13.01.2015 Views

The link between bismuth tellurides and gold: deposits ... - Cmi Capital

The link between bismuth tellurides and gold: deposits ... - Cmi Capital

The link between bismuth tellurides and gold: deposits ... - Cmi Capital

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>link</strong> <strong>between</strong> <strong>bismuth</strong> <strong>tellurides</strong><br />

<strong>and</strong> <strong>gold</strong>: <strong>deposits</strong> in the Banatitic<br />

Magmatic <strong>and</strong> Metallogenetic Belt<br />

Cristiana L. Ciobanu<br />

Natural History Museum, University of Oslo, Norway<br />

Nigel J. Cook<br />

Natural History Museum, University of Oslo, Norway<br />

Kamen Bogdanov<br />

Sofia University 'St. Kliment Ohridski', 15 Tsar Osvoboditel Bd.,<br />

1504 Sofia, Bulgaria


Balkans<br />

<strong>The</strong> Banatitic Magmatic <strong>and</strong> Metallogenetic Belt (BMMB) is the only one among six<br />

belts with a calc-alkaline signature in SE Europe that has a Cu-dominant character.<br />

W. Carpathians<br />

Bohemian<br />

Massif<br />

E. Alps<br />

Mesek<br />

Budapest<br />

Belgrade<br />

Skopje<br />

Bukk<br />

(Szarvasko)<br />

Axiopolis<br />

Paikon<br />

Pindos<br />

Severin<br />

Sofia<br />

Sithonia<br />

Athens<br />

Argolis<br />

East European<br />

Platform<br />

E. Carpathians<br />

S. Carp.<br />

Black Sea<br />

Bucharest<br />

Moesian Platform<br />

External Dinarides<br />

Internal Dinarides<br />

Vardar zone<br />

3<br />

Complex isl<strong>and</strong>-arc &<br />

ophiolite units (see text)<br />

Mid-Hungarian<br />

Line<br />

Undifferentiated ophiolites<br />

2<br />

Pannonian Basin<br />

Pieniny Klippen Belt<br />

& Penninic Units<br />

Trotus Line<br />

SAM<br />

Magura<br />

Dobrogea<br />

Cerbia<br />

Periadriatic Line<br />

Forel<strong>and</strong> basins<br />

1<br />

External Dacides (flysch)<br />

Kotel<br />

Marginal Dacides<br />

(Danubian)<br />

Adriatic Sea<br />

Srednogorie<br />

1. Late Cretaceous<br />

‘banatitic’ belt (BMMB)<br />

2. Apuseni Mts. (Neogene)<br />

Internal Dacides (Getic)<br />

Rhodopes<br />

Serbo Macedonian<br />

6<br />

50 o<br />

48 o<br />

4<br />

46 o<br />

44 o<br />

Dinarides<br />

42 o<br />

5<br />

Str<strong>and</strong>za<br />

Transdanubian Ridge<br />

Tisza Block<br />

Aegean Sea<br />

3. Inner Carpathian Arc<br />

(Neogene)<br />

4. Peri-Adriatic Recsk Arc<br />

(Paleogene)<br />

Major tectonic line<br />

Cyclades<br />

Ionian<br />

Sea<br />

5. Lece-Chalkidiki Arc<br />

(Tertiary)<br />

100 km<br />

Othrys-<br />

Evia<br />

20 o 22 o<br />

24 o<br />

26 o 28 o 36 o<br />

6. Drina-Rhodope Arc<br />

(Tertiary)<br />

Inner Alpine-Carpathian<br />

(incl. Bihor, Codru)<br />

40 o<br />

38 o<br />

Carpathian-<br />

Dinaride-<br />

Hellenide<br />

realm<br />

(Sndulescu,<br />

1988;<br />

ophiolites<br />

from Channell<br />

& Kozur, 1997;<br />

metallogenetic<br />

belts from<br />

Mitchell,<br />

1996).<br />

Hellenides<br />

Magmatic &<br />

metallogenetic belts


R. T i s z a<br />

R o m a n i a<br />

R. M u r e <br />

Ocna de Fier<br />

Dognecea<br />

Oravia-Ciclova<br />

Sasca Montan <br />

Belgrade Moldova Nou <br />

Borod-Corniel<br />

Budureasa area<br />

Juleti-Valea Fagului<br />

Mgureaua Va<br />

Poiana Rusc<br />

Banat<br />

Krepoljin<br />

Tincova area<br />

Ridanj<br />

Kuajna<br />

Reškovica<br />

Valja Saka<br />

Valja Strž<br />

S e r b i a<br />

Teregova-<br />

Lpunicel<br />

Bozovici<br />

opot area<br />

<br />

Bioara-<br />

Valea Lita<br />

Valea Seac<br />

<br />

Brusturi<br />

Cerovo<br />

Veliki Krivelj<br />

Bor<br />

R. J i u<br />

Timok<br />

B u l g a r i a<br />

S r e d n o g o r i e<br />

R. Isker<br />

R. O l t<br />

R. A r g e <br />

R. D a n u b e<br />

Black<br />

Kremikovtsi Elatsite<br />

Sea<br />

Sofia<br />

Vardar Zone<br />

Chelopech<br />

Pozharevo<br />

Yambol Bakadjik Burgas<br />

Medet<br />

Krumovo<br />

Vurly Bryag<br />

Assarel<br />

Dikanyite<br />

Zidarovo<br />

Petelevo<br />

Rossen<br />

Dinarides<br />

Krassen<br />

Vitosha<br />

Radka<br />

Gramatikovo<br />

Skopje<br />

Elshitsa<br />

Tsar Assen<br />

Velikovets<br />

Vlaykov Vruh<br />

Popada<br />

Malko Turnovo<br />

200 km<br />

Panagyurishte<br />

Mladenovo<br />

Burdtzeto<br />

20 24 o 26 Str<strong>and</strong>za<br />

o 22 o<br />

o 28 o<br />

Neogene calc-alkaline<br />

volcanics<br />

Upper Cretaceous volcanoplutonic<br />

& volcano-sedimentary<br />

complexes<br />

Upper Cretaceous intrusives<br />

Tertiary-Quaternary sediments<br />

East European <strong>and</strong> Moesian<br />

Platforms<br />

Inner Alpine-Carpathian belt<br />

Apuseni Mts.<br />

Majdanpek<br />

oka Marin<br />

Ruschia<br />

Fig. 3<br />

E u r o p e a n P l a t f o r m<br />

W. Alps<br />

Skarn<br />

Porphyry<br />

Massive sulfide<br />

Vein<br />

Po Basin<br />

Tyrrhenean Sea<br />

400 km<br />

Shear zone hosted<br />

Volcano-sedimentary<br />

Carbonate-hosted<br />

replacement<br />

Eastern Alps<br />

Apennines<br />

Penninic<br />

Adriatic Sea<br />

Bucharest<br />

R. Marika<br />

Western<br />

Carpathians<br />

Pieniny<br />

P a n n o n i a n<br />

Dinarides Hellenides<br />

Irregular body<br />

Porphyry - stock<br />

Vein<br />

Lens<br />

Mure<br />

Fe<br />

Cu<br />

Zn-Pb-(Cu)<br />

Au<br />

M gura<br />

Severin<br />

Vardar<br />

Mo<br />

Mn (Pozharevo)<br />

E. Carpathians<br />

Ceahl u<br />

Moesia<br />

Trojan<br />

Balkans<br />

Rhodope<br />

Suture zone/covered<br />

BMMB<br />

Transylv.<br />

S. Carp.<br />

Area in main figure<br />

44 o<br />

42 o<br />

BMMB <strong>deposits</strong> are a<br />

variation on the theme<br />

of the magmatic<br />

hydrothermal<br />

continuum, centered<br />

upon calc-alkaline<br />

intrusions (Ciobanu et<br />

al., 2002). <strong>The</strong> belt is<br />

characterized by exotic<br />

(Bi-Te-Se-Au-Ag-PGE-<br />

Cd-In-Sn-V) trace<br />

signatures – that of Bi is<br />

most prominent (e.g.,<br />

Cook et al. 2002).


Despite evidence that Au-rich ores are<br />

present in virtually all <strong>deposits</strong> of the belt,<br />

only Chelopech (3.38 g/t Au; 1.24 % Cu), has<br />

been/is exploited primarily for Au.<br />

Considering that 10 of 60 <strong>deposits</strong> <strong>and</strong><br />

prospects in the belt are currently under<br />

mining, the kind of arguments presented<br />

may be applicable to mineral assessment<br />

<strong>and</strong> prospecting activities in the belt.


Northern<br />

Yambol<br />

Apuseni<br />

Banat Timok<br />

-Burgas<br />

Mts.<br />

Str<strong>and</strong>za<br />

~30 MT ~525 MT ~3000 MT ~1200 MT ~70 MT<br />

W<br />

1500 km<br />

Vladeasa<br />

Baisoara<br />

Baisoara<br />

~80 Ma<br />

Baita Bihor<br />

Poiana<br />

Rusca<br />

Late Cretaceous surface<br />

Subvolcanic<br />

shallow<br />

skarn &<br />

2-3km porphyry<br />

10 km<br />

Tincova<br />

p<br />

Ruschita<br />

76.5 Ma<br />

Ocna de Fier<br />

Dognecea<br />

~82 Ma<br />

Plutonic<br />

deep seated<br />

skarn<br />

Oravita-<br />

Ciclova<br />

Present-day<br />

level of erosion<br />

Moldova<br />

Noua<br />

Panagy<br />

urishte<br />

Volcanic&subvolcanic<br />

epithermal/porphyry<br />

Majdanpek<br />

~90 Ma<br />

~80 Ma<br />

Bor<br />

Elatsite<br />

Chelopech<br />

Medet Asarel<br />

Radka<br />

Elshitsa<br />

Malko<br />

-Tarnovo<br />

Vein<br />

Epithermal<br />

&porphyry<br />

Skarn<br />

Late Cretaceous Banatitic Magmatic & Metallogenetic Belt<br />

E


Romania Serbia Bulgaria<br />

Apuseni .Mts.<br />

Poiana Rusca<br />

Banat<br />

Timok<br />

Str<strong>and</strong>za<br />

Yambol<br />

Burgas<br />

Gold speciation in<br />

<strong>deposits</strong> from the<br />

BMMB<br />

Panagyurishte<br />

Baisoara<br />

Valea Seaca<br />

Baita Bihor<br />

Valea Lita<br />

Valisor-Tincova<br />

Ocna de Fier-Dognecea<br />

Oravita-Ciclova<br />

Sasca Montana<br />

Moldova Noua<br />

Majdanpek<br />

Bor<br />

Elatsite<br />

Chelopech<br />

Assarel<br />

Medet<br />

Radka<br />

Krassen<br />

Elshitsa<br />

Malko-Turnovo district<br />

Bakadjik<br />

Vurly Briag-Zidarovo<br />

Gold ores include<br />

Au(Ag) <strong>tellurides</strong> in<br />

Panagyurishte<br />

district (Bulgaria).<br />

Maldonite is present<br />

in 2 skarns from the<br />

Romanian districts<br />

Native Au-Electrum x x x x x x x x x x x x x x x x x x x x x<br />

Maldonite x x<br />

Kostovite x<br />

Calaverite x x<br />

Sylvanite x x x x<br />

Krennerite x x <br />

Montbrayite x<br />

Nagyagite x<br />

Buckhornite x x<br />

Petzite x x x x<br />

Fischesserite x<br />

Bakadjik<br />

Baita Bihor<br />

Asarel<br />

Elatsite<br />

Moldova Noua<br />

Grade (g/t)<br />

Contained <strong>gold</strong> (tonnes)<br />

Chelopech<br />

Majdanpek<br />

V. Krivelj<br />

Bor<br />

<strong>The</strong> world-class<br />

porphyry<br />

<strong>deposits</strong> in Bor<br />

district (Serbia)<br />

have the largest<br />

Au tonnages in<br />

the belt.


What types of Au-enrichment mechanisms can we consider<br />

for BMMB <strong>deposits</strong><br />

1) <strong>The</strong> role played by Au-carriers such as Cu-Fe sulphides (Simon et al.<br />

2000; Kesler et al. 2002). Bornite in skarn (Baita Bihor, Ocna de Fier),<br />

porphyry core (Elatsite) <strong>and</strong> epithermal ores (Chelopech) accounts for<br />

most of the Au endowment in these <strong>deposits</strong> (Ciobanu et al. 2003).<br />

Chelopech, Bulgaria<br />

Coarsening of exsolved Au<br />

Exsolutions<br />

of Au in<br />

bornite<br />

5 µm 5 µm<br />

pyrite<br />

bornite<br />

Au<br />

2) <strong>The</strong> role played by Bi-melts as scavengers for Au, as proven by<br />

experiment (Douglas et al. 2000) can be extended to Bi-Te melts (e.g.<br />

Ciobanu et al. 2005). We discuss the Bi-telluride signature in 9 <strong>deposits</strong><br />

along the BMMB, <strong>and</strong> the implications their presence has for<br />

underst<strong>and</strong>ing Au formation/enrichment.


Where do we find Au associated with Bi-<strong>tellurides</strong> in<br />

BMMB <strong>deposits</strong><br />

Examples:<br />

• Skarns:<br />

Baisoara, Baita Bihor, Ocna de Fier (Romania),<br />

Majdanpek (Serbia)<br />

• Porphyry:<br />

Moldova Noua (Romania), Elatsite, Assarel<br />

(Bulgaria)<br />

• Epithermal:<br />

Radka, Elshitsa (Bulgaria)


Speciation of <strong>tellurides</strong> <strong>and</strong> selenides associated with Au in the 9<br />

<strong>deposits</strong> under discussion<br />

Mineral Abr. Formula<br />

Apuseni Mts. Banat Timok Panagyurishte<br />

Baita<br />

Bihor<br />

Baisoara<br />

Native Bi Bi Bi x x<br />

Maldonite Mld Au2Bi x x<br />

Hedleyite Hed Bi7Te3 x x x<br />

Joseite B JoB Bi4Te2S x x x<br />

Joseite A JoA Bi4TeS2 x<br />

Ikunolite Ik Bi4(S,Se)3 x<br />

Ingodite Ing Bi(Te,S,Se) x x<br />

Tsumoite Ts BiTe x x x x x<br />

Tetradymite Td Bi2Te2S x x x x x x x x x<br />

Kawazulite Kw Bi2Te2Se x x<br />

Tellurobismutite Tbs Bi2Te3 x x x x x*<br />

Native Te Te Te x x x<br />

Petzite Pz AuAg3Te2 x x x<br />

Calaverite Cal Au2Te x*<br />

Sylvanite Syl AuAgTe2 x x*<br />

Krennerite Kr Au1.8Ag1.2Te2 x* *<br />

Buckhornite Buk (Pb2BiS3)(AuTe2) x x*<br />

Fischesserite Fss AuAg3Se2 x<br />

Native Au Au Au x x x x x x x x<br />

Native Ag Ag Ag x x<br />

Hessite Hs Ag2Te x x x x x x x x<br />

Stutzite Stz Ag5Te3 x x<br />

Cervelleite Cerv Ag4TeS x x x<br />

Volynskite Vol AgBiTe2 x x<br />

Bohdanowiczite Boh AgBiSe2 x x x<br />

Clausthalite Cls Pb(Se,S) x x x<br />

Altaite Alt PbTe x*<br />

Ocna de<br />

Fier<br />

Moldova<br />

Noua<br />

Majdanpek<br />

Elatsite<br />

Assarel<br />

Radka<br />

Elshitsa


46º N<br />

NORTHERN<br />

APUSENI<br />

MTS.<br />

Hungary<br />

Arad<br />

Timi oara<br />

T i m i <br />

B î r z a v a<br />

Serbia<br />

C a r a <br />

N e r a<br />

Baita Bihor<br />

C r i s u l A l b<br />

M u r e s<br />

B e g a<br />

Ocna de Fier<br />

BANAT<br />

D a n u b e<br />

Upper Cretaceous<br />

Intrusive (granite,<br />

granodiorite, diorite)<br />

Caransebes<br />

Orsova<br />

Volcanic/volcano-sedim.<br />

(rhyolite, dacite, <strong>and</strong>esite)<br />

Poiana<br />

Rusca<br />

23º E<br />

S o m e <br />

R î u M a r e<br />

A r i e <br />

METALIFERI<br />

MTS.<br />

Deva<br />

Cluj<br />

Baisoara<br />

R O M A N I A<br />

SOUTHERN CARPATHIANS<br />

Bucharest<br />

Neogene<br />

M u r e s<br />

Subvolcanic<br />

(<strong>and</strong>esite, dacite)<br />

Volcanic<br />

(<strong>and</strong>esite, dacite)<br />

Skarns not associated with<br />

porphyry: Baisoara, Baita Bihor (N.<br />

Apuseni Mts.); Ocna de Fier-<br />

Dognecea (Banat)<br />

All are oxidised skarns (Grt>Px;<br />

Meinert 1992)<br />

All include early forsterite; humite<br />

at Baita Bihor <strong>and</strong> Baisoara only.<br />

Associations of exotic trace<br />

elements, including a common-toall<br />

Au-Bi-Te signature, are<br />

abundant especially throughout<br />

parts of the orebodies with intense<br />

retrograde overprinting.


Apuseni Mts.<br />

HB SZ.<br />

Moesia<br />

Trojan<br />

Apuseni Mts.: Two skarn <strong>deposits</strong> are situated at the E, Baisoara, <strong>and</strong> W,<br />

Baita Bihor, sides of this tectonic unit, along the Highis-Biharia Shear<br />

Zone (HBSZ).<br />

<strong>The</strong> role that inherited tectonics may have played in focusing fluids can<br />

explain why these are the only two skarn <strong>deposits</strong> in the Apuseni Mts.,<br />

even though there are several other prospects <strong>and</strong> many banatite<br />

intrusions which could have ’produced’ mineralisation.<br />

E u r o p e a n P l a t f o r m<br />

Iara River<br />

Crisul Negru R.<br />

Highis Mts.<br />

DroceaMts.<br />

Biharia Mts.<br />

Aries R.<br />

Somes R.<br />

20 km<br />

Cluj<br />

Biharia<br />

Gilau Mts.<br />

Baisoara-<br />

Valea Lita<br />

Biharia<br />

Baita Bihor<br />

Muntele<br />

Mare<br />

Poiana<br />

Biharia<br />

Arieseni<br />

Paiuseni<br />

Trascau<br />

Mts.<br />

Crisul Alb River<br />

N<br />

Lipova<br />

Paiuseni<br />

Brad<br />

Post tectonic <strong>deposits</strong><br />

Late Cretaceous ‘Gosau’-type<br />

strata(post-Austrian cover)<br />

Late Jurassic & Early Cretaceous<br />

mostly flysch strata<br />

Permian to Barremian-Aptian<br />

mostly platform strata<br />

Jurassic ophiolites &<br />

isl<strong>and</strong> arc volcanics<br />

HIGHIS-BIHARIA SHEAR ZONE (HBSZ)<br />

HBSZ (Pana & Erdmer<br />

1994) is a Variscan (300-<br />

320Ma) greenschist belt<br />

with Alpine overprint<br />

(100-114Ma) (Dallmeyer<br />

et al. 2002) marking the<br />

boundary <strong>between</strong> N <strong>and</strong><br />

S Apuseni Mts.<br />

Ca rpathians<br />

Western<br />

Pieni ny<br />

Eastern Alps<br />

E. Ca rpathians<br />

Magura<br />

W. Alps<br />

P a n n o n i a n<br />

Penninic<br />

Severin<br />

Ceahlau<br />

Transylv.<br />

Po Basin<br />

S. Ca rp.<br />

B MMB<br />

B MMB<br />

Adriatic Sea<br />

Apennines<br />

Balkans<br />

Vardar<br />

Tyrrhenean Sea<br />

400 km<br />

Neogene volcanics HBSZ<br />

Suture zone/covered<br />

Alpine orogen<br />

Area in main figure<br />

Rhodope<br />

Dinarides Hellenides<br />

Highis/Biharia igneous core,<br />

a) phyllonites<br />

a<br />

Baia de Aries carbonatelenses<br />

gneissic assemblage,<br />

a) retrogressed<br />

Codru granite-intruded<br />

amphibolite assemblage<br />

a<br />

Muntele Mare granite<br />

Somes gneiss-granite<br />

assemblage, a) retrogressed<br />

a<br />

Thrust<br />

Skarn<br />

Mures River


Valea Lita Shaft<br />

Zn(Pb) skarn<br />

BAISOARA<br />

Baisoara Shaft<br />

Fe skarn<br />

Mieilor V.<br />

Iara Valley<br />

Masca Shaft<br />

Fe skarn<br />

Almasel V.<br />

N<br />

a<br />

a<br />

a<br />

Qauternary, a) alluvial<br />

Middle Miocene<br />

Paleogene (b<strong>and</strong>ed clay,<br />

conglomerate, s<strong>and</strong>stone)<br />

Late Cretaceous intrusion<br />

(granodiorite, granite, rhyolite)<br />

Campanian Maestrichtian<br />

(conglomerate, s<strong>and</strong>stone,<br />

marly- limestone)<br />

Gilau crystalline<br />

Micaschist, a) limestone<br />

Gneissic granite, a)albiteporphyroblast<br />

amphybolite<br />

schist<br />

Fault<br />

Magnetite: Fe<br />

ore ca. 10 Mt<br />

Marble<br />

Baisoara-Valea<br />

Lita Fe(Zn-Pb)<br />

skarn<br />

Zn-Pb ore in<br />

Cacova mine.<br />

10 cm<br />

10 cm<br />

Cacova Ierii Shaft<br />

Fe skarn<br />

CACOVA IERII<br />

1 km<br />

Gold was never a target in the skarn ore<br />

although we found that this is present in<br />

the deepest level of Masca orebody.<br />

Exploitation stopped because this part of<br />

the orebody is dominantly formed by Fe<br />

sulphides rather than magnetite.


SSW<br />

4 km NNE<br />

N194 N280 N220 N140<br />

N155 N218<br />

Cacova<br />

Masca Baisoara Valea Lita<br />

Distal<br />

Zn(Pb)<br />

skarn<br />

-100<br />

-200<br />

-300<br />

-280<br />

-400<br />

Au <strong>and</strong> Bi<strong>tellurides</strong><br />

Sulphidation<br />

a<br />

Continental shale<br />

(Ypresian-Lutetian)<br />

Banatite (granodiorite)<br />

Schists, a) limestone<br />

-500<br />

a<br />

Zn-Pb ore<br />

Fe ore, a) exploited<br />

Skarn (garnet, pyroxene, epidote)<br />

Hornfels (tremolite, actinolite)<br />

Mg-skarn (forsterite, humite,<br />

ludwigite) occurs at deeper<br />

levels whereas the calcic<br />

skarn (<strong>and</strong>radite, diopside)<br />

form the upper parts. No Mgskarn<br />

is formed in Valea Lita.


Magnetite<br />

Marcasite/Pyrite<br />

Calcite<br />

Cal<br />

Pyrrhotite<br />

Diopside<br />

Retrograde stage is marked by replacement of magnetite by pyrrhotite - most<br />

intense in the lower parts of the orebodies. This is followed by a second stage<br />

of sulphidation when pyrite/marcasite replaces pyrrhotite.<br />

At Valea Lita such sulphidation is also accompanied by formation of sphalerite<br />

(up to 20 wt. % FeS). Some pockets of sphalerite (


Magnetite<br />

Bi-<strong>tellurides</strong><br />

Magnetite<br />

Bismuth<br />

50 µm<br />

Baisoara<br />

Forsterite<br />

Au<br />

Hedleyite<br />

<strong>The</strong> presence of Au <strong>and</strong> maldonite in such<br />

blebs was noted only in Baisoara<br />

Brecciation during the sulphidation stages is marked by trails with blebs/patches<br />

of native Bi, Bi-<strong>tellurides</strong> (+Bi-sulphosalts) in both Baisoara <strong>and</strong> Valea Lita.<br />

Bi-<strong>tellurides</strong>& Bi-ss<br />

Sphalerite<br />

And 25<br />

Gr 75<br />

Bismuthinite<br />

Bi<br />

And 95<br />

Chalcopyrite<br />

Valea Lita<br />

Valea Lita


Tetradymite is formed during retrograde reactions that increase sulphidation state<br />

leading to replacement of pyrrhotite by pyrite<br />

Bi<br />

Bism<br />

Au&<br />

Bis<br />

m&<br />

Ttd<br />

Joseite B<br />

Skeletal Au formed during sulphidation<br />

of an assemblage with joseite B <strong>and</strong><br />

maldonite:<br />

maldonite + joseite B + Sulphur <br />

Au + tetradymite + <strong>bismuth</strong>inite<br />

(2Au 2<br />

Bi+Bi 4<br />

Te 2<br />

S+3S 2<br />

=<br />

4Au+Bi 2<br />

Te 2<br />

S+2Bi 2<br />

S 3<br />

)


Se+S<br />

BiS<br />

Ik<br />

Baisoara<br />

Valea Lita<br />

JoA<br />

Ing<br />

JoB<br />

Ttd<br />

Bi+Pb<br />

Hed<br />

Pls<br />

Ts<br />

Tbs<br />

Te<br />

Two distinct Bi-telluride<br />

associations can be defined<br />

based on Bi/(Te+S+Se) (R):<br />

1) maldonite+Au+Bi+Bi-<strong>tellurides</strong><br />

with R>1 (hedleyite, joseite A<br />

<strong>and</strong> B, ikunolite)<br />

2) Au+Bi-<strong>tellurides</strong> with R


Baita Bihor Cu (Mo, Zn-Pb) skarn; 2Mt<br />

Triassic J1-2<br />

Pre-skarn dikes<br />

(lamprophyre, <strong>and</strong>esite)<br />

Bihor Autochton<br />

Barremian<br />

Codru<br />

Liassic/Dogger<br />

Norian<br />

Carnian dolomites<br />

Anisian /Ladinian<br />

Arieseni series<br />

Permian shale,<br />

s<strong>and</strong>stone<br />

Fault<br />

Thrust<br />

Blidar Contact<br />

Molibden<br />

Level VI<br />

1 km<br />

Codreanu V.<br />

Codreanu V.<br />

G. Codreanu<br />

G. Speranta<br />

Molibden<br />

G. Cosuri<br />

Cosuri<br />

Bernard<br />

868.2<br />

Crisul Negru V.<br />

G. II Molibden<br />

Ponor V.<br />

Corlatu V.<br />

Izv Cris<br />

983.4<br />

G. Ladislau<br />

G. Borului<br />

Antoniu<br />

Corlatu<br />

Cu(Mo,Zn-Pb)<br />

N<br />

G. Toni-Bolfu<br />

Baia Rosie-Marta-Bolfu-Toni<br />

Plesuta V.<br />

Mo Zn-Pb(Cu,Mo)<br />

Frasinel<br />

1124.4<br />

Hoanca Motului V.<br />

Proximal Distal<br />

Antoniu Fault<br />

sphalerite&galena<br />

bornite<br />

marble<br />

bornite & sphalerite<br />

garnet<br />

Gold is a target for the present exploitation. Deeper parts of Antoniu have grades of<br />

1-2g/t Au in bornite ore, also rich in Ag, <strong>and</strong> Bi. <strong>The</strong> intersection of theAntoniu <strong>and</strong><br />

Blidar faults is considered the main control for this trend (mine geologist O. Kiss).


Baita Bihor Cu (Mo, Zn-Pb) skarn; 2Mt<br />

WSW<br />

800<br />

4 km<br />

Antoniu<br />

Ocna Rosie<br />

Marta<br />

Bolfu-Toni<br />

ENE<br />

600<br />

400<br />

200<br />

Blidar Contact<br />

Level XVII (+269m)<br />

Level XVIII (+227 m)<br />

Antoniu N<br />

Speranta +576m<br />

Blidar Contact<br />

BBH (1291)old sample<br />

ca 80 Ma,<br />

Mol in granite -500m<br />

0<br />

-200<br />

-400<br />

<br />

Ladinian limestone<br />

Werfenian<br />

Permian shale,<br />

s<strong>and</strong>stone<br />

a<br />

Norian limestone<br />

Carnian dolomite<br />

Anisian limestone<br />

a) quartzite<br />

Orebody<br />

Granite (banatite)<br />

Dyke (lamprophyre,<br />

granite, <strong>and</strong>esite)<br />

Hornfels<br />

Intrusive dyke<br />

Marble


GOLD <strong>and</strong> Bi-<strong>tellurides</strong> in ANTONIU PIPE (main ore is Cu)<br />

Tetradymite is present in<br />

samples with rare Bi-sulphosalts<br />

from the upper part of Antoniu.<br />

Textures indicate that this is<br />

formed during retrograde<br />

overprint of such assemblages.<br />

Aikinite displacement<br />

Tetradymite<br />

Makovickyite<br />

Cuprobismutite<br />

Tetradymite<br />

Aikinite<br />

Paderaite<br />

Makovickyite<br />

Cuprobismutite<br />

Tetradymite


ANTONIU PIPE<br />

N<br />

Exploited<br />

Mo<br />

Breccia<br />

Zn-Pb<br />

Level XV<br />

356 m<br />

Ab. 333 m<br />

Level XVIII<br />

227.5 m<br />

Bi-<strong>tellurides</strong><br />

<strong>and</strong> Au<br />

Antoniu pipe<br />

Native Cu<br />

Ab. 3<br />

278 m<br />

Au @ 4g/t<br />

Ab. 1&1bis Dolomite<br />

235 m<br />

Ab. 2A &B<br />

325 m<br />

Mineralised<br />

skarn<br />

Zn-P b in<br />

breccia<br />

Tr. 11<br />

Limestone<br />

Tr. 13<br />

6<br />

Ni-Co signature<br />

7<br />

Mineralised dyke<br />

13<br />

<br />

Skarn<br />

Hornfels<br />

Antoniu N pipe<br />

Ab. 3-4<br />

278 -278 m<br />

Minute grains of Au are<br />

included in Bi-telluride<br />

patches associated with<br />

fluid inclusion trails in<br />

this sample.<br />

Cp ore (Po-Mt buffered) in forsterite-diopside (Di 93-64<br />

Hd 7-36<br />

)<br />

skarn from the deeper part of Antoniu (currently under<br />

exploitation).


ANTONIU PIPE<br />

Chalcopyrite<br />

Small pyroxene grains are also formed<br />

along the same fluid inclusion trails.<br />

Forsterite &<br />

Diopside<br />

Cp<br />

Di 97 Hed 3<br />

Di 62 Hed 36 Joh 3<br />

Fo & Di<br />

Retrograde front<br />

with<br />

precipitation of<br />

Bi-<strong>tellurides</strong><br />

(tetradymite,<br />

tellurobismutite)<br />

<strong>and</strong> Au.


Bi-<strong>tellurides</strong> in distal Zn-Pb<br />

skarn from Marta<br />

This pipe is formed at the<br />

contact with one of the<br />

lamprophyre dikes that was<br />

transformed into diopside<br />

skarn. Tellurides are associated<br />

with retrograde brecciation that<br />

also brings in apatite. In<br />

contrast to Antoniu, the<br />

<strong>tellurides</strong> are represented by<br />

hedleyite <strong>and</strong> joseite B (R>1).<br />

apatite<br />

apatite<br />

diopside<br />

10 µm<br />

hedleyite<br />

joseite B<br />

S+Se<br />

50 µm<br />

joseite B<br />

Ik<br />

JoA<br />

Ing<br />

Bi/(Te+S+Se)1<br />

Hed<br />

Bi2Te<br />

Pls<br />

Tsm<br />

Rkl<br />

Tbs<br />

Te<br />

1) BB1: Bi-<strong>tellurides</strong> with R1, in Marta


Banat District<br />

LMDSZ<br />

Skarn <strong>and</strong> porphyry depsoits<br />

are placed along the contact<br />

<strong>between</strong> Jurassic-Early<br />

Cretaceous sediments<br />

(carbonaceous units) <strong>and</strong><br />

crystalline schists along the W<br />

border. With the exception of<br />

Ocna de Fier-Dognecea, all<br />

other <strong>deposits</strong> are Cu skarns<br />

with associated porphyry<br />

systems.<br />

This alignment follows the<br />

Alpine Lescovita-Maciova-<br />

Dabica Shear Zone (LMDSZ)<br />

(Pana <strong>and</strong> Erdmer, 1994). Au<br />

prospects hosted within<br />

schists along the LMDSZ are<br />

targeted at Oravita.


Valeapai-Nadrag-<br />

Cincis-Shear Zone<br />

(Pana& Erdmer, 1994)<br />

LMDSZ<br />

Ocna de Fier-Dognecea, located in<br />

the uppermost nappe from Banat<br />

(Supragetic Domain), is the only<br />

skarn that lacks connection with a<br />

porphyry system.<br />

2 cm


Ocna de Fier-Dognecea<br />

Fe (Cu, Zn-Pb) skarn;<br />

15Mt, 2Mt Cu ore<br />

10 km strike, narrow<br />

contact aureola<br />

Deep-seated skarn<br />

(Nicolescu & Cornell, 1998)<br />

Closed in 1993<br />

Au exploited from Cracul<br />

cu Aur (Romans), Iuliana,<br />

Valea Lacului Mic (18th<br />

Century)<br />

Typical<br />

rhythmically<br />

b<strong>and</strong>ed<br />

magnetite<br />

ore<br />

1 cm


OCNA DE FIER – DOGNECEA Fe(Cu,Zn-Pb) skarn<br />

Proximal: Fe-Cu/Fe; Distal: Zn-Pb<br />

<strong>The</strong> Cu-Fe<br />

15 Mt ores; 40-45 % Fe; 1 % Cu, locally 1-2 g/t Au<br />

core: deepest<br />

part of Simon<br />

Iuda orebody<br />

(Cook &<br />

Ciobanu 2001)<br />

core<br />

Mt<br />

Forsterite<br />

2 cm<br />

Bn<br />

Ciobanu & Cook Fig. 2<br />

Mt<br />

400 µm<br />

South<br />

Valea Enoanea<br />

5.5 k m < < < < < < < D i s t a n c e f r o m S i m o n I u d a t o D o g n e c e a < < < < < <<br />

Dognecea: distal reducing<br />

Au &<br />

scheelite<br />

Au&Bi-tell<br />

Proximal oxidising<br />

(R > > > > > > > D i s t a n c e f r o m S i m o n I u d a t o P a u l u s > > > > > > 4.5 km<br />

Au<br />

Au&Bi-tell<br />

(R>1)<br />

Paulus: distal oxidising<br />

North<br />

Au &<br />

scheelite<br />

Valea Ferendia<br />

<br />

Limit of distal skarn<br />

Pb-Zn chimneys in<br />

limestone<br />

Pb-Zn pyroxen e skarn<br />

Dognecea<br />

Low grade Fe ore in g arnet skarn<br />

Limit of pro ximal ore<br />

Zn-Pb zone<br />

Fe zone in calcic skarn<br />

Cu-Fe zone in Mg-skarn<br />

Supergene-enriched Cu ore<br />

Source<br />

Fe<br />

Cu<br />

Pb<br />

Zn<br />

Elias<br />

Liesegang b<strong>and</strong>ing<br />

Massive ore (60% Fe-ore)<br />

30-60% Fe-ore<br />

< 30 Fe-ore in calcic skarn<br />

Reichenstein<br />

<br />

Limit of distal skarn<br />

Granodiorite<br />

Limestone<br />

Schist<br />

Altered fractured ore<br />

Breccia zone in schist


Fo<br />

Cp<br />

Ap<br />

Simon Iuda: Retrograde devolatilisation<br />

following forsterite formation is recorded<br />

only in the Cu-Fe core - represented by<br />

formation of minerals such as valeriite,<br />

phlogopite, ludwigite <strong>and</strong> apatite. It marks<br />

the boundary to the Fe zone (Di70-90-<br />

And70-90) (Ciobanu & Cook, 2004).<br />

Sp<br />

Cp<br />

Apatite cluster<br />

20 µm<br />

Srp<br />

As-bearing apatite:<br />

turneaureite,<br />

Ca 5<br />

[(As,P)O 4<br />

] 3<br />

Cl<br />

Apatite clusters contain<br />

blebs of Bi-Ag<br />

tellurosulphides, selenides<br />

& Au (small arrows)


Bogd<br />

Se<br />

Me/(Te+Se+S) = 1<br />

Nev<br />

Te-nev<br />

Kw<br />

Bogd<br />

Hs<br />

Wit<br />

Ag+Bi<br />

Tsm<br />

Ing<br />

Vol<br />

Tbs<br />

Ttd<br />

Te+S<br />

Te-nev<br />

Te-nev<br />

Tbs<br />

Vol<br />

Cu-Fe core-<br />

Simon Iuda: Bi<strong>tellurides</strong><br />

with<br />

Bi/(Te+S+Se)


Ing<br />

Ttd<br />

A second association of Bi <strong>tellurides</strong> (R>1; OdF2), native Bi, Au <strong>and</strong><br />

maldonite is present in blebs along trails that crosscut magnetite in distal<br />

Zn-Pb skarn at Paulus (4.5 km N of Simon Iuda), hosted within calcic<br />

skarn (HedJoh>60).<br />

Distal skarn: Paulus<br />

S<br />

Mld<br />

Au<br />

Bism<br />

Jo<br />

Bi<br />

Hed<br />

Pls<br />

Tsm<br />

Rkl<br />

Tbm<br />

Te<br />

Orebodies in Paulus have Fe ore with<br />

hematite at the lower part <strong>and</strong> Zn-Pb ore<br />

at the upper part. Retrograde stage is<br />

characterised by fO2 decrease that<br />

induces formation of magnetite after<br />

hematite. Hematite is again formed<br />

along cleavages in magnetite outwards<br />

from late fractures.


MOLDOVA NOUA<br />

orefield<br />

N<br />

FLORIMUNDA<br />

Cu skarn<br />

(underground)<br />

Baronului V.<br />

MOLDOVA NOUA<br />

Lake<br />

Radimna V.<br />

Western tectonic line<br />

SUVOROV<br />

porphyry Cu&skarn<br />

(open pit)<br />

Valea Mare<br />

Moldovita<br />

NW Mol stock<br />

Og. Rau<br />

Moldovita-Colonovat synclinorium<br />

a<br />

Quaternary<br />

Late Cretaceous<br />

granodiorite (banatite);<br />

a) contact aureola<br />

Albian-Cenomanian<br />

Late Aptian<br />

(Minis strata)<br />

Low Aptian-Hauterivian<br />

(Plopa limestone)<br />

Valanginian-Berriasian<br />

(Crivina marls)<br />

Late Tithonic<br />

(Marita limestone)<br />

Low Tithonic<br />

(Bradet limestone)<br />

Low Kimmeridgian-<br />

Late Oxfordian<br />

(V. Aninei limestone)<br />

Triassic<br />

Crystalline schists<br />

Fault<br />

Moldova Noua orefield (500Mt) includes<br />

a large porphyry Cu stock (Suvorov-<br />

Valea Mare), <strong>and</strong> two small Cu skarns in<br />

the N <strong>and</strong> S. However, the high grade<br />

ore is associated with patches of calcic<br />

skarn within the porphyry stock.<br />

Ore<br />

Skarn<br />

Granodiorite<br />

Limestone<br />

SUVOROV<br />

Mining plan<br />

level -209 m (+20m)<br />

VALEA MARE<br />

porphyry Cu&skarn<br />

(underground)<br />

VARAD<br />

Cu skarn<br />

(underground)<br />

Vard Crest<br />

VALEA MARE<br />

3 km


Brecciated <strong>and</strong>radite<br />

skarn replaced by<br />

calcite+epidote<br />

Brecciated pyrite in<br />

<strong>and</strong>radite skarn.<br />

Typical brecciation in the ores from the -209m level where<br />

<strong>tellurides</strong> <strong>and</strong> Bi-sulphosalts are present.<br />

Single tetradymite<br />

blebs in pyrite<br />

More<br />

complex<br />

blebs (Ag<br />

<strong>tellurides</strong><br />

<strong>and</strong> Ag-Bi<br />

sulphosalts)<br />

are formed<br />

in dilational<br />

sites along<br />

fractures.<br />

Cervelleite<br />

Matildite<br />

Hessite<br />

5 µm


Valea Mare-Suvorov porphyry: Bleb morphology of tetradymite in pyrite<br />

indicates that crystallisation followed deposition of a molten precipitate. Some<br />

of them have ’feeding’ necks resembling fluid inclusions.<br />

10 µm<br />

Au in pyrite<br />

Fluid inclusion trails


Timok Massif, Serbia<br />

Majdanpek<br />

Bor<br />

Veliki Krivelj<br />

Valja Strz<br />

Intrusion<br />

Massive ore<br />

Limestone<br />

Skarn<br />

Andesite<br />

Porphyry stock,<br />

a) disseminated<br />

Deposits from Bor District,<br />

Timok Massif (Serbia) include<br />

world-class porphyry Cu, with<br />

epithermal massive sulphides<br />

at the top. Even though<br />

limestones are present, skarn<br />

formation is only minor. <strong>The</strong><br />

largest <strong>deposits</strong> (Bor,<br />

Majdanpek) are centred on<br />

intrusions situated at deeper<br />

levels <strong>and</strong> intersected only in<br />

drillcores.


MAJDANPEK orefield map<br />

Zn-Pb skarn<br />

Tenka 1 & 2 & 3<br />

530m<br />

W<br />

590<br />

560<br />

530<br />

Tenka North Revir<br />

Drillcore<br />

E<br />

a<br />

Zn-Pb skarn ore<br />

Massive Cu-pyrite ore<br />

a) disseminated<br />

(in <strong>and</strong>esite)<br />

Dolovi 1<br />

440m<br />

500<br />

Andesite<br />

Limestone<br />

0,1% Cu<br />

0,2% Cu<br />

470<br />

Gneiss<br />

440<br />

Dolovi 2<br />

410<br />

Southern pit<br />

main Cu ore<br />

(massive &<br />

porphyry Cu)<br />

380<br />

350<br />

<br />

Pyrite ore<br />

Zn-Pb ore<br />

0,3 % Cu<br />

N<br />

500 m<br />

Quaternary<br />

Late Cretaceous<br />

Andesite lava<br />

Late Cretaceceous<br />

Senonian flysh<br />

Jurassic-Cretaceous<br />

limestone<br />

Crystalline schists<br />

(group II)<br />

Paleozoic granite<br />

Crystalline schists<br />

(group I)<br />

Fault<br />

10 cm 10 cm


Majdanpek: Zn-Pb skarn<br />

Trails of Bi-<strong>tellurides</strong> (tetradymite,<br />

tellurobismutite) <strong>and</strong> sulphosalts<br />

(<strong>bismuth</strong>inite derivatives) in skarn<br />

ore from Tenka 1 & Severni River<br />

An average grade of 1.3 g/t Au (Jankovic et al. 2002) is given for these bodies


Majdanpek: Zn-Pb skarn<br />

Deposition of Bi-<strong>tellurides</strong> &<br />

sulphosalts accompanies<br />

brecciation of pyrite <strong>and</strong><br />

formation of Zn-Pb ore. Skarn<br />

minerals are present within<br />

sphalerite.<br />

Di46Hed38Joh16.<br />

Sphalerite<br />

Di94<br />

Pyroxene with Fe-Mn–rich rims<br />

within sphalerite<br />

Small grains of pyrite formed during this stage are slightly deformed <strong>and</strong><br />

tetradymite <strong>and</strong>/or <strong>bismuth</strong>inite fills intergranular spaces (arrows).


Elatsite<br />

N<br />

Chelopech<br />

Assarel<br />

Panagyurishte<br />

Krassen<br />

Vlaikov Vruh<br />

Medet<br />

Elshitsa<br />

Petelovo<br />

Radka<br />

YUG<br />

MAC<br />

Tsar<br />

Assen<br />

Romania<br />

Sofia<br />

BULGARIA<br />

SZ<br />

Panagyurishte<br />

Greece<br />

Aegean<br />

Sea<br />

0 3 km<br />

Black<br />

Sea<br />

Burgas<br />

Turkey<br />

Tertiary alluvial sediments<br />

Upper Cretaceous<br />

intrusions<br />

Andesite <strong>and</strong> dacite<br />

lavas <strong>and</strong> tuffs<br />

Maastrichtian flysch<br />

Triassic limestones<br />

Pre-Mesozoic<br />

basement<br />

Deep faults of<br />

Panagyurishte<br />

Corridor<br />

Epithermal<br />

Cu-Au <strong>deposits</strong><br />

Porphyry-copper<br />

<strong>deposits</strong><br />

Gold is/was exploited as<br />

by-product in most of the<br />

<strong>deposits</strong> in Panagyurishte<br />

district (Bulgaria; e.g.<br />

Bogdanov et al., 2003). <strong>The</strong><br />

most diverse range of Au<br />

<strong>tellurides</strong> is known from<br />

both epithermal <strong>and</strong><br />

porphyry <strong>deposits</strong> in the<br />

district (e.g. Bogdanov et<br />

al., 2004). Even though<br />

native Te <strong>and</strong> 7 different<br />

Au-<strong>tellurides</strong> are present in<br />

the HS epithermal deposit<br />

at Chelopech (e.g. Terziev,<br />

1968; Petrunov, 1995;<br />

Bonev et al., 2004), there<br />

are no Bi-<strong>tellurides</strong> as<br />

such.<br />

<strong>The</strong>y are however<br />

abundant in chalcopyritepyrite<br />

ores from both<br />

deposit types. Importantly,<br />

they are associated with<br />

Au-<strong>tellurides</strong> <strong>and</strong> Au.


Elatsite porphyry Cu(Au)<br />

Pd2Te<br />

Bn<br />

Cov&Cc<br />

Bn-Mt-Cp ores in the preserved K-<br />

alteration core in the Cu(Au)<br />

porphyry at Elatsite are precious<br />

metal-rich<br />

(Tarkian et al. 2003; flotation<br />

concentrates: Au 13.6 g/t; Ag 33<br />

g/t; Pd 0.72 g/t; Pt 0.15 g/t; at Cu<br />

25.6%).<br />

Au<br />

Remobilisation of<br />

exsolved Au during<br />

subsequent boiling<br />

Bn<br />

Mt


In the core: Tesylvanite<br />

Te<br />

Sylv<br />

hessite<br />

tetradymite<br />

Bi-<strong>tellurides</strong> & sulphosalts<br />

in chalcopyrite-pyrite ores<br />

surrounding the core (red<br />

dotted line)<br />

aikinite


Cp<br />

Td<br />

Hs<br />

Ai<br />

<strong>The</strong> Assarel porphyry features abundant Bi<strong>tellurides</strong>,<br />

selenides <strong>and</strong> rare Bi-sulphosalts in<br />

chalcopyrite-pyrite ores.<br />

Fischesseite: AuAg3Se2<br />

Hessite


Bi-<strong>tellurides</strong><br />

are found along<br />

brecciation<br />

trails.<br />

Td<br />

Hs<br />

Bohdanowiczite<br />

Td<br />

Td<br />

Hs<br />

Ag-Cbs<br />

Mutual boundaries inside<br />

the blebs suggest melt<br />

precipitation


Epithermal <strong>deposits</strong> in<br />

southern Panagyurishte:<br />

Radka <strong>and</strong> Elshitsa<br />

NW<br />

923<br />

Radka<br />

fault<br />

149<br />

907<br />

SE<br />

300<br />

0<br />

Granodiorite porphyry<br />

Subvolcanic dacite<br />

-300<br />

-600<br />

Dacite ash tuff<br />

Dacite agglomerate<br />

tuff<br />

Andesite agglomerate<br />

<strong>and</strong> ash tuff<br />

Andesite lava<br />

<strong>and</strong> breccia<br />

Cu-Au sulphide orebody<br />

Pyrite-dominated<br />

orebody<br />

Fault<br />

149 Drill hole<br />

SW NE<br />

7<br />

9 Elshitsa fault<br />

12<br />

13<br />

0 200 400m<br />

370<br />

Subvolcanic<br />

dacite<br />

Granodiorite<br />

140<br />

-90<br />

Effusive dacite<br />

Cu-Au sulphide<br />

orebody<br />

Pyrite-dominated<br />

orebody<br />

Anhydrite<br />

Fault<br />

0 200 m<br />

9<br />

Drill hole


Both epithermal <strong>deposits</strong>, Radka (HS) <strong>and</strong> Elshitsa (LS) features similar<br />

tetradymite-aikinite associations in brecciated pyrite-chalcopyrite ores.<br />

Position of the Bi-telluride blebs along fractures<br />

clustered by fluid inclusion trails, as well as their<br />

shape, is highly indicative for contemporaneous<br />

precipitation.<br />

1 cm


HS epithermal: Radka<br />

Chalcopyrite-pyrite ore contains Au-<strong>tellurides</strong> together with Bi-<strong>tellurides</strong><br />

in complex blebs (sulphosalts <strong>and</strong> sphalerite)


Elatsite<br />

<br />

Assarel<br />

Radka<br />

Radka<br />

Elshitsa<br />

<strong>The</strong> association tetradymite-aikinite (CuPbBiS 3 ) is common to<br />

porphyry <strong>and</strong> epithermal ores in Panagyurishte.<br />

It is formed during events marked by strong brecciation <strong>and</strong><br />

suggests precipitation of such blebs in a molten state, together with<br />

abundant fluid inclusions. When present, Au-<strong>tellurides</strong> are included<br />

in the blebs, whereas Au may also be as single grains


Bi<br />

Ikunolite<br />

4/3<br />

Joseite A<br />

1/1<br />

Joseite B<br />

Hedleyite<br />

2/3<br />

Ingodite<br />

Pilsenite<br />

S+Se<br />

Tetradymite<br />

Tsumoite<br />

Ruckligeite<br />

Tellurobismutite<br />

Porphyry Cu Elatsite (Cp ore)<br />

Porphyry Cu Assarel (Cp ore)<br />

S+Se<br />

Te<br />

Bi<br />

Bi/(Te+S+Se)>1<br />

Cu skarn Oravita<br />

Cu skarn-porrphyry Moldova Noua<br />

Zn (Pb) skarn Majdanpek<br />

S+Se<br />

Bi/(Te+S+Se)


How can Bi-<strong>tellurides</strong> scavenge Au from hydrothermal fluids<br />

Metals precipitated above their melting points (as melts) from fluids can<br />

extract Au from those fluids as proven experimentally for native Bi (Douglas<br />

et al. 2000). Using hydrothermal fluids undersaturated in Au for the<br />

experiments, this mechanism was shown to be a more efficient alternative in<br />

extracting Au from a fluid than precipitation upon saturation, i.e. a proper<br />

‘scavenger’ for Au. <strong>The</strong> templates of many Au skarns (Meinert 2000) <strong>and</strong><br />

orogenic Au (e.g. Maiskoe, Ukraine; Cook et al. 2002) replicate experiments of<br />

Douglas et al. (2000) below the Po/Py buffer.<br />

BS1<br />

Bismuthinite<br />

(Bi 2<br />

S 3<br />

)<br />

Maldonite<br />

(Au 2<br />

Bi)<br />

Au<br />

Fractionation of melts from a fluid<br />

(precipitation of metals above the<br />

solvus curve) is controlled by two<br />

factors: (1) temperature above m.p.<br />

(T melt ) along the liquid/solid curve, <strong>and</strong><br />

(2) insolubility of metal-complexes in<br />

the fluid at the respective temperature.<br />

<strong>The</strong> latter is, in turn, controlled by<br />

chemistry of the fluid, e.g.<br />

sulphidation/oxidation (fS 2 /fO 2 ) <strong>and</strong><br />

redox (Ph/Eh) characteristics of the<br />

fluid.


Bi<br />

Hedleyite<br />

<strong>The</strong> only eutectic on the Bi side<br />

in the Bi-Te system (BS1).<br />

0<br />

Temperature ( C)<br />

Wt. % Te<br />

588<br />

600<br />

Bi-rich side eutectic: 540 562 59.8<br />

Bi & hedleyite,<br />

500 266 0 C<br />

420<br />

413<br />

400<br />

375<br />

90<br />

312<br />

300<br />

Te-rich side eutectic:<br />

271.442 266<br />

Te & telluro<strong>bismuth</strong>ite,<br />

2.4<br />

413 0<br />

C<br />

200<br />

100<br />

0<br />

10<br />

20<br />

Bi7Te3 (Hed)<br />

Bi2Te<br />

30<br />

Bi4Te3 (Pilsenite)<br />

40<br />

BiTe (Tsumoite)<br />

Bi6Te7<br />

Bi4Te5<br />

50<br />

Bi2Te3 (Telluro<strong>bismuth</strong>ite)<br />

60<br />

70<br />

80<br />

90<br />

100<br />

449.57<br />

Conditions for ’melt precipitation<br />

windows’ for Bi-<strong>tellurides</strong> depend on<br />

which of the Bi-rich (R>1) or Te-rich (R1 is constrained at temperatures<br />

>266 o C <strong>and</strong> reducing conditions (stability<br />

of Bi; Skirrow & Walshe 2002)<br />

R413 o C <strong>and</strong> oxidizing conditions<br />

(stability of Te; e.g. McPhail 1995).<br />

0<br />

0<br />

Bi<br />

10<br />

20<br />

30<br />

40<br />

<strong>The</strong> only<br />

eutectic on<br />

the Te side<br />

in the Bi-Te<br />

system<br />

(Majdanpek).<br />

50<br />

At. % Te<br />

60<br />

70<br />

Te<br />

80<br />

90<br />

10 µm<br />

100<br />

Te<br />

After Okamoto <strong>and</strong> Tanner (1990)<br />

Tbs


Liquid Bi can incorporate as<br />

much as 17 at. % Au beyond<br />

the solubility capacity of any<br />

fluid at any temperature. <strong>The</strong><br />

potential of melts to dissolve<br />

Au is even higher for Bi-Te<br />

melts (10-37 at. % Au) - see<br />

eutectics in the Au-Bi-Te<br />

system<br />

System Eutectic Melt (at. %) T (ºC) References<br />

Bi-Au maldonite+Bi Bi 82.8 Au 17.2<br />

241 Okamoto & Massalski (1983)<br />

Bi-Te-Au Bi 5 Te 3 +maldonite+Bi Bi 84.5 Au 14 Te 1.5<br />

235 Gather & Blachnik (1974)<br />

telluro<strong>bismuth</strong>ite<br />

+calaverite + Te<br />

telluro<strong>bismuth</strong>ite<br />

+calaverite + Au<br />

Bi 7.5 Au 10.5 Te 82<br />

383 Gather & Blachnik (1974)<br />

Bi 10 Au 37 Te 53<br />

402 Gather & Blachnik (1974)<br />

Bi-Te hedleyite + Bi Bi 97.6 Te 2.4<br />

266 Okamoto & Tanner (1990)<br />

telluro<strong>bismuth</strong>ite +Te Bi 10 Te 90<br />

413 Okamoto & Tanner (1990)<br />

<br />

In BS1, droplet chemistry represents a<br />

compositional range close to the eutectic on the<br />

Bi-rich side of the Bi-Te system.<br />

After Okamoto & Masaalski (1983)


Hm<br />

Mt<br />

Hm<br />

Mt<br />

Cc + Qz<br />

Wo<br />

And + Qz<br />

And + Qz<br />

Di90Hed10<br />

Hem<br />

+ Cc<br />

+ Qz<br />

And<br />

Di90Hed10<br />

Qz<br />

Hd + Wo<br />

-15<br />

Mt<br />

And90-70<br />

And90-70<br />

Fa<br />

Td/Tbs+Bism<br />

Tbs/Td+Te<br />

Cal/Syl+Te<br />

Gr<br />

Di10Hed50Joh40<br />

-20<br />

OdF1<br />

Mt+Bn<br />

Po+Bn<br />

-25<br />

Hed +<br />

Qz Qz + + Mt Mt<br />

BB2<br />

OdF2<br />

Mt<br />

Mt+Bn<br />

Log f(O 2)<br />

Log f(O 2)<br />

Di10Hed50Joh40<br />

Po<br />

Cos<br />

Gb<br />

Fe-Act<br />

Fe-Act<br />

And<br />

And<br />

Mt<br />

+ Cc<br />

+ Qz<br />

Py<br />

-30<br />

Po Po<br />

Hed + Mt + Cc<br />

300<br />

BB1<br />

Po+Bn<br />

BS2<br />

400<br />

BS1<br />

Cos<br />

Gb<br />

Hed +<br />

Qz Qz + + Mt Mt<br />

Fe-Act<br />

And<br />

Hed + Mt + Cc<br />

And<br />

Mt<br />

+ Cc<br />

+ Qz<br />

Py<br />

Po Po<br />

500<br />

o<br />

T ( C)<br />

600<br />

700<br />

o<br />

T ( C)<br />

600<br />

700<br />

Bi+Hed<br />

Bi+Bism<br />

Hem<br />

+ Cc<br />

+ Qz<br />

And<br />

Cc + Qz<br />

Wo<br />

Qz<br />

Hd + Wo<br />

-15<br />

Mt<br />

Fa<br />

Td/Tbs+Bism<br />

Tbs/Td+Te<br />

Cal/Syl+Te<br />

Gr<br />

-20<br />

-25<br />

Mt<br />

ELA<br />

ORV<br />

MN<br />

Po<br />

ASR<br />

Fe-Act<br />

RDK<br />

MJ<br />

ELH<br />

-30<br />

300<br />

400<br />

500<br />

Bi+Hed<br />

Bi+Bism<br />

Rectangle: epithermal (HS&LS); Star: porphyry<br />

Circle: skarn associated with porphyry<br />

Eutectics shown in the blebs that form the<br />

telluride association with R1: native Bi + hedleyite at<br />

266 o C; Okamoto & Tanner 1990; native Bi +<br />

<strong>bismuth</strong>inite at 270 o C; Lin et al. 1990) indicated by<br />

the blue dashed line. Maldonite + Bi at 241 o C<br />

(Okamoto & Masaalski 1983) is not shown.<br />

Position of each telluride<br />

association for the 9 <strong>deposits</strong> in<br />

fO 2 -T diagrams. <strong>The</strong> 3skarns<br />

without porphyry systems<br />

shows a higher spread in<br />

comparison with the other<br />

<strong>deposits</strong>. Common to all is the<br />

association R


t<br />

Based upon stability of native Bi (Skirrow &<br />

Walshe 2002) <strong>and</strong> that of native Te (e.g.<br />

McPhail 1995), as well as the<br />

thermodynamic data of Afifi et al. (1988),<br />

the ratio R can be used to discriminate<br />

associations formed in reduced<br />

environment (Po, Mt stability; R>1) from<br />

those formed in oxidised (Py, Hm stability;<br />

R


! " #$% $! <br />

! , <br />

! & $! $! <br />

$! ! ' && <br />

! # <br />

! ! & ! ! <br />

! $ ! ! $ $! #$ <br />

( ! ! $ ! <br />

! "! <br />

)! * ! $$ $+ %$, <br />

$$ <br />

" -. / (#<br />

$&'

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!