13.01.2015 Views

Association Between Strike-Slip Fault Tectonics and ... - Cmi Capital

Association Between Strike-Slip Fault Tectonics and ... - Cmi Capital

Association Between Strike-Slip Fault Tectonics and ... - Cmi Capital

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Association</strong> <strong>Between</strong> <strong>Strike</strong>-<strong>Slip</strong> <strong>Fault</strong><br />

<strong>Tectonics</strong> <strong>and</strong> the Occurrence of<br />

Porphyry Copper <strong>and</strong> Polymetallic Vein<br />

Deposits<br />

By<br />

Lawrence J. Drew<br />

U.S. Geological Survey


BEGININGS<br />

• In the 1970s, 1980s, <strong>and</strong> early 1990s, the<br />

U.S. Geological Survey (USGS) undertook<br />

the assessment of undiscovered mineral<br />

resources in:<br />

• 1. Proposed wilderness areas<br />

• 2. Natural forests<br />

• 3. Public l<strong>and</strong>s<br />

•4. USA


Recently<br />

• Individual countries<br />

• Globally for several types of mineral<br />

deposits


Proposed Wilderness Areas in<br />

1983


Many Deposit Types<br />

But<br />

Porphyry Copper Deposits<br />

Were Very Important


Observation<br />

Porphyry copper <strong>and</strong> associated deposits<br />

such as polymetallic veins, skarns,<br />

replacement deposits, are very important<br />

in the assessment of undiscovered<br />

minerals.


Titley’s Model


Apuseni Mountains, Romania<br />

(Borcos, 1962)


Northern Hungary<br />

(MAFI-USGS 1995-1998 study)


Mátra Mountains, Hungary<br />

(MAFI-USGS 1995-1998 study)


Mátra Mountains


Mátra Mountains


Apuseni Mountains


Observations<br />

(Seraphim <strong>and</strong> Hollister, 1976)<br />

Mineralized porphyry stocks are:<br />

• Small <strong>and</strong> nearly cylindrical in shape<br />

• Cross-section, approximately 1 square kilometer<br />

• Often near-surface emplacement<br />

• Possible extreme vertical extents, up to 7 kilometers<br />

• Co-eval strike-slip system nearby


A Model for Earthquake Swarms in<br />

Volcanic Regions<br />

(Hill, 1977)<br />

• Clusters of magma-filled dikes exist in the<br />

crust.<br />

• These dikes are oriented according to the<br />

greatest regional principal stress.<br />

• The tips of the dikes are connected to<br />

each other by shear faults.


Earthquake Swarm--Continued<br />

• The dike swarms are closely associated<br />

with strike-slip faults.<br />

• Volcanism <strong>and</strong> igneous intrusions are<br />

closely associated.


Hill’s Extensional-Shear Mesh


Adaptation to Mineral Deposits<br />

(Sibson, 1985)<br />

• Dilatational jogs (fault duplexes) in strike-slip<br />

fault systems are common host of<br />

mineralization.<br />

• <strong>Fault</strong> duplexes are vertical conduits for<br />

hydrothermal fluid flow.<br />

• Earthquakes trigger the flow. Deposition is<br />

episodic.


Sibson’s Extensional-Shear Mesh


The Mesh Is a Common Ore Host<br />

Chuquicamata, Chile<br />

Martha Lode, New Zeal<strong>and</strong><br />

Sibson, 1985


Synthesis Using Laboratory<br />

Model Studies<br />

• Segall <strong>and</strong> Pollard (1980)<br />

• Connolly <strong>and</strong> Cosgrove (1999)


Segall <strong>and</strong> Pollard


Connolly <strong>and</strong> Cosgrove<br />

(1999)


The Classical Magmatic-Hydrothermal<br />

Model for Porphyry Copper Deposits<br />

after Burnham, 1979


A Porphyry Deposit<br />

• It is created in a reaction containment<br />

vessel that produces a large volume of<br />

silica that forms a carapace that is<br />

repeatedly fractured.<br />

• A “quiet” extensional environment (little or<br />

no shear) is a basis requirement.


The Sequence of Deposition<br />

• Far-field stress nullified locally—<br />

porphyry copper emplacement<br />

• Far-field stress reestablished —<br />

acid sulfate veins followed by<br />

quartz adularia veins


Location of fault duplexes where porphyry<br />

copper <strong>and</strong> polymetallic vein deposits may<br />

occur in an orogen<br />

Members of the porphyry<br />

copper <strong>and</strong> polymetallic vein<br />

family of deposits occur in close<br />

spatial <strong>and</strong> temporal<br />

association with strike-slip fault<br />

duplexes.<br />

Location of strike-slip<br />

duplex structures along an<br />

active tectonic-plate<br />

margin (modified from<br />

Bally <strong>and</strong> Oldow, 1985).


The Structure of Oblique Subduction<br />

Systems<br />

(de Saint Blanquat <strong>and</strong> others, 1998)


Central Europe<br />

• Application of a tectonic model for the spatial occurrence of<br />

porphyry copper <strong>and</strong> polymetallic vein deposits.<br />

• Cretaceous deposits in the Srednogorie-Timok<br />

Timok-Banat<br />

region<br />

in Bulgaria, Serbia, <strong>and</strong> Romania.<br />

• Miocene deposits in the Apuseni Mountains, Romania, <strong>and</strong> in<br />

the central Slovakian volcanic field, Slovakia.


Location of <strong>and</strong> Application of the Tectonic<br />

Occurrence Model to the Late Cretaceous<br />

Porphyry Copper Deposits of Central<br />

Europe


Tectonic Reconstruction<br />

(Csontos <strong>and</strong> Nagymarosy, 1998)


“Straightening” Out the Orogen<br />

(Willingshoper, 2000; Ciobanu <strong>and</strong> others, 2002)


Cretaceous Age Porphyry Copper<br />

Deposits in Central Europe<br />

(modified from Singer <strong>and</strong> others, 2002)


Satellite Images Used as a Basis for<br />

Compilation in the Srednogorie Region


Locations of Deposits <strong>and</strong> <strong>Strike</strong>-<strong>Slip</strong><br />

<strong>Fault</strong>s


Registration of Geology<br />

(modified from Geografski Institute of Bulgaria, 1973; Bogaonov, 1983;<br />

Bayraktarov, 1994; Strashimirov <strong>and</strong> others, 2002)


Registration of <strong>Fault</strong>s<br />

(Modified from Geografski Institute of Bulgaria, 1973; Bogdanov, 1983;<br />

Bayraktarov, 1994); Ivanov <strong>and</strong> others, 2002; <strong>and</strong> Strashimov <strong>and</strong> others,<br />

2002)


An Interpretation<br />

• Polymetallic vein deposits are deposited in<br />

an “active” tectonic environment—<br />

extension <strong>and</strong> shear.<br />

• Generally, porphyry copper deposits are<br />

emplaced in a “quiet” tectonic<br />

environment—extension, but no shear.


Duplexes <strong>and</strong> Deposits


Tectonic Interpretation in the Timok Duplex,<br />

Serbia<br />

Basin development,<br />

volcanic rocks, <strong>and</strong><br />

granitoid intrusions<br />

(Modified from Yugoslavia<br />

Federal Geological<br />

Institute, 1970; Jankovic,<br />

1990; <strong>and</strong> Karamata <strong>and</strong><br />

others, 1997. Porphyry<br />

copper <strong>and</strong> vein deposit<br />

locations from Kozelj <strong>and</strong><br />

Jelenkovic, 2001)


Right Lateral Sense of Shear Identified at<br />

Majdanpek in the Timok region of Serbia<br />

(Jankovic <strong>and</strong> others, 1983)


<strong>Strike</strong>-<strong>Slip</strong> <strong>Fault</strong>s<br />

(Milovanovi,, 1968)


Location of Porphyry Copper Deposits in <strong>Strike</strong>-<br />

<strong>Slip</strong> <strong>Fault</strong> Duplexes <strong>Between</strong> Older Thrust <strong>Fault</strong>s<br />

in the Banat Region of Romania<br />

(Map modified from Codarcea,<br />

1967); Codareca <strong>and</strong> Dimitrescu,<br />

1967; Codarcea <strong>and</strong> Raileanu,<br />

1968; Nastaseanu <strong>and</strong> Maier, 1972;<br />

Maier <strong>and</strong> others,1973; <strong>and</strong><br />

Nastaseanu <strong>and</strong> others, 1975)


Shear Reversal Interpretation<br />

of Gravitational Collapse <strong>and</strong> Block Rotation


Location of <strong>and</strong> Application of the Tectonic<br />

Occurrence Model to the Miocene Porphyry<br />

Copper Deposits of Central Europe


Miocene Copper Porphyry Deposits in the<br />

Apuseni Mountains<br />

(Modified from<br />

Ghitulescu <strong>and</strong><br />

Socolescu,1941;<br />

Borcos, 1994;<br />

Berberleac <strong>and</strong><br />

others, 1995)


<strong>Strike</strong>-<strong>Slip</strong> Duplex Interpretation<br />

(modified from Fodor <strong>and</strong> others, 1999)


Recent Data<br />

The sense of shear is not left lateral,<br />

but<br />

right lateral.<br />

Written<br />

communication<br />

from Gary<br />

O’Connor, Gabriel<br />

Resources Ltd,<br />

October 2004.<br />

This fits the observed occurrence better.


<strong>Strike</strong>-<strong>Slip</strong> Duplex Interpretation<br />

Empirically,<br />

If the sense<br />

of shear is<br />

left lateral,<br />

then<br />

expect a<br />

porphyry<br />

copper<br />

deposit here


Application of the Model to<br />

Central Slovakia<br />

(modified from Marsina (1995) <strong>and</strong> Lexa <strong>and</strong> others (1999)


Conclusions<br />

The tectonic model for the spatial occurrence of<br />

porphyry copper <strong>and</strong> polymetallic vein deposits can<br />

account for the locations of:<br />

• Cretaceous porphyry copper <strong>and</strong> polymetallic<br />

vein deposits in the Srednogorie, Timok, <strong>and</strong><br />

Banat regions, <strong>and</strong><br />

• Miocene porphyry copper <strong>and</strong> polymetallic vein<br />

deposits in Apuseni Mountains, <strong>and</strong> central<br />

Slovakia, <strong>and</strong><br />

• Sites for exploration <strong>and</strong><br />

Can help assess undiscovered resources.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!