14.01.2015 Views

Real-space multigrid methods for DFT and TDDFT: - TDDFT.org

Real-space multigrid methods for DFT and TDDFT: - TDDFT.org

Real-space multigrid methods for DFT and TDDFT: - TDDFT.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Real</strong>-<strong>space</strong> <strong>multigrid</strong> <strong>methods</strong> <strong>for</strong> <strong>DFT</strong> <strong>and</strong> TD<strong>DFT</strong>:<br />

Tuomas Torsti<br />

CSC – The finnish IT center <strong>for</strong> Science<br />

Laboratory of Physics, Helsinki University of Technology<br />

http://www.csc.fi/physics/mika


Acknowledgements<br />

• For Funding<br />

– CSC – The finnish IT center <strong>for</strong> Science<br />

– COMP, Helsinki University of<br />

Technology<br />

• For advice<br />

– Martti Puska (COMP)<br />

– Risto Nieminen (COMP)<br />

– Janne Ignatius (CSC)<br />

• For collaboration using MIKA/cyl2<br />

– Bo Hellsing (Chalmers)<br />

– Vanja Lindberg (Växjö, Chalmers)<br />

– Nerea Zabala (San Sebastian)<br />

– Eduardo Og<strong>and</strong>o (Bilbao)<br />

– Paula Havu (COMP)<br />

– Tero Hakala (COMP)<br />

• For development of RQMG<br />

– Mika Heiskanen (then COMP)<br />

• For collaboration in development of<br />

MIKA/r<strong>space</strong><br />

– Sampsa Riikonen (now San Sebastian)<br />

– Ville Lehtola (COMP)<br />

– Kaarle Ritvanen (COMP)<br />

• For work done with MIKA/RS2Dot<br />

– Henri Saarikoski<br />

– Esa Räsänen<br />

• For response iterations<br />

– Eckhardt Krotscheck (Linz)<br />

– Michael Aichinger (Linz)<br />

• For work done with MIKA/doppler<br />

– Ilja Makkonen


Motivation <strong>for</strong> using real-<strong>space</strong> grids<br />

• With uni<strong>for</strong>m grids the control of the ”basis set” is simple : Only one<br />

parameter (the grid spacing h)<br />

• Flexible choice of boundary conditions : cluster, wire, surface, bulk.<br />

• cluster<br />

• wire<br />

• surface<br />

• bulk<br />

• ...<br />

• Parallelization using domain decomposition<br />

• It is possible to use nonuni<strong>for</strong>m grids to refine the mesh close to atomic<br />

nuclei or ”hard” pseudopotential, <strong>and</strong>/or to push the vacuum boundary far<br />

away in cluster calculations :<br />

• adaptive grids<br />

• composite grids<br />

• finite elements<br />

• Multigrid techniques can be used to obtain optimal scaling <strong>for</strong> PDE’s<br />

• Natural framework <strong>for</strong> Order-N (localized orbitals required)


R<br />

∇ 2 V =<br />

=<br />

f<br />

− ∇<br />

f<br />

2<br />

V<br />

∇ 2 ( V<br />

fine<br />

+ Vcoarse)<br />

= f<br />

⇒ ∇ 2 V =<br />

Multigrid <strong>methods</strong><br />

A. Br<strong>and</strong>t. Math. Comput. 31, 333 (1977)., T. L. Beck. Rev. Mod. Phys. 72, 1041 (2000).<br />

W. L. Briggs et al., A Multigrid Tutorial, Second Edition. (SIAM 2000).<br />

As a simple example, take the Poisson<br />

equation<br />

Simple relaxation schemes (e.g. the<br />

Gauss-Seidel method) efficiently remove<br />

the short wavelength components of the<br />

residual<br />

(they are good smoothers), while critical<br />

slowing down occurs <strong>for</strong> the long<br />

wavelength components. Solution: treat<br />

long wavelength components of V on a<br />

coarse grid<br />

coarse<br />

R fine<br />

The idea can be applied recursively (Vcycle).<br />

Linear scaling with problem size<br />

can be acchieved with the full-<strong>multigrid</strong><br />

method.


Classification of MG-<strong>methods</strong> <strong>for</strong> the eigenproblem<br />

• Steepest descent (or CG or RMM-DIIS) with MGpreconditioning<br />

e.g. Bernholc et al., Phys. Rev. B 54 14362 (1996)<br />

• Full approximation storage<br />

A. Br<strong>and</strong>t et al. SIAM J. Sci. Comput. 4, 244 (1983)<br />

J. Wang <strong>and</strong> T. L. Beck , J. Chem. Phys. 112, 9223 (2000)<br />

• Rayleigh Quotient Multigrid method (RQMG)<br />

J. M<strong>and</strong>el <strong>and</strong> S. F. Cormick, J. Comput. Phys. 80, 442 (1989).<br />

M. Heiskanen et al., Phys. Rev. B 63, 245106, (2001).


• Discretized Schrödinger equation<br />

• With search vector d vary α to minimize<br />

the Rayleigh quotient<br />

Rayleigh quotient <strong>multigrid</strong> method<br />

J. M<strong>and</strong>el <strong>and</strong> S. F. Cormick, J. Comput. Phys. 80, 442 (1989).<br />

M. Heiskanen et al., Phys. Rev. B 63, 245106, (2001).<br />

R(<br />

α)<br />

=<br />

u + αd<br />

H u + αd<br />

u + αd<br />

B u + αd<br />

• Coordinate relaxation: choose a coordinate vector d=e.<br />

f<br />

• RQMG – method : on coarse grids minimize the fine grid RQ with: d = Ic<br />

e<br />

• The fine grid Rayleigh quotient can be evaluated entirely on the coarse grid :<br />

R(<br />

α)<br />

=<br />

u<br />

f<br />

u<br />

f<br />

H<br />

B<br />

f<br />

f<br />

u<br />

u<br />

f<br />

f<br />

+ 2α<br />

I<br />

+ 2α<br />

I<br />

c<br />

f<br />

c<br />

f<br />

H<br />

B<br />

f<br />

f<br />

u<br />

u<br />

f<br />

f<br />

e<br />

e<br />

c<br />

c<br />

2<br />

+ α<br />

2<br />

+ α<br />

• If eigenpairs other than the lowest one are required, add a penalty functional to take<br />

care of the orthogonality requirement:<br />

R[<br />

u<br />

u<br />

Hu = εBu<br />

Hu<br />

k + 1 k + 1<br />

k + 1] = +<br />

uk<br />

+ 1<br />

Buk<br />

+ 1<br />

∑<br />

e<br />

e<br />

c<br />

c<br />

H<br />

c<br />

c<br />

B e<br />

e<br />

2<br />

k ui<br />

uk<br />

+ 1<br />

qi<br />

i= 1 ui<br />

Bui<br />

uk<br />

+ 1<br />

uk<br />

+ 1<br />

c<br />

c


Rayleigh quotient <strong>multigrid</strong> method (continued)<br />

• Galerkin conditions should hold :<br />

f c T<br />

c f<br />

I<br />

c<br />

= ( I<br />

f<br />

) , H<br />

c<br />

= I<br />

f<br />

H<br />

f<br />

Ic<br />

, Bc<br />

=<br />

I<br />

c<br />

f<br />

B<br />

f<br />

I<br />

f<br />

c<br />

• In the original implementation, approximated by discretization coarse grid<br />

approximation (DCA). In MIKA/r<strong>space</strong> 1.0 also the Galerkin case implemented<br />

• Can we get rid of the penalty functional by minimizing the residual norm instead of<br />

the Rayleigh Quotient (In analogy with the familiar RMM-DIIS method) <br />

R(<br />

α)<br />

=<br />

Hu<br />

−εBu Hu<br />

u u<br />

−εBu


u<br />

( k )<br />

Response iteration method: full response<br />

J. Auer <strong>and</strong> E. Krotscheck, Comp. Phys. Comm. 151 (2003), 265-271<br />

• Newton-Raphson method <strong>for</strong> the equation<br />

k<br />

0 = F[<br />

ρ<br />

(<br />

( r)<br />

= ∆ρ<br />

2<br />

∑<br />

p,<br />

h<br />

k )<br />

(<br />

( r)<br />

−δρ<br />

φ ( r)<br />

φ ( r)<br />

p<br />

p<br />

h<br />

ε −ε<br />

h<br />

k )<br />

∫<br />

( r)<br />

=<br />

2<br />

F[<br />

ρ](<br />

r)<br />

= ∑ φh[<br />

ρ](<br />

r)<br />

− ρ(<br />

r)<br />

= 0<br />

• Full response equation (needs unoccupied states) (solve with CG or GMRES)<br />

where<br />

(<br />

]( r)<br />

= F[<br />

ρ<br />

(<br />

+ δρ<br />

(<br />

]( r)<br />

= F[<br />

ρ<br />

dr'<br />

dr''<br />

φ ( r')<br />

φ ( r')<br />

V<br />

p<br />

h<br />

δF[<br />

ρ](<br />

r)<br />

( k )<br />

(<br />

]( r)<br />

+ ∫ dr'<br />

δρ ( r')<br />

+ O((<br />

δρ<br />

δρ(<br />

r')<br />

( + 1)<br />

k ) k )<br />

k )<br />

k )<br />

h<br />

p−h<br />

(<br />

( r',<br />

r'')<br />

δρ<br />

k )<br />

)<br />

( r'')<br />

2<br />

)<br />

V<br />

p−h<br />

( r,<br />

r')<br />

=<br />

r<br />

1<br />

− r'<br />

δVxc(<br />

r)<br />

+<br />

δρ(<br />

r')


Response iteration method : collective approximation<br />

J. Auer <strong>and</strong> E. Krotscheck, Comp. Phys. Comm. 151 (2003), 265-271<br />

• requires only occupied states<br />

• implemented in MIKA/cyl2 <strong>and</strong> MIKA/RS2Dot<br />

write<br />

u(<br />

r)<br />

=<br />

[ H<br />

p,<br />

h<br />

0<br />

where<br />

+ 2S<br />

p,<br />

h<br />

φ ( r)<br />

φ ( r)<br />

u<br />

~<br />

∗V<br />

p,<br />

h<br />

with the assumption that u<br />

=<br />

∫<br />

∑<br />

p,<br />

h<br />

drφ<br />

( r)<br />

φ ( r)<br />

ω(<br />

r)<br />

After some manipulation one arrives at<br />

S<br />

u<br />

F<br />

F<br />

p<br />

p<br />

p−h<br />

∗ S<br />

] ∗<br />

~ ω = 2S<br />

1 1<br />

= δ ( r − r')<br />

−<br />

υ ρ(<br />

r)<br />

ρ(<br />

r')<br />

h<br />

h<br />

F<br />

are matrix elements of<br />

F<br />

~<br />

∗V<br />

∑<br />

h<br />

p−h<br />

∆ρ<br />

∗<br />

ρ<br />

φ ( r)<br />

φ ( r')<br />

h<br />

h<br />

2<br />

a local function :


MIKA/r<strong>space</strong> 1.0<br />

• Parallelized over k-points <strong>and</strong> real-<strong>space</strong> domains<br />

• Periodic <strong>and</strong> cluster boundary-conditions implemented<br />

• Norm-concerving nonlocal pseudopotentials of the Kleynman-Byl<strong>and</strong>er <strong>for</strong>m<br />

(usually Troullier-Martins pseudopotentials are used), double-grid method<br />

• Hellman-Feynman Forces<br />

• Structural optimization with the BFGS-method (two implementations)<br />

• Mixing schemes:<br />

– Pulay<br />

– Broyden<br />

– GR-Pulay (D. R Bowler <strong>and</strong> M. J. Gillan. Chem. Phys. Lett. 325, 473 (2000) ),<br />

– ”screened Coulomb interaction” (M. Manninen et al., Phys. Rev. B 12, 4012 (1975). )<br />

– Pulay-Kerker (Note: rough Fourier components obtained using a MG-technique)<br />

– Pulay-Kerker with metric (motivated by Kresse <strong>and</strong> Furthmuller, PRB 54, 11169).


MIKA/r<strong>space</strong> (future)<br />

• Mixed boundary conditions <strong>for</strong> surface computations<br />

• Spin-dependent version of the code<br />

• Alternative MG-solver (e.g. RMM-DIIS with MG-preconditioning)<br />

• PBE (Perdew, Burke, Ernzerhof) GGA correction – already implemented, <strong>and</strong> will<br />

be included in the next release<br />

• Response iterations (already implemented in other MIKA-codes, 3D subroutines<br />

from prof. Krotscheck available)<br />

• Build an interface to Octopus <strong>for</strong> time-dependent calculations


Double grid method <strong>for</strong> nonlocal pseudopotentials<br />

T. Ono <strong>and</strong> K. Hirose, PRL 82, 5016 (1999)<br />

• Replaces the fourier filtering of pseudopotentials of Briggs et al.<br />

• The idea should be understood as a general scheme to transfer a function from a<br />

fine grid to a coarse grid, <strong>and</strong> is in fact equivalent to the MG restriction operation.<br />

• Should be applied also to the local part, <strong>and</strong> compensating gaussian charges (all<br />

functions that are transferred from a radial grid to the computational grid)<br />

• Thanks to J. J. Mortensen (CAMP, DTU) who implemented this in grid-based PAW.


All-electron finite-element calculations with ELMER<br />

• These are outside the scope of the MIKA-project, but demonstrated the<br />

capabilities of CSC’s ELMER package.


Vortex clusters in quantum dots<br />

Left: S<strong>DFT</strong> density of 24-electron QD at 5T showing 14 vortice<br />

Right: CS<strong>DFT</strong> density <strong>and</strong> currents at the edge of the QD.<br />

• Saarikoski et al. Phys. Rev. Lett (2004) (cond-mat/0402514)<br />

• Exact diagonalization <strong>and</strong> <strong>DFT</strong> (both CS<strong>DFT</strong> <strong>and</strong> S<strong>DFT</strong>) give corresponding results<br />

– limitations <strong>and</strong> differences of the <strong>methods</strong> discussed.<br />

• Finding the vortex solution in <strong>DFT</strong> requires high numerical accuracy. Our real-<strong>space</strong><br />

implementation is superior to existing plane-wave schemes in describing the<br />

vanishing density at the vortex core


Conductance oscillations in metallic nanocontacts<br />

P. Havu et al., Phys. Rev. B, 66, 075401 (2002).<br />

• We model a chain of N Na atoms<br />

between two conical stabilized jellium<br />

leads<br />

• Since only one channel contributes to<br />

the conductance, <strong>and</strong> because of the<br />

mirror symmetry, the Friedel sum rule can<br />

be applied <strong>for</strong> the conductance<br />

2<br />

2e<br />

2 ⎡π<br />

⎤<br />

G = sin ⎢<br />

( N e<br />

− No<br />

)<br />

h ⎣ 2 ⎥⎦<br />

• We observe the even-odd behaviour<br />

of the conductance as the function<br />

of N<br />

• In addition, the important role of the<br />

leads is manifested as an additional<br />

oscillation as a function of the cone<br />

opening angle


Ultimate jellium model <strong>for</strong> breaking nanowires<br />

E. Og<strong>and</strong>o et al., Phys. Rev. B 67, 075417 (2003).<br />

• Ultimate jellium is a locally neutral model,<br />

the compensating background charge<br />

density equals the electron density at every<br />

point.<br />

• The shape of the system in the central part<br />

is free to vary to minimize the total energy.<br />

• The shape of the leads is frozen to the<br />

uni<strong>for</strong>m wire solution.<br />

• In the beginning of the elongation, classical<br />

catenoid shape is observed<br />

• Quantum mechanical shell structure in<br />

cylindrical symmetry -> cylinders with magic<br />

radii.<br />

• Quantum mechanical shell structure in<br />

sperical symmetry -> Cluster derived<br />

structures (CDS)<br />

• Oscillation of elongation <strong>for</strong>ce


Model study of adsorbed metallic quantum dots: Na on Cu(111)<br />

T. Torsti et al., Phys. Rev. B 66, 235420 (2002)<br />

• Roughly hexagonal isl<strong>and</strong>s are observed<br />

to <strong>for</strong>m on the second monolayer of Na<br />

grown on Cu(111)<br />

• B<strong>and</strong>gap at Fermi level in Cu <strong>for</strong><br />

electrons moving in the (111) direction –><br />

quantum well states<br />

• We developed a two-jellium model to fit<br />

the bottoms of two surface state b<strong>and</strong>s<br />

• The infinite monolayer is described with<br />

as a hexagonal lattice of circles, the k-<br />

<strong>space</strong> is sampled with two points.<br />

• In the largest system studied, 2400 states<br />

are solved – the code is parallelized over<br />

the 65*2 different values of (m,k). This is<br />

also a dem<strong>and</strong>ing test <strong>for</strong> the charge<br />

density (or potential) mixing.<br />

• The local density of states is calculated at<br />

a realistic STM-tip distance (15 a.u.)<br />

above the surface <strong>and</strong> compared with<br />

measured differential conductance


Quantum corrals (Tero Hakala, M.Sc. project)<br />

• We use a pseudopotential (E. Og<strong>and</strong>o et al. submitted to PRB, cond-mat/0310533) <strong>for</strong> the<br />

Cu(111) surface<br />

• A ring of 45 Pb atoms on both sides of a Cu(111) slab with 5 atomic layers <strong>and</strong><br />

radius 60 bohr : a localized surface state observed within the corral<br />

• The total system size was 3272 electrons <strong>and</strong> required about 2000 SCF-iterations to<br />

converge (about 1 day with 8 processor in the IBM server cluster of CSC).


Quantum corrals (continued)<br />

• Charge transfer in a corral with 8 Pb-atoms on both sides of a Cu(111)-slab<br />

with15 atomic layers. This transfer is due to the equilibration of chemical<br />

potentials between Pb <strong>and</strong> Cu.<br />

• It has been observed also in 1D-calculations of Pb on top of Cu(111) by<br />

Og<strong>and</strong>o et al.


Partial list of publications related to MIKA<br />

Numerical <strong>methods</strong><br />

M. Heiskanen, T. Torsti, M.J. Puska, <strong>and</strong> R.M. Nieminen, Multigrid method <strong>for</strong> electronic structure calculations, Phys. Rev. B 63, 245106 (2001).<br />

T. Torsti, M. Heiskanen, M.J. Puska, <strong>and</strong> R.M. Nieminen, MIKA: a <strong>multigrid</strong>-based program package <strong>for</strong> electronic structure calculations, Int. J.<br />

Quantum Chem. 91, 171-176 (2003).<br />

T. Torsti, <strong>Real</strong>-Space Electronic Structure Calculations <strong>for</strong> Nanoscale Systems, CSC Research Reports R01/03 (Ph. D. -thesis).<br />

Applications to axially symmetric model systems<br />

P. Havu, T. Torsti, M.J. Puska, <strong>and</strong> R.M. Nieminen, Conductance oscillations in metallic nanocontacts, Phys. Rev. B 66, 075401 (2002).<br />

T. Torsti, V. Lindberg, M. J. Puska, <strong>and</strong> B. Hellsing Model study of adsorbed metallic quantum dots: Na on Cu(111) Physical Review B 66, 235420 .<br />

E. Og<strong>and</strong>o, T. Torsti, N. Zabala, <strong>and</strong> M. J. Puska, ”Electronic resonance states in metallic nanowires ... simulated with the ultimate jellium model”,<br />

Phys. Rev. B. 67, 075417<br />

T. Torsti, <strong>Real</strong>-Space Electronic Structure Calculations <strong>for</strong> Nanoscale Systems, CSC Research Reports R01/03 (Ph. D. -thesis)<br />

Applications to quantum dots in 2DEG<br />

Saarikoski, H. , Harju, A. , Puska, M. J., Nieminen, R. M., Vortex Clusters in Quantum Dots, Submitted to Physical Review Letters on<br />

19.2.2004<br />

Harju, A., Räsänen, E., Saarikoski, H., Puska, M.J., Nieminen, R.M., <strong>and</strong> Niemelä, K., Broken symmetry in density-functional theory:<br />

Analysis <strong>and</strong> cure, Submitted to Physical Review B on 3.2.2004<br />

Räsänen, E., Harju, A., Puska, M. J., <strong>and</strong> Nieminen, R. M., Rectangular quantum dots in high magnetic fields, Submitted to Physical<br />

Review B on 27.11.2003.<br />

Räsänen, E., Puska, M.J., <strong>and</strong> Nieminen, R.M., Maximum-density-droplet <strong>for</strong>mation in hard-wall quantum dots, Submitted to Physica E on 9.6.2003.<br />

Räsänen, E., Saarikoski, H., Stavrou, V. N., Harju, A., Puska, M.J., <strong>and</strong> Nieminen, R.M., Electronic structure of rectangular quantum dots, Physical<br />

Review B 67, 235307 (2003) .<br />

Saarikoski, H., Räsänen, E.,Siljamäki, S., Harju, A., Puska, M.J., Nieminen, R.M., Testing of two-dimensional local approximations in the currentspin<br />

<strong>and</strong> spin-density-functional theories, Physical Review B 67, 205327 (2003) .<br />

Räsänen, E., Saarikoski, H., Puska, M. J., <strong>and</strong> Nieminen, R. M., Wigner molecules in polygonal quantum dots: A density-functional study, Physical<br />

Review B 67 , 035326 (2003) .<br />

Saarikoski, H., Räsänen, E., Siljamäki S., Harju A., Puska, M.J., <strong>and</strong> Nieminen, R.M., Electronic properties of model quantum-dot structures in zero<br />

<strong>and</strong> finite magnetic fields, European Physical Journal B 26 , 241-252 (2002) .<br />

Applications of the RQMG method to one-dimensional problems<br />

Engström, K., Kinaret, J., Puska, M.J., <strong>and</strong> Saarikoski, H., Influence of Electron-Electron Interactions on Supercurrent in SNS structures, Low<br />

Temperature Physics 29, 546 (2003).<br />

Og<strong>and</strong>o,E. Zabala,N., Chulkov,E.V., Puska,M.J., Quantum size effects in Pb isl<strong>and</strong>s on Cu(111): Electronic-structure calculations, Submitted<br />

to Phys. Rev. B on 22.10.2003


Summary<br />

• MIKA (Multigrid Instead of the K-spAce) is a<br />

collection of programs that solve the Kohn-Sham<br />

equations of <strong>DFT</strong> in one, two <strong>and</strong> three dimensional<br />

cartesian coordinate systems or in axial symmetry<br />

• The core numerical method is the Rayleigh quotient<br />

<strong>multigrid</strong> method <strong>for</strong> the eigenproblem<br />

• No TD<strong>DFT</strong> yet, but this has a high priority as a<br />

future development.<br />

• MIKA / r<strong>space</strong> 1.0 was released on 2.9.2004. Along<br />

with the other codes, it is licensed with the GPL,<br />

<strong>and</strong> available from http://www.csc.fi/physics/mika

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!