15.01.2015 Views

Part 2 - Seismic Design Provisions In NBCC 2005 - The Schulich ...

Part 2 - Seismic Design Provisions In NBCC 2005 - The Schulich ...

Part 2 - Seismic Design Provisions In NBCC 2005 - The Schulich ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<strong>Seismic</strong> <strong>Design</strong> <strong>Provisions</strong><br />

<strong>In</strong><br />

<strong>NBCC</strong> <strong>2005</strong><br />

by<br />

C. James Montgomery<br />

CSCE Workshop<br />

Calgary 23 January 2007


2<br />

Road Map<br />

• Earthquakes<br />

• <strong>Seismic</strong> Risk in Canada<br />

• Behaviour of Structures <strong>In</strong> Earthquakes<br />

• Structural Dynamics<br />

• <strong>Design</strong> Philosophy<br />

• <strong>NBCC</strong> <strong>2005</strong>


Earthquakes<br />

3


4<br />

Global <strong>Seismic</strong>ity and Tectonic Plates<br />

Bolt, 1993<br />

NRC website


Movement At Faults<br />

5


6<br />

Strain<br />

energy is<br />

released<br />

when slip<br />

occurs at<br />

fault


Earthquake<br />

Magnitude<br />

is a measure of<br />

the amount of<br />

energy released<br />

at the source<br />

7


8<br />

Richter Magnitude<br />

• Richter defined magnitude of a local<br />

earthquake as the logarithm to base ten<br />

of the maximum seismic-wave<br />

amplitude (in thousands of a millimeter)<br />

recorded on a standard seismograph at<br />

a distance of 100 kilometers from the<br />

earthquake epicenter.


9<br />

Ground<br />

motions occur<br />

as earthquake<br />

waves<br />

propagate


10<br />

Modified Mercalli<br />

<strong>In</strong>tensity for New<br />

Madrid, Missouri<br />

earthquake<br />

16 Dec 1811<br />

(MM <strong>In</strong>tensity is a<br />

measure of the<br />

intensity of ground<br />

shaking at a<br />

particular location)<br />

Bolt, 1993


11<br />

Modified Mercalli <strong>In</strong>tensity Scale<br />

<strong>In</strong>tensity Description Peak<br />

Velocity<br />

(mm/s)<br />

Peak<br />

Acceleration<br />

(g)<br />

VI<br />

Felt by all, many frightened. Some heavy<br />

furniture moved. Damage slight.<br />

50-80 0.06-0.07<br />

VIII<br />

X<br />

XII<br />

Damage slight in specially designed<br />

structures; considerable in ordinary<br />

structures with partial collapse. Panel<br />

walls thrown out of frame structures.<br />

Heavy furniture overturned.<br />

Some well-built wooden structures<br />

destroyed; most masonry and frame<br />

structures destroyed. Landslides<br />

considerable.<br />

Damage total. Waves seen on ground<br />

surface. Objects thrown into the air<br />

200-300 0.25-0.30<br />

>600 >0.60


Strong Ground Motions At A Site<br />

12


13<br />

<strong>Seismic</strong> Risk in Canada<br />

http://earthquakescanada.nrcan.gc.ca


15<br />

<strong>Seismic</strong> Risk<br />

Adams, et al. Trial <strong>Seismic</strong> Hazard Maps of Canada –<br />

1999…, Geological Survey of Canada, Open File<br />

3724


20<br />

<strong>Seismic</strong> Risk<br />

Location PGA * S a (0.2) * S a (0.5) * S a (1.0) * S a (2.0) *<br />

Calgary 0.088 0.15 0.084 0.041 0.023<br />

Edmonton 0.059 0.12 0.056 0.023 0.008<br />

Toronto 0.17 0.26 0.13 0.055 0.015<br />

Vancouver 0.46 0.94 0.64 0.34 0.17<br />

*<br />

Expressed as a ratio to g


21<br />

<strong>Design</strong><br />

Response<br />

Spectra


22<br />

Behaviour of Structures in<br />

Earthquakes


23<br />

Northridge, CA *<br />

Date 17 Jan 1994<br />

Magnitude 6.7<br />

Fatalities 60<br />

<strong>In</strong>jured 7,000+<br />

Homeless 20,000+<br />

Buildings damaged 40,000+<br />

Cost<br />

$13-20 Billion<br />

*<br />

From EERI website


Northridge Meadows Parking Lot<br />

24


Parking Garages<br />

25


26<br />

Parking<br />

Structures


27<br />

I-5 at Gavin<br />

Canyon


28<br />

Suspended Walkways, Cal State<br />

Structural Separation Not Adequate


Bullocks Store<br />

29


Apartment Building on Wilshire<br />

30


St. John’s Hospital Admin Bldg<br />

31


Ruptured Utility Pipe<br />

32


HSS fracture due to local buckling<br />

33


<strong>Seismic</strong> Isolator at USC Hospital<br />

34


35<br />

Failure of Concrete Members<br />

Mitchell et al. 1995


36<br />

Kobe, Japan *<br />

Date 16 Jan 1995<br />

Magnitude 6.9<br />

Fatalities 5,502<br />

<strong>In</strong>jured 36,896<br />

Homeless<br />

Buildings damaged 200,000<br />

Cost<br />

*<br />

From EERI website


37<br />

Splice Failure<br />

at Weakest<br />

Point of<br />

Tapered<br />

Column<br />

(Elevated<br />

Railway near<br />

Sanomiya)


Hanshin Expressway – Pier 142<br />

38


39<br />

Hanshin<br />

Expressway<br />

Shear Failure –<br />

Pier 165<br />

Splice Failure –<br />

Pier 99


40<br />

Damage<br />

to<br />

Railway<br />

Lines


41<br />

Failure at<br />

<strong>In</strong>termediate<br />

Floors


42<br />

Pancake<br />

Collapse


43<br />

Soft-Storey<br />

Failure<br />

Sanomiya


Seven Storey Reinforced Concrete Frame<br />

Failed At Fifth Floor Due To Setback<br />

44


45<br />

Michoacan (Mexico City) *<br />

Date 19 Sep 1985<br />

Magnitude 8<br />

Fatalities 9,500<br />

<strong>In</strong>jured 30,000<br />

Homeless 100,000<br />

Buildings damaged<br />

Cost<br />

412 collapsed<br />

3,124 seriously<br />

damaged in Mexico City<br />

$3-4 Billion<br />

∗<br />

From EERI website


46<br />

Zona<br />

Rosa


Zona Rosa<br />

47


Zona Rosa<br />

48


Continental Hotel on Reforma<br />

49


50<br />

Collapsed<br />

Buildings


51<br />

Damaged<br />

Buildings


52<br />

Damaged<br />

Building and<br />

Parkade


53<br />

Illustrates<br />

Need For<br />

Separation<br />

Between<br />

Adjacent<br />

Buildings


54<br />

<strong>Part</strong>ially<br />

Collapsed<br />

Buildings


55<br />

Relationship Between Strength<br />

and Ductility<br />

• <strong>In</strong> seismic design, building can be proportioned to respond<br />

elastically, with restricted ductility or with full ductility<br />

• <strong>In</strong> general members must be able to resist several load cycles<br />

Paulay and Priestly 1992


56<br />

Hysteresis Loops For Some<br />

Concrete Systems<br />

Paultre, et al. 1989


57<br />

Hysteresis Loops For Some<br />

Structural Members<br />

Krawinkler and Popov, 1982; Paulay and Priestly, 1992


58<br />

Structural Dynamics<br />

Chopra, 1981<br />

Clough and Penzien, 2003


59<br />

One-Storey Building Idealized as<br />

Single-Degree-of-Freedom System<br />

Subjected to dynamic<br />

forces<br />

Subjected to ground<br />

motion


60<br />

mx && +<br />

cx&<br />

+<br />

kx<br />

=<br />

0<br />

f<br />

=<br />

1<br />

T<br />

=<br />

ω<br />

=<br />

2π<br />

1<br />

2π<br />

k<br />

m<br />

Free Vibration<br />

ξ =<br />

2<br />

c<br />

km


61<br />

Ground<br />

Motion<br />

Response of<br />

SDF systems<br />

Plot of Elastic Spectral<br />

Displacements, S d<br />

(Displacement Response<br />

Spectrum)


62<br />

Elastic Response of Single-<br />

Degree-of-Freedom Systems<br />

Elastic Acceleration Response Spectrum (S a = ω 2 S d )


63<br />

Multi-Degree-of-Freedom Systems<br />

• MDF building will respond to<br />

earthquake in several normal<br />

modes of vibration<br />

• <strong>In</strong> a normal mode, MDF<br />

vibrates harmonically while<br />

maintaining a characteristic<br />

deflected shape<br />

• Total response can be<br />

estimated by combining<br />

responses in various normal<br />

modes<br />

• <strong>In</strong> general, response in first<br />

mode is most important<br />

t


64<br />

Multi-Degree-of-Freedom Systems<br />

• Equations of motion<br />

[ m ]{ x& ( t)<br />

} + [ c]<br />

{ x&<br />

( t)<br />

} + [ k] x(<br />

t)<br />

} = −[ m] { 1}<br />

{ & x<br />

g<br />

• For simple harmonic free vibration, can<br />

solve for frequencies of vibration and<br />

mode shapes<br />

[ ]<br />

2<br />

k −ω<br />

[ m] { φ}<br />

= ( 0)<br />

frequencies ω , ω ,...<br />

1<br />

2<br />

and mode<br />

shapes<br />

{<br />

() 1<br />

}<br />

( 2<br />

φ , φ )<br />

}<br />

{ ,...


65<br />

Multi-Degree-of-Freedom Systems<br />

• Total response of a structure can be<br />

developed by superimposing the<br />

response in each mode<br />

{ x = ∑ φ Y<br />

n = 1 n<br />

{ }<br />

N ( n )<br />

}<br />

• Use modal orthogonality to uncouple<br />

equations


66<br />

Multi-Degree-of-Freedom Systems<br />

{<br />

( n)<br />

}<br />

T<br />

[ ]{<br />

( m)<br />

φ m φ }<br />

{<br />

( n)<br />

}<br />

T<br />

[]{<br />

( m)<br />

φ c φ }<br />

{<br />

( n)<br />

}<br />

T<br />

[ ]{<br />

( m)<br />

φ k φ }<br />

and<br />

L<br />

n<br />

=<br />

M<br />

= 〈<br />

0<br />

( m)<br />

T ( n)<br />

{ φ } [ m] { φ }<br />

C<br />

= 〈<br />

0<br />

( m)<br />

T ( n)<br />

{ φ } [] c { φ }<br />

n<br />

( m)<br />

T ( n)<br />

{ φ } [ k] { φ }<br />

Also L<br />

K<br />

= 〈<br />

0<br />

{<br />

( n)<br />

}<br />

T<br />

φ [ m] {1 }<br />

n<br />

n<br />

for<br />

=<br />

n<br />

for<br />

M<br />

= 〈<br />

0<br />

Cn<br />

for n = m<br />

= 〈<br />

0 for n ≠ m<br />

K<br />

for n = m<br />

= 〈<br />

n0<br />

for ≠n<br />

≠ m<br />

( n)<br />

T<br />

{ φ } [ m] {1 }<br />

for<br />

for<br />

for<br />

n<br />

for n = m<br />

for n ≠ m<br />

n<br />

n<br />

n<br />

for n<br />

≠<br />

=<br />

≠<br />

m<br />

m<br />

=<br />

=<br />

m<br />

m<br />

m<br />

m


67<br />

Multi-Degree-of-Freedom Systems<br />

• <strong>The</strong> result is a set of N uncoupled modal<br />

equations<br />

M<br />

n<br />

Y&<br />

n<br />

+<br />

C<br />

n<br />

Y&<br />

n<br />

+<br />

K<br />

n<br />

Y<br />

• Displacement response in n-th mode (by<br />

analogy to response for SDF system)<br />

Y<br />

n<br />

( t)<br />

=<br />

where<br />

L<br />

M<br />

x<br />

n<br />

n<br />

n<br />

with n − th<br />

x<br />

n<br />

( t)<br />

=<br />

( t)<br />

response<br />

frequency<br />

n<br />

of<br />

of<br />

=<br />

−L<br />

n<br />

SDF<br />

& x<br />

vibration<br />

g<br />

System


68<br />

Multi-Degree-of-Freedom Systems<br />

• Displacement vector from all modal<br />

responses obtained by superposition<br />

N<br />

{ } ∑<br />

N<br />

{<br />

( n )<br />

} ∑{<br />

( n )<br />

}<br />

Ln<br />

x( t)<br />

= φ Y<br />

=<br />

n<br />

= φ xn(<br />

t)<br />

n 1<br />

n=<br />

1 M<br />

n<br />

• Recall that spectral displacement in the<br />

n-th mode is equal to the maximum<br />

displacement response of SDF system<br />

S =<br />

( n)<br />

d<br />

x<br />

n,max


69<br />

Multi-Degree-of-Freedom Systems<br />

• Upper bound displacement vector (sum of<br />

absolute values of maximum modal<br />

displacements)<br />

N<br />

N<br />

{ } ∑ {<br />

( n)<br />

} ∑ {<br />

( n )<br />

}<br />

Ln<br />

( n)<br />

x<br />

upper bound<br />

≤ xmax<br />

= φ Sd<br />

n=<br />

1<br />

n=<br />

1 M<br />

n<br />

• Probable displacement vector (square root of<br />

the sum of squares of maximum modal<br />

displacements)<br />

N<br />

{ } {<br />

( n)<br />

x ≈ x }<br />

prob<br />

∑<br />

n=<br />

1<br />

( )<br />

2<br />

∑ {<br />

( n<br />

= ⎜ )<br />

}<br />

max<br />

φ<br />

N<br />

n=<br />

1<br />

⎛<br />

⎜<br />

⎝<br />

L<br />

M<br />

n<br />

n<br />

S<br />

( n)<br />

d<br />

⎞<br />

⎟<br />

⎠<br />

2


Multi-Degree-of-Freedom System<br />

• Elastic force vector in n-th mode<br />

{ } [ ]{ }<br />

f<br />

( n)<br />

( t)<br />

= k φ<br />

( n)<br />

Y ( t)<br />

s<br />

n<br />

• But<br />

−ω<br />

2<br />

n<br />

• <strong>The</strong>refore<br />

[ ]{<br />

( n)<br />

} [ ]{<br />

( n)<br />

m + } φ k φ = 0<br />

{<br />

( n)<br />

( )} 2[ ]{<br />

( n)<br />

f t = ω m φ }<br />

s<br />

=<br />

n<br />

L<br />

Y<br />

[ ]{<br />

( n)<br />

}<br />

n 2<br />

m φ ω x ( t)<br />

n<br />

M n<br />

n<br />

n<br />

70


71<br />

Multi-Degree-of-Freedom Systems<br />

• Recall<br />

S<br />

( n)<br />

a<br />

• Maximum elastic force N vector in n-th mode<br />

{<br />

( n)<br />

} [ ]{<br />

( n)<br />

}<br />

n ( n)<br />

f = m φ S<br />

s,max<br />

= ω S = ω<br />

2<br />

n<br />

n<br />

d<br />

L<br />

M<br />

n,max<br />

• Base shear in n-th mode<br />

V<br />

( n)<br />

e<br />

( t)<br />

=<br />

N<br />

∑<br />

i=<br />

1<br />

f<br />

( n)<br />

si<br />

2<br />

n<br />

V<br />

( n)<br />

e<br />

( t)<br />

x<br />

( t)<br />

=<br />

∑<br />

i=<br />

1<br />

n<br />

f<br />

( n)<br />

si<br />

( t)<br />

a


Multi-Degree-of-Freedom Systems<br />

• Maximum base shear in n-th mode<br />

N<br />

∑<br />

( n)<br />

V e<br />

= f<br />

,max<br />

i=<br />

1<br />

( n)<br />

si,max<br />

• Overturning moment in n-th mode<br />

M<br />

( n)<br />

e<br />

where<br />

( t)<br />

h<br />

= ∑ h<br />

i<br />

N<br />

i=1<br />

i<br />

f<br />

( n)<br />

si<br />

( t)<br />

= height of i − th floor<br />

• Maximum overturning moment in n-th mode<br />

M<br />

N<br />

( n )<br />

∑<br />

( n)<br />

e,max<br />

= hi<br />

f<br />

si,max<br />

i=<br />

1<br />

72


73<br />

Multi-Degree-of-Freedom Systems<br />

• Can determine the upper bound to the<br />

base shear or overturning moment by<br />

taking the sum of the absolute values of<br />

the modal values.<br />

• Can determine a probable value of the<br />

base shear or overturning moment<br />

taking the square root of the sum of the<br />

squares of the modal values.


74<br />

<strong>In</strong>elastic Response<br />

• Studies by Newmark and others at the<br />

University of Illinois, Wilson and others at<br />

Berkeley, and researchers at many other<br />

institutions have shown that:<br />

– Displacements of a building during an earthquake<br />

are about the same whether the building responds<br />

elastically or inelastically<br />

– Forces, shears and moments in a building are<br />

approximately equal to the forces, shears and<br />

moments obtained assuming the building responds<br />

elastically, divided by the ductility factor (or R-<br />

factor)


<strong>Design</strong> Philosophy<br />

75


76<br />

• Accept damage without collapse<br />

• Minimize loss of life<br />

• Cannot afford to design for no damage


<strong>The</strong>re is always a good reason for “No<br />

Parking” signs<br />

Bolt 1993<br />

77


78<br />

<strong>NBCC</strong> <strong>2005</strong> *<br />

4.1.8 Earthquake Loads and<br />

Effects<br />

*<br />

Alberta Building Code (June 2007)


79<br />

<strong>NBCC</strong> <strong>2005</strong><br />

• 4.1.8.1 Analysis<br />

• 4.1.8.3 General Requirements<br />

• 4.1.8.4 Site Properties<br />

• 4.1.8.5 Importance Factor<br />

• 4.1.8.6 Structural Configuration<br />

• 4.1.8.8 Direction of Loading<br />

• 4.1.8.9 <strong>Seismic</strong> Force Resisting Systems (SFRS), Force<br />

Reduction Factors, System Overstrength Factors<br />

• 4.1.8.10 Additional System Restrictions<br />

• 4.1.8.11 Equivalent Static Force Procedure<br />

• 4.1.8.12 Dynamic Analysis Procedure<br />

• 4.1.8.13 Deflections and Drift Limits<br />

• 4.1.8.14 Structural Separation<br />

• 4.1.8.15 <strong>Design</strong> <strong>Provisions</strong><br />

• 4.1.8.16 Foundation <strong>Provisions</strong><br />

• 4.1.8.17 Elements of Structures, Non-structural Components<br />

and Equipment


80<br />

4.1.8.1 Analysis<br />

• Do not need to consider earthquake<br />

loads and deflections when the design<br />

spectral response acceleration,<br />

expressed as a ratio to gravitational<br />

acceleration, for a period of 0.2 s,<br />

S(0.2), is less than or equal to 0.12.


81<br />

4.1.8.3 General Requirements<br />

• Clearly defined load paths<br />

• Clearly defined <strong>Seismic</strong> Force Resisting<br />

System (SFRS)<br />

• Other building components must go<br />

along for the ride


82<br />

4.1.8.4 Site Properties<br />

• Peak ground acceleration, PGA<br />

• 5% damped spectral response<br />

acceleration values, S a (T)<br />

– Reference conditions – Very dense soil and<br />

soft rock<br />

– 2% probability of exceedance in 50 years<br />

(return period of 2,475 years)


83<br />

4.1.8.4 Site Properties (con’d)<br />

Rosenblueth 1980


84<br />

4.1.8.4 Site Properties (con’d)<br />

• Site classification for soil<br />

– Shear wave velocity, V s<br />

– Standard penetration resistance, N 60<br />

– Undrained shear strength, S u<br />

• Acceleration and velocity based site<br />

coefficients, F a and F v<br />

– Site Class A Hard rock<br />

– Site Class B Rock<br />

– Site Class C Very dense soil and soft rock<br />

– Site Class D Stiff soil<br />

– Site Class E Soft soil


85<br />

4.1.8.4 Site Properties (con’d)<br />

• Coefficients F a and F v vary as a function<br />

of<br />

– Site class<br />

– Spectral response acceleration<br />

• F a varies between 0.7 and 2.1<br />

• F v varies between 0.5 and 2.1<br />

• For Site Class C, very dense soil and<br />

soft rock, F a and F v are 1.0


86<br />

4.1.8.4 Site Properties (con’d)<br />

• <strong>Design</strong> spectral acceleration values of<br />

S(T)<br />

– F a S a (0.2) for T < 0.2 s<br />

– Smaller of F v S a (0.5) or F a S a (0.2) for T = 0.5 s<br />

– F v S a (1.0) for T = 1.0 s<br />

– F v S a (2.0) for T = 2.0 s<br />

– F v S a (2.0)/2 for T > 4.0 s


87<br />

4.1.8.5 Importance Factor, I E<br />

• Post disaster 1.5<br />

• Schools 1.3<br />

• Other 1.0


88<br />

4.1.8.6 Structural Configuration<br />

• Regular structures<br />

• Irregular structures<br />

– Vertical stiffness<br />

– Mass<br />

– Vertical geometry<br />

– <strong>In</strong>-plane discontinuity in<br />

vertical lateral forceresisting<br />

element<br />

– Out-of-plane offsets<br />

– Weak storey<br />

– Torsional sensitivity<br />

– Non-orthogonal systems<br />

• For irregular structures<br />

– Must do a dynamic<br />

analysis<br />

– Restrictions on use


89<br />

Vertical stiffness<br />

irregularily<br />

Weak storey<br />

Caracas 1967<br />

Earthquake<br />

Rosenblueth 1980


90<br />

Torsional sensitivity (1)<br />

Vertical geometric irregularity (2)<br />

Bolt 1993


91<br />

4.1.8.8 Direction of Loading<br />

• SFRS oriented along orthogonal axes<br />

– <strong>In</strong>dependent analysis about each principal<br />

axis<br />

• SFRS not oriented along orthogonal<br />

axes and higher seismic zones<br />

– 100% one direction plus 30% perpendicular<br />

direction


92<br />

4.1.8.9 Force Reduction Factors<br />

and Overstrength Factors<br />

• Force reduction factor, R d<br />

– Factor to reflect system<br />

ductility<br />

– Similar to R-factor in<br />

previous code<br />

– About the same as the<br />

ductility factor measured<br />

in a hysteresis experiment<br />

• Overstrength factor, R o<br />

R<br />

o<br />

=<br />

R<br />

φ<br />

R<br />

yield<br />

R<br />

size<br />

mech<br />

–R f =1/f<br />

–R yield = prob /spec yield<br />

sh<br />

R<br />

R<br />

–R sh strain hardening<br />

–R size discrete mem size<br />

–R mech formation of<br />

collapse mech


93<br />

4.1.8.9 Force Reduction Factors<br />

and Overstrength Factors * (con’d)<br />

Type of SFRS R d R o R d R o<br />

Steel<br />

•Ductile moment resisting frame<br />

•Limited ductility concentric braced frame<br />

5.0<br />

2.0<br />

1.5<br />

1.3<br />

7.5<br />

2.6<br />

Concrete<br />

•Ductile moment resisting frame<br />

•Moderately ductile shear wall<br />

4.0<br />

2.0<br />

1.7<br />

1.4<br />

6.8<br />

2.8<br />

Masonry<br />

•Limited ductility shear wall 1.5 1.5 2.25<br />

* Height restrictions apply to systems with less ductility, in higher<br />

seismic zones


94<br />

4.1.8.10 Additional System<br />

Restrictions<br />

• Post disaster buildings<br />

– (Generally) no irregularities<br />

– Ductile systems


95<br />

4.1.8.11 Equivalent Static Force Procedure<br />

V<br />

=<br />

S(<br />

T<br />

a<br />

) M<br />

R<br />

d<br />

v<br />

R<br />

o<br />

I<br />

E<br />

W<br />

S(T a ) = spectral response acceleration<br />

M v = factor to account for higher mode effect<br />

I E = importance factor<br />

W = dead load + 25% snow + 60% storage<br />

R d = force reduction factor<br />

R o = overstrength factor


96<br />

4.1.8.11.3) Fundamental Period<br />

• Moment resisting frames<br />

– T a = 0.085(h n ) 3/4 steel<br />

– T a = 0.075(h n ) 3/4 concrete<br />

– T a = 0.1N other<br />

• Braced frames<br />

– T a = 0.25h n<br />

• Shear walls other lateral load resisting systems<br />

– T a = 0.05(h n ) 3/4<br />

• Methods of mechanics<br />

– But T a not greater than 1.5 times code value for moment<br />

resisting frames and 2.0 times value for braced frames and<br />

shear walls


97<br />

4.1.8.11.5) Factor To Account For<br />

Higher Mode Effect, M v<br />

Depends on:<br />

• Shape of response spectrum<br />

• Period<br />

• Type of lateral load resisting system


98<br />

4.1.8.11.6) Distribution of Load Over<br />

Height<br />

F<br />

n<br />

= − ∑<br />

x<br />

(V F<br />

t<br />

)Wxhx<br />

/( Wh<br />

i i)<br />

i=<br />

1<br />

When F t = 0, it can be shown that F x are the forces that would<br />

result for a triangular shaped first mode. <strong>The</strong> force F t represents<br />

the contribution of higher modes.


99<br />

4.1.8.11.7) Overturning Moments<br />

M<br />

J<br />

J<br />

x<br />

x<br />

x<br />

n<br />

= J ∑F(h<br />

i<br />

where<br />

= 1.0<br />

x<br />

i=<br />

x<br />

i<br />

−h<br />

hx<br />

= J+<br />

(1−<br />

J)(<br />

0.6h<br />

x<br />

)<br />

n<br />

)<br />

h<br />

h<br />

x<br />

x<br />

≥<br />

<<br />

0.6h<br />

0.6h<br />

n<br />

n<br />

Where J depends on:<br />

• Shape of response spectrum<br />

• Period<br />

• Type of lateral load resisting system


100<br />

4.1.8.11.8) to 10) Torsion<br />

• Torsional effects<br />

– Calculated eccentricity<br />

– Accidental eccentricity<br />

• Torsional sensitivity<br />

– B x =δ max /δ ave<br />

– B = maximum of B x


101<br />

4.1.8.11.8) to 10) Torsion (con’d)<br />

• For B < 1.7, apply floor torques<br />

– T x =F x (e x + 0.1D nx )<br />

– T x =F x (e x -0.1D nx )<br />

• For B > 1.7, use a dynamic analysis


102<br />

Torsion<br />

(con’d)


Japanese Full Scale Test<br />

103<br />

Movie has been removed from presentation.


104<br />

4.1.8.12 Dynamic Analysis<br />

• Linear dynamic analysis<br />

– Modal response spectrum method<br />

– Numerical integration linear time history<br />

method<br />

• Nonlinear dynamic analysis method


105<br />

4.1.8.12 Dynamic Analysis (con’d)<br />

• Numerical integration linear time history method<br />

– Ground motion histories compatible with <strong>NBCC</strong> response<br />

spectrum<br />

• Scale base shears from linear dynamic analysis<br />

– Elastic base shear from dynamic analysis, V e<br />

– <strong>Design</strong> base shear, V d = I E V e /(R o R d )<br />

– V d not < 0.8V for regular structures<br />

– V d larger of (V d,dyn anal and V) for irregular structures<br />

• Accidental torsion<br />

– Consider in addition to effects from dynamic analysis


106<br />

4.1.8.13 Deflections<br />

• Anticipated deflections =<br />

R d R o /I E * elastic deflections<br />

• Anticipated interstorey deflections <<br />

0.01h s post-disaster<br />

0.02h s schools<br />

0.025h s other buildings


107<br />

4.1.8.14 Structural Separation<br />

Bolt 1993 Mitchell, et al. 1990<br />

• Separate adjacent structures by<br />

2<br />

bldg1<br />

δ +<br />

δ<br />

2<br />

bldg2


108<br />

4.1.8.15 <strong>Design</strong> <strong>Provisions</strong><br />

• Diaphragms and connections shall be<br />

designed to not yield


109<br />

4.1.8.16 Foundation <strong>Provisions</strong><br />

• <strong>Design</strong> foundations to transfer seismic loads<br />

without<br />

– Exceeding capacity of soil or rock<br />

• For higher seismic zones<br />

– <strong>In</strong>terconnect piles or pile caps<br />

– <strong>Design</strong> piles for a minimum tension force<br />

• For very high seismic zones<br />

– <strong>Design</strong> piles to accommodate inelastic behavior<br />

– Connect spread footings for poor soil conditions


4.1.8.16 Foundation <strong>Provisions</strong> (con’d)<br />

• Consider potential for liquefaction<br />

Bolt 1993<br />

110


111<br />

4.1.8.17 Elements, Nonstructural<br />

Components and Equipment<br />

Mitchell, et al. 1990; Bruneau 1995


112<br />

4.1.8.17 Elements, Nonstructural<br />

Components and Equipment<br />

Rosenblueth 1980


113<br />

4.1.8.17 Elements, Nonstructural<br />

Components and Equipment (con’d)<br />

Lateral force, V p<br />

V = 0.3F<br />

S (0.2)<br />

I<br />

p<br />

a<br />

a<br />

E<br />

S<br />

p<br />

W<br />

p<br />

where<br />

F a = acceleration-based site coefficient<br />

S a (0.2) = spectral response acceleration<br />

I E = importance factor<br />

S p = C p A r A x /R p<br />

C p = element factor<br />

R p = element response modification factor<br />

A r = element force amplification factor<br />

A x = 1 + 2h x /h n<br />

W p = weight of element


114<br />

4.1.8.17 Elements, Nonstructural<br />

Components and Equipment (con’d)<br />

Category C p<br />

A r<br />

R p<br />

1 Exterior and interior walls<br />

(except cantilever walls and<br />

ornamentations)<br />

5 Towers and chimneys when<br />

connected to building<br />

12 Machinery, fixtures, equipment<br />

(flexibly connected)<br />

17 Electrical cable trays, bus<br />

ducts, conduit<br />

1.00 1.00 2.5<br />

1.00 2.50 2.50<br />

1.50 2.50 2.50<br />

1.00 2.50 5.00


Wood-Frame Bldg Test (0.46g)<br />

115<br />

Movie has been removed from presentation.


Examples<br />

116


Example 1 – Site Coefficients For<br />

Edmonton Clinic<br />

117


118<br />

Example 1 (con’d)<br />

total thickness of all layers<br />

N<br />

60<br />

=<br />

⎛ layer thickness<br />

∑⎜<br />

⎝ layer standard penetration resistance<br />

30m<br />

=<br />

3m 2.5m 9m 9.5m 6m<br />

+ + + +<br />

10 8 26 58 75<br />

= 24.95<br />

• From Table 4.1.8.4.A., Site Class D<br />

• From Table 4.1.8.4.B., S a (0.2)


119<br />

Example 2 – Six Storey Concrete Building<br />

With Ductile Moment-Resisting Frame *<br />

*<br />

See Chapter 11, CAC Concrete <strong>Design</strong> Handbook, 2006 Edition, but use<br />

Equivalent Static Force Procedure and Code Period


120<br />

Example 2 (con’d)<br />

• Site<br />

– Located in Vancouver<br />

– Site Class C. Site coefficients, F a = F v = 1.0<br />

• Building importance<br />

– “Other building”, I E = 1.0<br />

• Structural configuration<br />

– Regular<br />

• Force reduction factors<br />

– R d = 4.0<br />

– R o = 1.7<br />

• Period<br />

– T a = 0.075(21.9) 3/4 = 0.759 s


121<br />

Example 2 – Response Spectrum<br />

<strong>Design</strong> Spectral Accel (g)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 1 2 3 4 5<br />

Period (s)


122<br />

Example 2 (con’d)<br />

• <strong>Design</strong> spectral acceleration<br />

– S(0.759 s) = 0.479<br />

• Factors to account for higher mode effects<br />

(Table 4.1.8.11)<br />

– M v =1.0<br />

– J = 1.0<br />

• Lateral earthquake design force<br />

– V/W = 0.479 * 1.0*1.0/(4.0*1.7) = 0.07044


123<br />

Example 2 (con’d)<br />

• Lateral earthquake design force<br />

– V = 0.07044*44,765 = 3,153 kN<br />

• Portion of V to be concentrated at top<br />

– F t = 0.07 T a V = 0.07(0.759 s)(0.07044*44,765 kN) = 168 kN<br />

• Lateral force applied to level x<br />

F<br />

x<br />

= ( V − Ft<br />

) Wxhx<br />

/( ∑Wihi<br />

)<br />

= (3,153kN<br />

−168kN<br />

) W h<br />

n<br />

i=<br />

1<br />

x<br />

x<br />

/ 570,068kNm


124<br />

Example 2 (con’d)<br />

Floor x h x W x W x h x F x F x /8 Frames<br />

(m) (kN) (kNm) (kN) (kN)<br />

Roof 6 21.90 7,457 163,308 1,023.1 127.89<br />

6 5 18.25 7,365 134,411 703.8 87.98<br />

5 4 14.60 7,365 107,529 563.0 70.38<br />

4 3 10.95 7,526 82,410 431.5 53.94<br />

3 2 7.30 7,526 54,940 287.7 35.96<br />

2 1 3.65 7,526 27,470 143.8 17.98<br />

Total 44,765 570,068 3,153.0 394.13


125<br />

Example 2 (con’d)<br />

• Torsional moment<br />

[ 0 + 0.1(42m) ] F 4.2m<br />

Tx = Fx<br />

=<br />

x<br />

• Additional lateral force on frames from torsion<br />

T<br />

– To illustrate calculations, conservatively (but<br />

incorrectly) assume that frames in the EW direction<br />

resist all of the torsion<br />

– Assume frames in EW direction have equal stiffness<br />

– Shears from torsion will be proportional to distance<br />

from centre of stiffness<br />

– <strong>The</strong>refore, F2 xt = (15/21) F1 xt , F3 xt = (9/21) F1 xt ,<br />

F4 xt = (3/21) F1 xt and F1 xt = T x /72


126<br />

Example 2 (con’d)<br />

Floor x F x T x F1 x F1 xt F1 x,total<br />

(kN) (kNm) (kN) (kN) (kN)<br />

Roof 6 1,023.1 4,297 127.89 59.68 187.57<br />

6 5 703.8 2,956 87.98 41.06 129.03<br />

5 4 563.0 2,365 70.38 32.84 103.22<br />

4 3 431.5 1,812 53.94 25.17 79.11<br />

3 2 287.7 1,208 35.96 16.78 52.74<br />

2 1 143.8 604 17.98 8.39 26.37<br />

Total 3,153.0 13,243 394.13 183.93 578.05


127<br />

Example 3 - Dynamic Analysis of<br />

Three-Storey Building<br />

(Adapted from Clough and Penzien 2003, Example E26-3)


128


129


130


131


132


133


134


135


136


137<br />

Example 3 – Response Spectrum<br />

<strong>Design</strong> Spectral Accel (g)<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 1 2 3 4 5<br />

Period (s)


138


139


140


141


142


143


144


145


146


147


148


149


150


151


152


153


154


155


References<br />

156


• Blume, J. A., Newmark, N. M. and Corning, L. 1961. <strong>Design</strong> of<br />

Multi-Story Reinforced Concrete Buildings for Earthquake<br />

Motions, Portland Cement Association, 318 p.<br />

• Bolt, B. A. 1993. Earthquakes. W. H. Freeman and Company,<br />

331 p.<br />

• Bruneau, M. 1995. Performance of Masonry Structures During<br />

the 1994 Northridge (Los Angeles) Earthquake. Can.J.Civ.Eng.,<br />

Vol. 22, No. 2, pp. 378-402.<br />

• Cement Association of Canada. 2006. CAC Concrete <strong>Design</strong><br />

Handbook. Third Edition, Cement Association of Canada.<br />

• Chopra, A. K. 1981. Dynamics of Structures, A Primer.<br />

Earthquake Engineering Research <strong>In</strong>stitute, 121 p.<br />

• Clough, R. W. and Penzien, J. 2003. Dynamics of Structures.<br />

Second Edition (Revised), Computers and Structures, <strong>In</strong>c., 739<br />

p.<br />

• Earthquake Engineering Research <strong>In</strong>stitute website for<br />

earthquake damage photographs http://www.eeri.org<br />

• Krawinkler, H. and Popov, E. P. 1982. <strong>Seismic</strong> Behavior of<br />

Moment Connections and Joints. ASCE, Vol. 108, No. ST2, pp.<br />

373-391.<br />

157


• Mitchell, D., DeVall, R. H., Saatcioglu, M., Simpson, R., Tinawi,<br />

R. and Tremblay, R. 1995. Damage to Concrete Structures Due<br />

to the 1994 Northridge Earthquake. Can.J.Civ.Eng., Vol. 22, No.<br />

2, pp. 361- 377.<br />

• Mitchell, D., Tinawi, R. and Redwood, R. G. 1990. Damage to<br />

Buildings Due to the 1989 Loma Prieta Earthquake – a<br />

Canadian Perspective. Can.J.Civ.Eng., Vol. 17, No. 5, pp. 813-<br />

834.<br />

• National Research Council of Canada website for information on<br />

Canadian earthquakes<br />

http://www.earthquakescanada.nrcan.gc.ca<br />

• Newmark, N. M. and Hall, W. J. 1982. Earthquake Spectra and<br />

<strong>Design</strong>. Earthquake Engineering Research <strong>In</strong>stitute, 103 p.<br />

• Paulay, P. and Priestly, M. J. N. 1992. <strong>Seismic</strong> <strong>Design</strong> of<br />

Reinforced Concrete and Masonry Buildings. John Wiley &<br />

Sons, <strong>In</strong>c., 744 p.<br />

• Paultre, P., Castele, D., Rattray, S. and Mitchell, D. 1989.<br />

<strong>Seismic</strong> Response of Reinforced Concrete Frame<br />

Subassemblages – a Canadian Code Perspective.<br />

Can.J.Civ.Eng., Vol. 16, No. 5, pp. 627-649.<br />

• Rosenblueth, E. 1980. <strong>Design</strong> of Earthquake Resistant<br />

Structures. John Wiley & Sons, <strong>In</strong>c., 295 p.<br />

158

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!