13.01.2015 Views

Overview of Geotechnical Physical Modelling ... - Geo-Engineering

Overview of Geotechnical Physical Modelling ... - Geo-Engineering

Overview of Geotechnical Physical Modelling ... - Geo-Engineering

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15 th ICSMGE: Istanbul 2001<br />

TC2 Workshop - Session W7<br />

<strong>Overview</strong> <strong>of</strong> <strong><strong>Geo</strong>technical</strong> <strong>Physical</strong><br />

<strong>Modelling</strong><br />

Pr<strong>of</strong>essor Mark Randolph<br />

Special Research Centre for Offshore Foundation Systems 1<br />

The University <strong>of</strong> Western Australia<br />

1<br />

Established and supported under the Australian Research Council’s Research Centres Program


Outline<br />

• <strong>Modelling</strong> in Design<br />

− formulation <strong>of</strong> conceptual models<br />

• Why <strong>Physical</strong> <strong>Modelling</strong> <br />

• Soil Characterisation<br />

• Examples<br />

15th ICSMG<br />

Istanbul, August 2001


Contribution <strong>of</strong> <strong>Modelling</strong> to Design<br />

Rigorous<br />

numerical<br />

analysis<br />

Data from<br />

full-scale<br />

events<br />

Validation <strong>of</strong><br />

modelling<br />

techniques<br />

Design<br />

Calibration <strong>of</strong><br />

conceptual<br />

model<br />

<strong>Physical</strong><br />

model<br />

Demonstration <strong>of</strong><br />

applicability<br />

Conceptual<br />

model<br />

15th ICSMG<br />

Istanbul, August 2001


Verification <strong>of</strong> Conceptual Models<br />

Two different categories:<br />

• Simplified Analytical Models<br />

− e.g. approximate elastic solutions; plastic limit analyses<br />

− generally, must validate through rigorous numerical<br />

analysis, NOT through physical modelling<br />

• Correlations with Soil Parameters<br />

− e.g. pile shaft friction; limiting vane torque; bearing<br />

'capacity' in compressible granular materials<br />

− essential to mimic typical (prototype) measurement <strong>of</strong><br />

key soil properties for correlations<br />

15th ICSMG<br />

Istanbul, August 2001


Why <strong>Physical</strong> <strong>Modelling</strong> <br />

• Complexity <strong>of</strong> Soil Response<br />

− particle crushing, destructuring (e.g. cemented soils)<br />

− (strength) anisotropy, strain s<strong>of</strong>tening (shear bands)<br />

− cyclic loading, creep<br />

• Complexity <strong>of</strong> <strong>Geo</strong>metry or Construction<br />

− pile installation: jacked, driven, bored<br />

− large penetration (e.g. drag anchors, caissons)<br />

− tunnelling (), deep excavation/retaining walls ()<br />

• New Phenomena<br />

− e.g. fundamental soil response; thermomechanical or<br />

chemical interactions<br />

15th ICSMG<br />

Istanbul, August 2001


Soil Characterisation in Model Testing<br />

• For conceptual model development, essential to<br />

plan soil characterisation studies as integrated<br />

part <strong>of</strong> model testing<br />

− spatial variation <strong>of</strong> strength (3-D)<br />

− temporal variation in strength<br />

• Clays<br />

− penetrometer testing (cone, T-bar etc), vane ()<br />

• Sands<br />

− cone, buried samplers (void ratio), G o measurements<br />

15th ICSMG<br />

Istanbul, August 2001


Examples<br />

• Micro-structural response <strong>of</strong> sands during pile<br />

installation<br />

− courtesy <strong>of</strong> White/Bolton experimental studies<br />

− particle crushing, consequential stress changes<br />

• Complex piled raft foundation study<br />

− consolidation <strong>of</strong> s<strong>of</strong>t clay using wick drains<br />

− conditioning <strong>of</strong> clay by drawing down water table<br />

− incremental loading <strong>of</strong> piled and unpiled foundations<br />

15th ICSMG<br />

Istanbul, August 2001


0<br />

1<br />

Local shear stress, τ s (kPa)<br />

0 10 20 30 40 50 60<br />

Friction Fatigue: Data<br />

Measured in the field<br />

Observed in the lab<br />

2<br />

3<br />

4<br />

5<br />

6<br />

h/D= 25<br />

h/D= 14<br />

h/D= 4<br />

Instrumented steel pile<br />

Diameter, D = 102 mm<br />

h/D= 25<br />

Instrument cluster<br />

h/D= 14<br />

h/D= 4<br />

Distance from pile tip, h<br />

Lehane, 1992<br />

From Lehane et al (1993)<br />

UNIVERSITY OF<br />

CAMBRIDGE<br />

Mechanism: Horizontal compression around base creates<br />

high horizontal stress on pile shaft. Subsequent shearing<br />

leads to unloading and reduced horizontal stress.<br />

Courtesy <strong>of</strong> David White, CUEL


Friction Fatigue: Challenge<br />

How can this behaviour be modelled (and predicted)<br />

Initial conditions:<br />

Stress path: Up to 2 MPa and<br />

back to a few kPa<br />

Strain path: shear strain > 100%<br />

volumetric strain > 30%<br />

Unbroken soil<br />

Shear zone<br />

Pile<br />

Stiffness <br />

10 mm Grain size = <br />

Roughness height = <br />

Shear zone: D 50 reduced by<br />

factor <strong>of</strong> 2 within 3 mm <strong>of</strong> pile.<br />

Zone <strong>of</strong> fines able to migrate<br />

into voids in far field.<br />

UNIVERSITY OF<br />

CAMBRIDGE<br />

Courtesy <strong>of</strong> David White, CUEL


Foundations on S<strong>of</strong>t Clay<br />

Objective<br />

Courtesy Dr Hackmet Joer, UWA<br />

• Evaluate relative merits <strong>of</strong> alternative piling schemes and<br />

conditioning <strong>of</strong> s<strong>of</strong>t (n.c.) clay by drawdown <strong>of</strong> water table<br />

Unpiled raft<br />

Piled raft<br />

sand<br />

surcharge<br />

s<strong>of</strong>t<br />

clay<br />

PPT<br />

PPT<br />

PPT<br />

PPT<br />

PPT<br />

PPT<br />

27 mm33 mm<br />

25 mm<br />

30 mm<br />

127<br />

mm<br />

192 mm<br />

sand<br />

layer<br />

PPT<br />

PPT<br />

wick<br />

drains<br />

162.5<br />

mm<br />

162.5<br />

mm<br />

650 mm<br />

162.5<br />

mm<br />

15th ICSMG<br />

Istanbul, August 2001


Site Investigation: T-bar Tests<br />

Prototype penetration (m)<br />

T-Bar Resistance (MPa)<br />

-2 0 2 4 6 8<br />

0<br />

Test 1-1<br />

Test 1-2<br />

5<br />

Test 2-1<br />

Test 2-2<br />

Upper Clay Test 3-1<br />

10<br />

Test 3-2<br />

Linear fit<br />

15<br />

Middle sand layer<br />

20<br />

Six tests in 3 separate samples:<br />

Upper clay:<br />

Resistance pr<strong>of</strong>ile <strong>of</strong> 25 kPa/m<br />

ds u /dz = 2.4 kPa/m (N t = 10.5)<br />

Middle sand:<br />

Peak resistance <strong>of</strong> 5 to 6 MPa<br />

N q <strong>of</strong> about 100 (6 T-bar Ø)<br />

25<br />

30<br />

Lower Clay<br />

Lower clay:<br />

High resistance due to sand<br />

carried into clay by T-bar<br />

15th ICSMG<br />

Istanbul, August 2001


Installation <strong>of</strong> Wick Drains<br />

15th ICSMG<br />

Istanbul, August 2001


Finished Wick Drains<br />

15th ICSMG<br />

Istanbul, August 2001


Loading Device - Schematic<br />

• Independent loading<br />

<strong>of</strong> each foundation<br />

• 4 loading increments<br />

(max <strong>of</strong> 100 kPa)<br />

• Separate weights<br />

linked by sliding rods<br />

• Central and edge<br />

settlement measured<br />

Displacement<br />

transducer<br />

Weights<br />

Raft<br />

Strongbox<br />

Loading frame<br />

Actuator<br />

Displacement<br />

transducer<br />

162.5 mm<br />

325 mm<br />

162.5 mm<br />

15th ICSMG<br />

Istanbul, August 2001


Loading Device - Photographs<br />

15th ICSMG<br />

Istanbul, August 2001


Settlement Response During Loading<br />

• Wick drains functioned well, leading to much<br />

faster consolidation<br />

• Drawdown <strong>of</strong> water table was shown to be<br />

effective in reducing settlements to 20 % <strong>of</strong><br />

those without drawdown<br />

• Detailed modelling <strong>of</strong> different pile geometries<br />

and drawdown strategies was effective in<br />

assessing an appropriate design approach<br />

15th ICSMG<br />

Istanbul, August 2001


Discussion Issues<br />

• <strong>Physical</strong> <strong>Modelling</strong><br />

− What rôle does it have in development <strong>of</strong> conceptual<br />

models for design<br />

• Micro-structural Response<br />

− New techniques to quantify micro-structural response<br />

during construction processes<br />

− Can we make quantitative links for use in design<br />

models<br />

• Complex Problems<br />

− Are we kidding ourselves that our (scaled) results are<br />

a good guide to prototype performance<br />

15th ICSMG<br />

Istanbul, August 2001

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!