No. 158, p. 1.<br />

[2] Kopetschke I., Schindler I.: Transactions of the Institute of Mining and Metallurgy of<br />

Ostrava, <strong>Metallurgica</strong>l Series, 1991, No. 1, p. 229.<br />

[3] Podstuvka D.: Diploma thesis. VŠB - Technical University of Ostrava, Faculty of<br />

Metallurgy and Materials Engineering, 2003.<br />

[4] Schindler I., Podstuvka D., Bořuta J.: In: CO-MAT-TECH 2003, Trnava 2003, p. 925.<br />

[5] Kliber J. et al.: Steel research, 1989, No. 11, p. 503.<br />

[6] Schindler I., Kliber J., Bořuta J.: In: METAL '94. Ostrava 1994, p. 132.<br />

[7] Treatise on Materials Science and Technology. Vol. 6 - Plastic Deformation of Materials.<br />

Ed. Arsenault R. J., Academic Press, New York 1975.<br />

[8] Kubina T. et al: In: FORMING 2005. Lednice 2005, p. 145.<br />

[9] Kliber J., Schindler I., Bořuta J.: In: PLAST '96. Ustroń 1996, p. 17.<br />

[10] Gronostajski Z. J.: ibid., p. 23.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!