13.01.2015 Views

Exercise 3.3

Exercise 3.3

Exercise 3.3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

MA111: Prepared by Dr.Archara Pacheenburawana 26<br />

<strong>Exercise</strong> <strong>3.3</strong><br />

1. For each of the numbers a, b, c, d, e, r, s, and t, state whether the function whose<br />

graphisshown hasanabsolutemaximum orminimum, a localmaximum orminimum,<br />

or neither a maximum nor a minimum.<br />

(a)<br />

y<br />

a b c d e r s t<br />

x<br />

(b)<br />

y<br />

a b c d e r s<br />

t<br />

x<br />

2. Use the graph to state the absolute and local maximum and minimum values of the<br />

function.<br />

(a)<br />

y<br />

y = f(x)<br />

1<br />

0<br />

1<br />

x<br />

(b)<br />

y<br />

y = f(x)<br />

1<br />

0<br />

1<br />

x


MA111: Prepared by Dr.Archara Pacheenburawana 27<br />

3. Find all critical numbers and the local extreme values of the following functions.<br />

(a) f(x) = x 2 +5x−1<br />

(b) f(x) = x 3 −3x+1<br />

(c) f(x) = x 3 −3x 2 +3x (d) f(x) = x 4 −3x 3 +2<br />

(e) f(x) = x 3/4 −4x 1/4 (f) f(x) = x 3 −2x 2 −4x<br />

(g) f(x) = sinxcosx, [0,2π] (h) f(x) = x+1<br />

x−1<br />

(i) f(x) = x (j) f(x) = 1<br />

x 2 2<br />

+1<br />

(ex +e −x )<br />

(k) f(x) = x 4/3 +4x 1/3 +3x −2/3 (l) f(x) = 2x √ x+1<br />

(m) f(x) = e −x2<br />

(n) f(x) = sinx 2 , [0,π]<br />

4. Find the absolute maximum and absolute minimum values of f on the given interval.<br />

(a) f(x) = 3x 2 −12x+5, [0,3]<br />

(b) f(x) = 2x 3 +3x 2 +4, [−2,1]<br />

(c) f(x) = x 4 −4x 2 +2, [−3,2]<br />

(d) ) f(x) = x 2 − 2 x , [1 2 ,2]<br />

(e) f(x) = x<br />

x 2 +1 , [0,2]<br />

(f) f(x) = sinx+cosx, [0,π/3]<br />

(g) f(x) = xe −x , [0,2]<br />

(h) f(x) = x−3lnx, [1,4]<br />

(i) f(x) = |x−1|, [0,3]<br />

(j) f(x) = 3√ x, [−1,27]<br />

Answer to <strong>Exercise</strong> <strong>3.3</strong><br />

1. (a) Absolute maximum at b; local maxima at b, e, and r;<br />

absolute minimum at d; local minima at d and s<br />

(b) Absolute maximum at e; local maxima at e and s;<br />

absolute minimum at t; local minima at b, c, d, r, and t<br />

2. (a) Absolute maximum f(4) = 4; absolute minimum f(7) = 0<br />

local maximum f(4) = 4, f(6) = 3; local minimum f(2) = 1, f(5) = 2<br />

(b) Absolute maximum f(7) = 5; absolute minimum f(1) = 0<br />

local maximum f(0) = 2, f(3) = 4, f(5) = 3<br />

local minimum f(1) = 0, f(4) = 2, f(6) = 1


MA111: Prepared by Dr.Archara Pacheenburawana 28<br />

3. (a) − 5 , absolute minimum (b) −1, local maximum; 1, local minimum<br />

2<br />

(c) 1, no local extreme values<br />

9<br />

(d) 0, no local extreme values; , local minimum<br />

4<br />

16<br />

(e) 0, no local extreme values; , local minimum<br />

9<br />

(f) − 2 , local minimum; 2, local maximum<br />

3<br />

(g) π, 5π, local maximum; 3π<br />

, 7π , local minimum<br />

4 4 4 4<br />

(h) 1, no local extreme values<br />

(i) −1, local minimum; 1, local maximum<br />

(j) 0, local minimum (k) −2,1, local minimum<br />

(l) − 2 , local minimum (m) 0, local maximum<br />

3<br />

√<br />

3π<br />

(n) 0, , local minimum; √ √<br />

π<br />

, 5π, local maximum<br />

2 2 2<br />

4. (a) f(0) = 5,f(2) = −7 (b) f(1) = 9,f(−2) = 0 (c) f(−3) = 47,f(± √ 2) = −2<br />

(d) f(2) = 3,f(1) = −1 (e) f(1) = 1 2 ,f(0) = 0 (f) f(π/4) = √ 2,f(0) = 1<br />

(g) f(1) = 1/e,f(0) = 0 (h) f(1) = 1,f(3) = 3−3ln3 (i) f(3) = 2,f(1) = 0<br />

(j) f(27) = 3,f(−1) = −1<br />

<strong>Exercise</strong> 3.4<br />

1. Find the intervals on which f is increasing or decreasing.<br />

(a) f(x) = x 3 −3x+2 (b) f(x) = x 4 −8x 2 +1<br />

(c) f(x) = x 6 +192x+17 (d) f(x) = (x+1) 2/3<br />

(e) f(x) = x−2sinx, [0,2π]<br />

(g) f(x) = e x2 −1<br />

(f) f(x) = sin3x, [0,π]<br />

(h) f(x) = (lnx)/ √ x<br />

2. At what values of x does f have a local maximum or minimum Sketch the graph.<br />

(a) f(x) = x 3 +2x 2 −x−1 (b) f(x) = x √ x 2 +1<br />

(c) f(x) = xe −2x (d) f(x) = lnx 2<br />

(e) f(x) = x (f) f(x) = x3<br />

x 2 −1<br />

x 2 −1<br />

(g) f(x) = sinx+cosx (h) f(x) = √ x 3 +3x 2<br />

(i) f(x) = x 2/3 −2x −1/3<br />

3. Show that 5 is a critical number of g(x) = 2 + (x − 5) 3 but g has no local extreme<br />

values at 5.<br />

4. Find a cubic function f(x) = ax 3 +bx 2 +cx+d that has a local maximum value of 3<br />

at −2 and a local minimum value of 0 at 1.


MA111: Prepared by Dr.Archara Pacheenburawana 29<br />

Answer to <strong>Exercise</strong> 3.4<br />

1. (a) Inc. on (−∞,−1)∪(1,∞); dec. on (−1,1)<br />

(b) Inc. on (−2,0)∪(2,∞); dec. on (−∞,−2)∪(0,2)<br />

(c) Inc. on (−2,∞); dec. on (−∞,−2) (d) Inc. on (−1,∞); dec. on (−∞,−1)<br />

(e) Inc. on ( π , 5π 3 3 )∪(7π,3π); dec. on (0, π 3 3 )∪(5π, 7π ) 3 3<br />

(f) Inc. on (0, π 6 )∪(3π, 5π); dec. on 6 6 (π, 3π 6 6 )∪(5π,π)<br />

6<br />

(g) Inc. on (0,∞); dec. on (−∞,0) (h) Inc. on (0,e 2 ); dec. on (e 2 ,∞)<br />

2. (a) Loc. max. at x = − 2 − √ 7<br />

; loc. min. at x = 3 3 −2 + √ 7<br />

3 3<br />

y<br />

2<br />

2<br />

x<br />

(b) None<br />

10<br />

y<br />

2<br />

x<br />

(c) Loc. max. at x = 1 2<br />

y<br />

0.2<br />

1<br />

x<br />

(d) None<br />

y<br />

1<br />

1<br />

x


MA111: Prepared by Dr.Archara Pacheenburawana 30<br />

(e) None<br />

y<br />

2<br />

1<br />

x<br />

(f) Loc. max. at x = − √ 3; Loc. min. at x = √ 3<br />

y<br />

2<br />

4<br />

x<br />

(g) Loc. max. at x = π +2nπ; Loc. min. at x = 5π +2nπ<br />

4 4<br />

y<br />

2<br />

π<br />

x<br />

(h) Loc. max. at x = −2; Loc. min. at x = 0<br />

y<br />

(i) Loc. min. at x = −1<br />

2<br />

y<br />

1<br />

x<br />

2<br />

2<br />

x<br />

4. f(x) = 1 9 (2x3 +3x 2 −12x+7)


MA111: Prepared by Dr.Archara Pacheenburawana 31<br />

<strong>Exercise</strong> 3.5<br />

1. Use the given graph of f to find the intervals of concavity.<br />

(a)<br />

y<br />

20<br />

10<br />

−3<br />

−1<br />

1 3<br />

x<br />

(b)<br />

y<br />

1<br />

−4<br />

−2<br />

2 4<br />

x<br />

(c)<br />

y<br />

10<br />

5<br />

−2<br />

2 4<br />

x<br />

−5<br />

−10<br />

(d)<br />

y<br />

10<br />

5<br />

−3<br />

−1<br />

1 2 3<br />

x<br />

−5<br />

2. Given the following functions.<br />

• Find the interval of increase and decrease.<br />

• Find the local maximum and minimum values.<br />

• Find the intervals of concavity and the inflection points.


•<br />

•<br />

•<br />

•<br />

MA111: Prepared by Dr.Archara Pacheenburawana 32<br />

• Use the above information to sketch the graph.<br />

(a) f(x) = 2x 3 −3x 2 −12x (b) f(x) = x 4 −6x 2<br />

(c) f(x) = 3x 5 −5x 3 +3 (d) f(x) = x √ x 2 +1<br />

(e) f(x) = x 1/3 (x+3) 2/3 (f) f(x) = sin 2 x<br />

Answer to <strong>Exercise</strong> 3.5<br />

1. (a) CU on (−∞,−1)∪(1,∞); CD on (−1,1)<br />

(b) CU on (−∞,0); CD on (0,∞)<br />

(c) CU on (1,∞); CD on (−∞,1)<br />

(d) CU on (−1,0)∪(1,∞); CD on (−∞,−1)∪(0,1)<br />

2. (a) Inc. on (−∞,−1)∪(2,∞); dec. on (−1,2); loc. max. f(−1) = 7;<br />

loc. min. f(2) = −20; CU on ( 1,∞); CD on (−∞, 1); IP 2 2 (1 2 ,−13)<br />

2<br />

y<br />

−10<br />

5<br />

1<br />

x<br />

−20<br />

(b) Inc. on (− √ 3,0)∪( √ 3,∞); dec. on (−∞,− √ 3)∪(0, √ 3);<br />

loc. min. f(± √ 3) = −9; loc. max. f(0) = 0; CU on (−∞,−1)∪(1,∞);<br />

CD on (−1,1); IP (±1,−5)<br />

y<br />

−1<br />

1<br />

• •<br />

x<br />

• •<br />

−10<br />

(c) Inc. on (−∞,−1)∪(1,∞); dec. on (−1,−1); loc. max. f(−1) = 5;<br />

loc. min. f(1) = 1; CU on (−1/ √ 2,0)∪(1/ √ 2,∞);<br />

CD on (−∞,−1/ √ 2)∪(1/ √ 2,∞); IP (0,3), (±1/ √ 2,3∓ 8√ 7 2)


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

MA111: Prepared by Dr.Archara Pacheenburawana 33<br />

y<br />

5<br />

−1<br />

1<br />

x<br />

(d) Inc. on (−∞,∞); No loc. max and loc. min; CU on (0,∞);<br />

CD on (−∞,0); IP (0,0)<br />

y<br />

x<br />

e) Inc. on (−∞,−3)∪(−1,∞); dec. on (−3,−1); loc. max. f(−3) = 0;<br />

loc. min. f(−1) = − 3√ 4; CU on (−∞,−3)∪(−3,0); CD on (0,∞); IP (0,0)<br />

y<br />

2<br />

1<br />

x<br />

(f) Inc. on (0,π/2)∪(π,3π/2); dec. on (π/2,π)∪(3π/2,2π)<br />

loc. max. f(π/1) = f(3π/2) = 1; loc. min. f(π) = 0<br />

CU on (0,π/4)∪(3π/4,5π/4)∪(7π/4,2π); CD on (π/4,3π/4)∪(5π/4,7π/4)<br />

IP (π/4, 1),(3π/4, 1),(5π/4, 1),(7π/4, 1)<br />

2 2 2 2<br />

y<br />

1<br />

0<br />

π<br />

2<br />

π<br />

3π<br />

2<br />

2π<br />

x


MA111: Prepared by Dr.Archara Pacheenburawana 34<br />

<strong>Exercise</strong> 3.6<br />

1. Find two positive numbers whose product is 100 and whose sum is minimum.<br />

2. Find two numbers whose product is −16 and the sum of whose squares is minimum.<br />

3. Forwhatnumber doestheprincipal fourthrootexceed twicethenumberbythelargest<br />

amount.<br />

4. Find the dimensions of a rectangle with area 1000 m 2 whose perimeter is as small as<br />

possible.<br />

5. A box with a square base and open top must have the volume of 32,000 cm 3 . Find<br />

the dimensions of the box that minimize the amount of material used.<br />

6. If 1200 cm 2 of material is available to make a box with a square base and an open<br />

top, find the largest possible volume of the box.<br />

7. A farmer wishes to fence off two identical adjoining rectangular pens, each with 900<br />

square feet of area, as shown in the following Figure.<br />

y<br />

x<br />

What are x and y so that the least amount of fence is required<br />

8. Find the point on the line y = 4x+7 that is closest to the origin.<br />

9. Find the point on the line 6x+y = 9 that is closest to the point (−3,1).<br />

10. Find the point on the parabola y = x 2 that is closest to the point (0,5).<br />

11. Find the point on the parabola x+y 2 = 0 that is closest to the point (0,−3).<br />

12. Find the dimensions of the rectangle of largest area that can be inscribed in a circle<br />

of radius r.<br />

13. Find the dimensions of the isosceles triangle of largest area that can be inscribed in a<br />

circle of radius r.<br />

14. A right circular cylinder is inscribed in a cone with height h and base radius r. Find<br />

the largest possible volume of such a cylinder.<br />

15. A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible<br />

surface area of such a cylinder.<br />

16. A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible<br />

volume of such a cylinder.<br />

17. Show that the rectangle with maximum perimeter that can be inscribed in a circle is<br />

a square.


MA111: Prepared by Dr.Archara Pacheenburawana 35<br />

18. (a) Show that of all the rectangles with a given area, the one with smallest perimeter<br />

is a square.<br />

(b) Show that of all the rectangles with a given perimeter, the one with largest area<br />

is a square.<br />

19. At 7 : 00am. one ship was 60 miles due east from a second ship. If the first ship<br />

sailed west at 20 miles per hour and the second ship sailed southeast at 30 miles per<br />

hour, when were they closest together<br />

20. A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and<br />

the other is bent into an equilateral triangle. How should the wire be cut so that the<br />

total area enclosed is (a) a maximum (b) A minimum<br />

Answer to <strong>Exercise</strong> 3.6<br />

1. 10,10 2. −4,4 3.<br />

1<br />

16<br />

4. 10 √ 10×10 √ 10 5. 40×40×20 6. 4,000 cm 3<br />

7. 15 √ 3×20 √ 3 8. ( − 28,<br />

)<br />

7<br />

17 17<br />

9. ( − 45,<br />

)<br />

63<br />

37 37<br />

10.<br />

( ) (<br />

−√ 3<br />

2<br />

, 9 2<br />

,<br />

3√<br />

2<br />

, 9 2<br />

11. (−1,−1) 12. √ 2r × √ 2r 13. Base √ 3r, height 3r/2 14.<br />

4<br />

27 πr2 h<br />

15. πr 2( 1+ √ 5 ) 16. 4πr 3 /3 √ 3 19. 8 : 09am.<br />

20. (a) Use all of the wire for the square (b) 40 √ 3/ ( 9+4 √ 3 ) m for the square<br />

<strong>Exercise</strong> 3.7<br />

1. Verify that the function satisfies the three hypotheses of Rolle’s Theorem on the given<br />

interval. Then find all numbers c that satisfy the conclusion of Rolle’s Theorem.<br />

(a) f(x) = x 2 −4x+1, [0,4] (b) f(x) = x 3 −3x 2 +2x+5, [0,2]<br />

(c) f(x) = sin2πx, [−1,1]<br />

(d) f(x) = x √ x+6, [−6,0]<br />

2. Use the graph of f to estimate the values of c that satisfy the conclusion of the Mean<br />

Value Theorem for the interval [0,8].<br />

y<br />

)<br />

y = f(x)<br />

1<br />

1<br />

x


MA111: Prepared by Dr.Archara Pacheenburawana 36<br />

3. Verify that the function satisfies the hypotheses of the Mean Value Theorem on the<br />

given interval. Then find all numbers c that satisfy the conclusion of the Mean Value<br />

Theorem.<br />

(a) f(x) = 3x 2 +2x+5, [−1,1] (b) f(x) = x 3 −x, [0,2]<br />

(c) f(x) = e −2x , [0,3] (d) f(x) = x<br />

x+2 , [1,4]<br />

Answer to <strong>Exercise</strong> 3.7<br />

1. (a) 2 (b) 3±√ 3<br />

3<br />

(c) ± 1 4 ,±3 4<br />

(d) −4 2. 0.8, 3.2, 4.4, 6.1<br />

3. (a) 0 (b) 2 √<br />

3<br />

(c) − 1 2 ln[(1−e−6 )/6] (d) 3 √ 2−2<br />

<strong>Exercise</strong> 4.1<br />

1. Find the most general antiderivative of the function.<br />

(a) f(x) = 5 (b) f(x) = x 2 +π<br />

(c) f(x) = x 5/4 (d) f(x) = 1/ 3√ x 2<br />

(e) f(x) = x 2 −x (f) f(x) = 4x 5 −x 3<br />

(g) f(x) = 27x 7 +3x 5 −45x 3 + √ 2x<br />

(h) f(x) = 3 x 2 − 2 x 3 (i) f(x) = 4x6 +3x 4<br />

2. Evaluate the integral and check your answer by differentiating.<br />

∫<br />

∫<br />

(a) 3x 4 dx<br />

(b) (x 2 +x)dx<br />

∫<br />

∫<br />

(c) (3x 4 −3x)dx (d) (x+1) 2 dx<br />

∫<br />

(e) 3 √ ∫<br />

xdx (f)<br />

(3− 1 )<br />

dx<br />

x<br />

∫ 4 x 1/3 ∫<br />

−3<br />

(x 2 +1) 2<br />

(g) dx (h) √ dx<br />

x 2/3 x<br />

∫<br />

∫<br />

(i) (sinx−cosx)dx (j) 2secxtanxdx<br />

∫<br />

∫<br />

(k) 5sec 2 xdx (l) (3e x −2)dx<br />

∫<br />

∫<br />

(m) (3cosx−1/x)dx (n)<br />

(5x− 3 )<br />

dx<br />

e<br />

∫ x e x ∫<br />

+3<br />

(o) dx (p) x 1/4 (x 5/4 −4)dx<br />

e x<br />

x 3


MA111: Prepared by Dr.Archara Pacheenburawana 37<br />

Answer to <strong>Exercise</strong> 4.1<br />

1. (a) 5x+C (b) 1 3 x3 +πx+C (c) 4 9 x9/4 +C (d) 3 3√ x+C (e) 1 3 x3 − 1 2 x2 +C<br />

(f) 2 3 x6 − 1 4 x4 +C (g) 27<br />

8 x8 + 1 2 x6 − 45 4 x4 + √ 2<br />

2 x2 +C (h) − 3 x + 1 x 2 +C<br />

(i) x 4 + 3 2 x2 +C<br />

2. (a) 3 5 x5 +C (b) 1 3 x3 + x2<br />

2 +C (c) 3 5 x5 − 3 2 x2 +C (d) 1 3 (x+1)3 +C<br />

(e) 2x 3/2 +C (f) 3x+ 1 3 x−3 +C (g) 3 2 x2/3 −9x 1/3 +C (h) 2 9 x9/2 + 4 5 x5/2 +2x 1/2 +C<br />

(i) −cosx−sinx+C (j) 2secx+C (k) 5tanx+C (l) 3e x −2x+C<br />

(m) 3sinx−ln|x|+C (n) 5 2 x2 +3e −x +C (o) x−3e −x +C (p) 2 5 x5/2 − 16 5 x5/4<br />

<strong>Exercise</strong> 4.2<br />

1. Evaluate the integral by making the given substitution.<br />

∫<br />

(a) cos3xdx, u = 3x<br />

∫<br />

(b) x 2 (x 3 +2)dx, u = x 3 +2<br />

∫<br />

4<br />

(c) dx, u = 1+2x<br />

(1+2x)<br />

3<br />

∫ √ ( x+2)<br />

3<br />

(d) √ dx, u = √ x+2 x<br />

2. Evaluate the indefinite integral<br />

∫<br />

(a) 2x(x 2 +3) 4 dx<br />

∫ √x−1dx<br />

(c)<br />

∫<br />

(e)<br />

∫<br />

(g)<br />

dx<br />

5−3x<br />

1+4x<br />

√ dx<br />

1+x+2x<br />

2<br />

∫<br />

(i) cos2xdx<br />

∫<br />

(k) xsin(x 2 )dx<br />

∫<br />

(m) cos 4 xsinxdx<br />

∫<br />

(o) secxtanx √ 1+secxdx<br />

∫<br />

(b) (2x+1)(x 2 +x) 3 dx<br />

∫<br />

x 2<br />

(d) √<br />

x3 −2 dx<br />

∫<br />

(f)<br />

∫<br />

(h)<br />

2x+1<br />

x 2 +x−1 dx<br />

1<br />

√ √ dx x( x+1)<br />

2<br />

∫<br />

(j) cosx √ sinx+1dx<br />

∫<br />

sinx<br />

(l) √ dx cosx<br />

∫<br />

(n) sinx(cosx+3) 3/4 dx<br />

∫<br />

(p) cosxe sinx dx


MA111: Prepared by Dr.Archara Pacheenburawana 38<br />

∫<br />

(q) e x√ ∫<br />

1+e x dx (r) xe x2 +1 dx<br />

∫<br />

∫<br />

dx<br />

4<br />

(s)<br />

(t)<br />

xlnx<br />

x(lnx+1) dx 2<br />

∫ √cotx<br />

∫<br />

(u) csc 2 xdx (v) sinx(cosx−1) 3 dx<br />

∫<br />

∫ e<br />

(w) sec 3 x −e −x<br />

xtanxdx (x) dx<br />

e x +e−x ∫ ∫ 1+x<br />

2x+3<br />

(y)<br />

1+x dx (z) 2 x+7 dx<br />

Answer to <strong>Exercise</strong> 4.2<br />

1. (a) 1 3 sin3x+C (b) 2 3 (x3 +2) 3/2 +C (c) −1/(1+2x) 2 +C (d) 1 2 (√ x+2) 4 +C<br />

2. (a) 1 5 (x2 +3) 5 +C (b) 1 4 (x2 +x) 4 +C (c) 2 3 (x−1)3/2 +C (d) 2 3√<br />

x3 −2+C<br />

(e) − 1 3 ln|5−3x|+C (f) ln|x2 +x−1|+C (g) 2 √ 1+x+2x 2 +C<br />

(h) −2( √ x+1) −1 +C (i) 1 2 sin2x+C (j) 2 3 (sinx+1)3/2 +C (k) − 1 2 cos(x2 )+C<br />

(l) −2 √ cosx+C (m) − 1 5 cos5 x+C (n) − 4 7 (cosx+3)7/4 +C<br />

(o) 2 3 (1+secx)3/2 +C (p) e sinx +C (q) 2 3 (1+ex ) 3/2 +C (r) 1 2 ex2 +1 +C<br />

(s) ln|lnx|+C (t) −4(lnx+1) −1 +C (u) − 2 3 (cotx)3/2 +C (v) − 1 4 (cosx−1)4 +C<br />

(w) 1 3 sec3 x+C (x) ln(e x +e −x )+C (y) tan −1 x+ 1 2 ln(1+x2 )+C<br />

(z) 2(x+7)−11ln|x+7|+C<br />

<strong>Exercise</strong> 4.3<br />

1. Express the limit as a definite integral on the given interval.<br />

(a) lim<br />

n→∞<br />

n∑<br />

i=1<br />

x i sinx i △x, [0,π]<br />

n∑ e x i<br />

(b) lim △x, [1,5]<br />

n→∞ 1+x<br />

i=1 i<br />

(c) lim<br />

n∑<br />

n→∞<br />

i=1<br />

n∑<br />

n→∞<br />

(d) lim<br />

i=1<br />

[2(x ∗ i) 2 −5x ∗ i]△x, [0,1]<br />

√<br />

x<br />

∗<br />

i △x, [1,4]


MA111: Prepared by Dr.Archara Pacheenburawana 39<br />

2. Use the form of the definition of the integral given in (4.7) to evaluate the integral.<br />

(a)<br />

(c)<br />

(e)<br />

∫ 1<br />

0<br />

∫ 5<br />

1<br />

∫ 5<br />

0<br />

3. Prove that<br />

4. Prove that<br />

2xdx<br />

(2+3x−x 2 )dx<br />

(1+2x 3 )dx<br />

∫ b<br />

a<br />

∫ b<br />

a<br />

xdx = b2 −a 2<br />

.<br />

2<br />

x 2 dx = b3 −a 3<br />

.<br />

3<br />

(b)<br />

(d)<br />

(f)<br />

∫ 5<br />

−1<br />

∫ 2<br />

0<br />

∫ 2<br />

1<br />

(1+3x)dx<br />

(2−x 2 )dx<br />

x 3 dx<br />

5. Write the given sum or difference as a single integral in the form ∫ b<br />

f(x)dx. a<br />

6. If<br />

7. If<br />

(a)<br />

(c)<br />

(e)<br />

1. (a)<br />

∫ 8<br />

2<br />

∫ 1<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

∫ 3<br />

f(x)dx+<br />

f(x)dx+<br />

f(x)dx+<br />

∫ 3<br />

2<br />

∫ 1<br />

2<br />

∫ 6<br />

1 3<br />

f(x)dx = 1.8 and<br />

f(x)dx = 3,,<br />

∫ 4<br />

f(x)dx<br />

f(x)dx<br />

f(x)dx+<br />

∫ 8<br />

5<br />

(b)<br />

(d)<br />

∫ 3<br />

0<br />

∫ 2<br />

f(x)dx−<br />

f(x)dx+<br />

∫ 3<br />

2<br />

∫ 3<br />

−1 2<br />

∫ 12<br />

6<br />

f(x)dx<br />

f(x)dx = 3.2, find<br />

f(x)dx = −7, and<br />

∫ 4<br />

∫ 5<br />

2<br />

f(x)dx.<br />

f(x)dx = 2, find<br />

f(x)dx<br />

f(x)dx<br />

0<br />

0<br />

3<br />

1<br />

∫ π<br />

0<br />

xsinxdx (b)<br />

Answer to <strong>Exercise</strong> 4.3<br />

∫ 5<br />

1<br />

e x ∫ 1<br />

1+x dx (c)<br />

2. (a) 1 (b) 42 (c) 2 (d) 4 3<br />

(e) 317.5 (f) 3.75<br />

5. (a)<br />

∫ 3<br />

f(x)dx (b)<br />

∫ 2<br />

f(x)dx (c)<br />

∫ 1<br />

(2x 2 −5x)dx (d)<br />

0<br />

1<br />

f(x)dx (d)<br />

∫ 3<br />

∫ 4<br />

f(x)dx.<br />

√ xdx<br />

0<br />

0<br />

0<br />

−1 1<br />

6. −1.4 7. −12<br />

∫ 3<br />

f(x)dx (e)<br />

∫ 12<br />

f(x)dx


MA111: Prepared by Dr.Archara Pacheenburawana 40<br />

<strong>Exercise</strong> 4.4<br />

1. Evaluate the definite integrals using the First Fundamental Theorem of Calculus.<br />

(a)<br />

(c)<br />

(e)<br />

(g)<br />

(i)<br />

(k)<br />

(m)<br />

(o)<br />

(q)<br />

(s)<br />

(t)<br />

∫ 3<br />

−1<br />

∫ 4<br />

0<br />

∫ 2<br />

1<br />

∫ 3<br />

3<br />

∫ π<br />

π/2<br />

∫ 9<br />

1<br />

∫ 9<br />

8<br />

∫ π/2<br />

π/6<br />

∫ 2<br />

0<br />

∫ 3<br />

−2<br />

∫ 2<br />

0<br />

x 5 dx<br />

(b)<br />

∫ 2<br />

0<br />

(2x−3)dx<br />

∫<br />

√ 4<br />

xdx (d) ( √ x+3x)dx<br />

∫<br />

3<br />

1<br />

x dx (f) (x √ x+x −1/2 )dx<br />

4 0<br />

√<br />

∫ π/2<br />

x5 +2dx (h) 2sinxdx<br />

secxtanxdx<br />

(j)<br />

0<br />

0<br />

∫ π<br />

π/2<br />

(2sinx−cosx)dx<br />

∫<br />

1<br />

1<br />

2x dx (l) (e x −e −x )dx<br />

2 x dx (n)<br />

(<br />

x+ 2 )<br />

sin 2 dx<br />

x<br />

(p)<br />

|2x−3|dx<br />

(r)<br />

0<br />

∫ 3<br />

0<br />

∫ √ 3<br />

1<br />

∫ 3π/4<br />

0<br />

(3e x −x 2 )dx<br />

6<br />

1+x 2 dx<br />

|cosx|dx<br />

{ −x, x ≥ 0<br />

f(x)dx, where f(x) =<br />

x 2 , x < 0<br />

{ x<br />

f(x)dx, where f(x) =<br />

4 , 0 ≤ x < 1<br />

x 5 , 1 ≤ x ≤ 2<br />

2. Use the Second Fundamental Theorem of Calculus to find the derivative.<br />

∫ x<br />

∫ x √<br />

(a) f(x) = (t 2 −3t+2)dt (b) g(x) = 1−2tdt<br />

(c) g(y) =<br />

(e) f(x) =<br />

(g) h(x) =<br />

(i) y =<br />

∫ 1<br />

0<br />

∫ y<br />

1−3x<br />

2<br />

∫ x 2<br />

0<br />

∫ 1/x<br />

2<br />

t 2 sintdt (d) F(x) =<br />

(e −t2 +1)dt (f) f(x) =<br />

arctantdt (h) y =<br />

0<br />

∫ 2<br />

x<br />

∫ −1<br />

x<br />

∫ √ x<br />

u 3<br />

∫ x 3<br />

1+u du (j) y = 2<br />

3<br />

cos(t 2 )dt<br />

cost<br />

t<br />

ln(t 2 +1)dt<br />

dt<br />

√ x<br />

√<br />

tsintdt


MA111: Prepared by Dr.Archara Pacheenburawana 41<br />

Answer to <strong>Exercise</strong> 4.4<br />

1. (a) 364<br />

3<br />

(b) −2 (c) 16 3<br />

(d) 88<br />

3<br />

(e) 7 8<br />

(f) 12<br />

5<br />

(g) 0 (h) 2 (i) Does not exist<br />

(j) 3 (k) ln3 (l) e+e −1 −2 (m) 28<br />

ln2<br />

(q) 5 2<br />

(r) 2− √ 2<br />

2<br />

(s) − 11 6<br />

(t) 10.7<br />

(n) 3e 3 −12 (o) π2<br />

9 +2√ 3 (p) π 2<br />

2. (a) f ′ (x) = x 2 −3x+2 (b) g ′ (x) = √ 1+2x (c) g ′ (y) = y 2 siny<br />

(d) F ′ (x) = −cos(x 2 ) (e) f ′ (x) = (e −x4 +1)2x (f) f ′ (x) = −ln(x 2 +1)<br />

(g) h ′ (x) = −arctan(1/x)/x 2 (h) y ′ = cos√ x<br />

2x<br />

(j) y ′ = 3x 7/2 sin(x 3 )−(sin √ x)/(2 4√ x)<br />

Evaluate the definite integral, if it exists.<br />

1.<br />

3.<br />

5.<br />

7.<br />

9.<br />

11.<br />

13.<br />

15.<br />

∫ 2<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

∫ 4<br />

1<br />

∫ 3<br />

(x−1) 25 dx 2.<br />

x 2 (1+2x 3 ) 5 dx 4.<br />

<strong>Exercise</strong> 4.5<br />

∫ 2<br />

0<br />

∫ 1<br />

−1<br />

∫ π<br />

(i) y ′ = 3(1−3x)3<br />

1+(1−3x) 2<br />

x √ x 2 +1dx<br />

x<br />

(x 2 +1) 2 dx<br />

4cosx<br />

(sinx+1) 2 dx<br />

cosπxdx 6.<br />

π/2<br />

√<br />

1<br />

1+ 1 ∫ π/2<br />

x 2 x dx 8. cotxdx<br />

dx<br />

2x+3<br />

0<br />

∫ π/3<br />

0<br />

∫ 2<br />

1<br />

∫ a<br />

0<br />

10.<br />

π/4<br />

∫ 4<br />

∫<br />

sinx<br />

13<br />

cos 2 x dx 12.<br />

x √ x−1dx 14.<br />

x √ x 2 +a 2 dx (a > 0)<br />

1<br />

0<br />

∫ e 4<br />

e<br />

x−1<br />

√ x<br />

dx<br />

dx<br />

√<br />

3 (1+2x)<br />

2<br />

dx<br />

x √ lnx<br />

Answer to <strong>Exercise</strong> 4.5<br />

1. 0 2. 5 3√<br />

5−<br />

1<br />

3<br />

3. 81<br />

4<br />

4. 0 5. 0 6. −2 7.<br />

4 √ 2<br />

3<br />

− 5√ 5<br />

12<br />

8. 1 2 ln2 9. 1 2 ln3<br />

10.<br />

8<br />

3<br />

11. 1 12. 3 13. 16<br />

15<br />

14. 2 15. 1 3 (2√ 2−1)a 3


MA111: Prepared by Dr.Archara Pacheenburawana 42<br />

1. Find the area of the shaded region.<br />

<strong>Exercise</strong> 5.1<br />

(a)<br />

y<br />

y = x 2 +1<br />

−1 2<br />

x<br />

(b)<br />

y<br />

y = x 2 +2<br />

y = −x<br />

−1<br />

2 x<br />

(c)<br />

y<br />

y = 2−x 2<br />

y = x<br />

x<br />

2. Find the area of the region bounded by the given curves.<br />

(a) y = x 2 +3, y = x, −1 ≤ x ≤ 1<br />

(b) y = x 3 , y = x 2 −1, 1 ≤ x ≤ 3<br />

(c) y = x+1, y = 9−x 2 , −1 ≤ x ≤ 2


MA111: Prepared by Dr.Archara Pacheenburawana 43<br />

(d) y = e x , y = x−1, −2 ≤ x ≤ 0<br />

(e) y = x+1, y = (x−1) 2 , −1 ≤ x ≤ 2<br />

(f) y = x 2 −1, y = 1−x, 0 ≤ x ≤ 2<br />

(g) y = cosx, y = sin2x, 0 ≤ x ≤ π/2<br />

(h) y = x 3 −1, y = 1−x, −2 ≤ x ≤ 2<br />

3. Find the area of the region enclosed by the given curves.<br />

(a) y = x 2 −1, y = 7−x 2<br />

(b) y = x 2 +1, y = 3x−1<br />

(c) y = x 3 , y = 3x+2<br />

(d) y = x 3 , y = x 2<br />

(e) y = x, y = 2−x, y = 0<br />

(f) x = 3y, x = 2+y 2<br />

(g) x = y, x = −y, x = 1<br />

(h) y = x, y = 2, y = 6−x, y = 0<br />

(i) x = 1−y 2 , x = y 2 −1<br />

(j) y = cosx, y = 1−2x/π<br />

(k) y = x 2 , y = 2/(x 2 +1)<br />

(l) x = y 3 −y, x = 1−y 4<br />

Answer to <strong>Exercise</strong> 5.1<br />

1. (a) 6 (b) 40 3<br />

(c) 9 2<br />

2. (a) 20 (b) 40 (c) 19.5 (d) −e −2 (e) 31 (f) 3 (g) 1 (h) 29<br />

3 3 6 2 2<br />

3. (a) 64<br />

3<br />

(b) 1 6<br />

(c) 27<br />

4<br />

(d) 1<br />

12<br />

(e) 1 (f) 1 6<br />

(g) 1 (h) 8 (i) 1 8<br />

(j) 2− π 2<br />

(k) π − 2 3<br />

(l) 8 5<br />

<strong>Exercise</strong> 5.2<br />

1. Findthevolumeofthesolidobtainedbyrotatingtheregionboundedbyy = 2−x, y =<br />

0, and x = 0 (a) about the x-axis (b) about the line y = 3.<br />

2. Find the volume of the solid obtained by rotating the region bounded by y = √ x, y =<br />

2, and x = 0 (a) about the y-axis (b) about the line x = 4.<br />

3. Find the volume of the solid obtained by rotating the region bounded by y = e x , x =<br />

0, x = 2, and y = 0 (a) about the y-axis (b) about the line y = −2.


MA111: Prepared by Dr.Archara Pacheenburawana 44<br />

4. Findthevolumeofthesolidobtainedbyrotatingtheregionboundedbyy = x 3 , y = 0,<br />

and x = 1 (a) about the y-axis (b) about the x-axis.<br />

5. The region R enclosed by the curves y = 3−x, the x-axis, and the y-axis. Find the<br />

volume of the solid obtained by rotating the region R (a) about the y-axis, (b) about<br />

the x-axis (c) about the line y = 3, (d) about the line y = −3, (e) about the line<br />

x = 3, and (f) about the line x = −3.<br />

6. The region R enclosed by the curves y = x 2 , y = 0, and x = 1. Find the volume of<br />

the solid obtained by rotating the region R (a) about the y-axis, (b) about the x-axis,<br />

(c) about the line x = 1, (d) about the line y = 1, (e) about the line x = −1, and (d)<br />

about the line y = −1.<br />

1. (a) 8π 3<br />

4. (a) 2π 5<br />

(b) 28π<br />

3<br />

(b) π 7<br />

Answer to <strong>Exercise</strong> 5.2<br />

2. (a) 32π<br />

5<br />

(b) 224π<br />

15<br />

( e<br />

4<br />

3. (a) 2πe 2 +2π (b) π<br />

2 +4e2 − 9 )<br />

2<br />

5. (a) 9π (b) 9π (c) 18π (d) 36π (e) 18π (f) 36π<br />

6. (a) π 2<br />

(b) π 5<br />

(c) π 6<br />

(d) 7π<br />

15<br />

(e) 7π 6<br />

(f) 13π<br />

15<br />

<strong>Exercise</strong> 5.3<br />

1. Use the method of cylindrical shells to find the volume generated by rotating the<br />

region bounded by the given curve about the y-axis.<br />

(a) y = 1 , y = 0, x = 1, x = 2<br />

x<br />

(b) y = e −x2 , y = 0, x = 0, x = 1<br />

(c) y 2 = x, x = 2y<br />

2. Usethemethodofcylindricalshellstofindthevolumeofthesolidobtainedbyrotating<br />

the region bounded by the given curve about the x-axis.<br />

(a) x = 1+y 2 , x = 0, y = 1, y = 2<br />

(b) y = x 2 , y = 9<br />

(c) y = √ x, y = 0, x+y = 2<br />

3. Use the appropriate method to find the volume generated by rotating the region<br />

bounded by the given curve about the specified axis.<br />

(a) y = √ x, x = 3, y = 0; about y-axis<br />

(b) y = √ x, x = 5, y = 0; about x = 5<br />

(c) y = 1 4 x3 +1, y = 1−x, x = 1; about y-axis<br />

(d) x = y 2 , y = 1, x = 0; about x-axis<br />

(e) x = y 2 , y = 2, x = 0; about y = 2


MA111: Prepared by Dr.Archara Pacheenburawana 45<br />

Answer to <strong>Exercise</strong> 5.3<br />

1. (a) 2π (b) π(1−1/e) (c) 64π/15 2. (a) 21π/2 (b) 1944π/5 (c) 5π/6<br />

3. (a) 36√ 3<br />

5<br />

π (b) 40√ 5<br />

3<br />

π (c) 23π<br />

30<br />

(d) π 2<br />

(e) 8π 3<br />

Find the length of the curve.<br />

<strong>Exercise</strong> 5.4<br />

1. y = 1 3 (x2 +2) 3/2 , 0 ≤ x ≤ 1<br />

2. y = x4<br />

4 + 1<br />

8x 2, 1 ≤ x ≤ 3<br />

3. y = ln(secx), 0 ≤ x ≤ π/4<br />

4. y = ln(1−x 2 ), 0 ≤ x ≤ 1 2<br />

5. y = coshx, 0 ≤ x ≤ 1<br />

Answer to <strong>Exercise</strong> 5.4<br />

1.<br />

4<br />

3<br />

2. 181<br />

9<br />

3. ln( √ 2+1) 4. ln3− 1 2<br />

5. sinh1<br />

<strong>Exercise</strong> 6.1<br />

Evaluate the integral.<br />

∫<br />

∫<br />

1. xe 2x dx 2. x 2 lnxdx<br />

∫<br />

∫<br />

3. xsin4xdx 4. x 2 e −3x dx<br />

∫<br />

∫<br />

5. x 2 cos3xdx 6. e x sin4xdx<br />

∫<br />

∫<br />

7. (lnx) 2 dx 8. cosxcos2xdx<br />

∫<br />

∫<br />

9. xsec 2 xdx 10. cosxln(sinx)dx<br />

∫<br />

∫<br />

11. cos(lnx)dx 12. cos −1 xdx<br />

∫<br />

13. sin √ ∫ 1<br />

xdx 14. xsin2xdx<br />

15.<br />

17.<br />

∫ 1<br />

0<br />

∫ 4<br />

1<br />

xe −x dx 16.<br />

ln √ xdx 18.<br />

0<br />

∫ 2<br />

1<br />

∫ 2<br />

1<br />

lnx<br />

x 2 dx<br />

x 4 (lnx) 2 dx


MA111: Prepared by Dr.Archara Pacheenburawana 46<br />

Answer to <strong>Exercise</strong> 6.1<br />

1.<br />

1<br />

2 xe2x − 1 4 e2x +C 2. 1 3 x2 lnx− 1 9 x3 +C 3. − 1 4 xcos4x+ 1 16 sin4x+C<br />

4. − 1 3 x2 e −3x − 2 9 xe−3x − 2 27 e−3x +C 5. 1 3 x2 cos3x+ 2 9 xcos3x− 2 27 sin3x+C<br />

6.<br />

1<br />

17 ex sin4x− 4<br />

17 ex cos4x+C 7. x(lnx) 2 −2xlnx+2x+C<br />

8.<br />

2<br />

sin2xcosx− 1 cos2xsinx+C 9. xtanx+ln|cosx|+C<br />

3 3<br />

10. sinxln(sinx)−sinx+C 11. 1 2 x[sin(lnx)+cos(lnx)]+C<br />

12. xcos −1 x− √ 1−x 2 +C 13. −2 √ xcos √ x+2sin √ x+C 14. 1 4 sin2− 1 2 cos2<br />

15. 1− 2 16. 1 − 1 ln2 17. 2ln4− 3 18. 3 e 2 2 2 2 (ln2)2 − 64 62<br />

ln2+<br />

25 125<br />

<strong>Exercise</strong> 6.2<br />

Evaluate the integral.<br />

∫<br />

∫<br />

1. cosxsin 4 xdx 2. cos 2 xsinxdx<br />

∫ 3π/4<br />

∫<br />

3. sin 5 xcos 3 xdx 4. cos 5 xsin 4 xdx<br />

π/2<br />

∫ π/2<br />

∫<br />

5. sin 2 3xdx 6. cos 2 xsin 2 xdx<br />

0<br />

∫<br />

∫ π/4<br />

7. (1−sin2x) 2 dx 8. sin 4 xcos 2 xdx<br />

0<br />

∫<br />

9. sin 3 x √ ∫<br />

cosxdx 10. cos 2 xtan 3 xdx<br />

∫ ∫<br />

1−sinx<br />

11.<br />

cosx dx<br />

12. tan 2 xdx<br />

∫<br />

∫<br />

13. sec 4 xdx 14. tan 5 xdx<br />

∫<br />

∫ π/4<br />

15. tanxsec 3 xdx 16. tan 4 xsec 2 xdx<br />

∫<br />

17. tan 3 xsecxdx 18.<br />

0<br />

∫ π/3<br />

0<br />

tan 3 xsecxdx<br />

∫ sec 2 ∫<br />

x<br />

π/2<br />

19.<br />

cotx dx 20. cot 2 xdx<br />

π/6<br />

∫<br />

∫<br />

21. cot 3 xcsc 3 xdx 22. cot 2 ωcsc 4 ωdω


MA111: Prepared by Dr.Archara Pacheenburawana 47<br />

23.<br />

25.<br />

27.<br />

∫<br />

cscxdx 24.<br />

∫ 1−tan 2 x<br />

dx<br />

sec 2 x<br />

∫<br />

26.<br />

cos7θcos5θdθ 28.<br />

∫ sinx<br />

tanx dx<br />

∫<br />

sin5xsin2xdx<br />

∫<br />

sin4xcos5xdx<br />

Answer to <strong>Exercise</strong> 6.2<br />

1.<br />

1<br />

5 sin5 x+C 2. − 1 3 cos3 x+C 3. − 11<br />

384<br />

4. 1 5 sin5 x− 2 7 sin7 x+ 1 9 sin9 x+C<br />

5.<br />

π<br />

4<br />

6.<br />

1<br />

8 x− 1<br />

32 sin4x+C 7. 3 2 x+cos2x− 1 8 sin4x+C 8. 1<br />

192 (3π−4)<br />

9. [ 2 7 cos3 x− 2 3 cosx]√ cosx+C 10. 1 2 cos2 x−ln|cosx|+C 11. ln(1+sinx)+C<br />

12. tanx−x+C 13. 1 3 tan3 x+tanx+C 14. 1 4 sec4 x−tan 2 x+ln|secx|+C<br />

15.<br />

1<br />

3 sec3 x+C 16. 1 5<br />

17. 1 3 sec3 x−secx+C 18. 38<br />

15<br />

19. 1 2 tan2 x+C<br />

20. √ 3− π 3<br />

21. − 1 5 csc5 x+ 1 3 csc3 x+C 22. − 1 3 cot3 ω − 1 5 cot5 ω +C<br />

23. ln|cscx−cotx|+C 24. sinx+C 25. 1 2 sin2x+C 26. 1 6 sin3x− 1<br />

14 sin7x+C<br />

27.<br />

1<br />

4 sin2θ+ 1 24 sin12θ+C 28. 1 2 cosx− 1<br />

18 cos9x+C<br />

<strong>Exercise</strong> 6.3<br />

Evaluate the integral.<br />

∫ 2<br />

1.<br />

t 3√ t 2 −1 dt<br />

∫<br />

1<br />

3.<br />

x 2√ 25−x dx<br />

∫<br />

2 x 2<br />

5. √<br />

x2 +9 dx<br />

√<br />

2<br />

1<br />

2. ∫<br />

4. ∫<br />

2<br />

√<br />

x2 −4 dx<br />

dx<br />

x √ x 2 +3 dx<br />

6. ∫ √1−4x2<br />

dx<br />

∫ √x2<br />

∫ √<br />

9x2 −4<br />

7. +16dx 8. dx<br />

x<br />

∫<br />

x 2<br />

∫<br />

9.<br />

(a 2 −x 2 ) dx 10. x<br />

√ 3/2 x2 −7 dx<br />

11.<br />

13.<br />

15.<br />

∫ 3<br />

0<br />

∫ 2/3<br />

∫<br />

0<br />

dx<br />

√<br />

9+x<br />

2<br />

12.<br />

x 3√ 4−9x 2 dx 14.<br />

1<br />

√<br />

9x2 +6x−8 dx<br />

16. ∫<br />

∫ 1<br />

0<br />

x √ x 2 +8dx<br />

∫ √2x−x2<br />

dx<br />

dx<br />

(x 2 +2x+2) 2


MA111: Prepared by Dr.Archara Pacheenburawana 48<br />

17.<br />

∫<br />

e t√ 9−e 2t dt 18.<br />

∫<br />

dx<br />

√<br />

x2 +a 2 dx<br />

Answer to <strong>Exercise</strong> 6.3<br />

√<br />

π<br />

1. + √ 3<br />

− 1 2. − 4−x2 25−x<br />

24 8 4<br />

2x +C 3. − 2<br />

25x<br />

+C 4. ( √ 1 3<br />

)ln<br />

∣<br />

1<br />

5.<br />

3 (x2 +4) 3/2 −4 √ x 2 +4+C 6. 1 4 sin−1 (2x)+ 1x√ 1−4x<br />

2 2 +C<br />

√ 1<br />

7. x√ x<br />

2 2 x<br />

+4+2ln<br />

∣2 + x2 +4<br />

2 ∣ +C 8. √ 9x 2 −4−2sec −1 ( 3x )+C 2<br />

( √ x 2 +3− √ 3)<br />

x<br />

∣ +C<br />

9.<br />

13.<br />

15.<br />

x<br />

√<br />

a2 −x 2 −sin−1( x<br />

a)<br />

+C 10.<br />

√<br />

x2 −7+C 11. ln(1+ √ 2) 12. 1 3 (x2 +4) 3/2 +C<br />

64<br />

1215<br />

14. 1 2 [sin−1 (x−1)+(x−1) √ 2x−x 2 ]+C<br />

1<br />

ln∣ √<br />

∣<br />

3 3x+1+ 9x2 +6x−8 ∣ +C 16.<br />

1<br />

2<br />

[<br />

tan −1 (x−1)+<br />

]<br />

(x+1)<br />

+C<br />

(x 2 +2x+2)<br />

[<br />

1<br />

17. √ 2 e<br />

t<br />

9−e 2t +9sin −1 ( et)]<br />

+C 18. ln(x+ √ x<br />

3 2 +a 2 )+C<br />

<strong>Exercise</strong> 6.4<br />

Evaluate the integral.<br />

∫ ∫<br />

x−5<br />

1.<br />

x 2 −1 dx<br />

2. 6x<br />

x 2 −x+2 dx<br />

∫<br />

∫<br />

x+1<br />

3.<br />

x 2 −x−6 dx 4. −x+5<br />

x 3 −x 2 −2x dx<br />

∫ x 3 ∫<br />

+x+2<br />

−3x−1<br />

5.<br />

x 2 +2x−8 dx 6. x 3 −x dx<br />

∫ ∫<br />

2x+3<br />

7.<br />

(x+2) dx<br />

8. x−1<br />

2 x 3 +4x 2 +4x dx<br />

∫<br />

∫<br />

x+4<br />

x+2<br />

9.<br />

x 3 +3x 2 +2x dx 10. x 3 +x dx<br />

∫ ∫<br />

4x−2<br />

11.<br />

x 4 −1 dx<br />

12. 3x 2 −6<br />

x 2 −x−2 dx<br />

∫<br />

∫<br />

2x+3<br />

x 2<br />

13.<br />

x 2 +2x+1 dx 14. +2x+1<br />

dx<br />

x 3 +x<br />

∫<br />

4x 2 ∫<br />

+3<br />

15.<br />

x 3 +x 2 +x dx 16. 3x 3 +1<br />

x 3 −x 2 +x−1 dx


MA111: Prepared by Dr.Archara Pacheenburawana 49<br />

Answer to <strong>Exercise</strong> 6.4<br />

1. 3ln|x+1|−2ln|x−1|+C 2. 2ln|x+1|+4ln|x−2|+C<br />

3.<br />

1<br />

5 ln|x+2|+ 4 5 ln|x−3|+C 4. 2ln|x+1|+ 1 2 ln|x−2|− 5 2 ln|x|+C<br />

5. 11ln|x+4|+2ln|x−2|+ 1 2 x2 −2x+C<br />

6. ln|x+1|−2ln|x−1|+ln|x|+C 7. 2ln|x+2|−(x+2) −1 +C<br />

1<br />

8. ln|x+2|− 3 4 2 (x+2)−1 − 1 ln|x|+C 9. ln|x+2|−3ln|x+1|+2ln|x|+C<br />

4<br />

10. −ln(x 2 +1)+tan −1 x+2ln|x|+C<br />

11.<br />

3<br />

2 ln|x+1|+ 1 2 ln|x−1|−ln(x2 +1)+tan −1 x+C<br />

12. 3x+ln|x+1|+2ln|x−2|+C 13. 2ln|x+1|−(x+1) −1 +C<br />

14. 2tan −1 x+ln|x|+C 15. 3ln|x|+ 1 2 ln|x2 +x+1|− 7 √<br />

3<br />

tan −1 (2x+1 √<br />

3<br />

)+C<br />

16. 3x+2ln|x−1|+ 1 2 ln(x2 +1)−2tan −1 x+C<br />

<strong>Exercise</strong> 6.5<br />

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.<br />

1.<br />

3.<br />

5.<br />

7.<br />

9.<br />

11.<br />

13.<br />

15.<br />

17.<br />

∫ ∞<br />

1<br />

∫ ∞<br />

0<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

0<br />

∫ ∞<br />

1<br />

∫ ∞<br />

1<br />

∫ 0<br />

−1<br />

∫ 3<br />

−2<br />

∫ 2<br />

−2<br />

1<br />

(3x+1) 2 dx<br />

e −x dx 4.<br />

xe −x2 dx 6.<br />

cosxdx 8.<br />

lnx<br />

x dx<br />

2. ∫ −1<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

0<br />

∫ 1<br />

−∞<br />

10. ∫ ∞<br />

−∞<br />

lnx<br />

x 2 dx 12. ∫ 3<br />

0<br />

1<br />

√ 2−w<br />

dw<br />

x 3 dx<br />

1<br />

(x+2)(x+3) dx<br />

xe 2x dx<br />

x<br />

1+x 2 dx<br />

1<br />

√ x<br />

dx<br />

∫<br />

1<br />

π/4<br />

x dx 14. csc 2 tdt<br />

2<br />

1<br />

x 4 dx<br />

0<br />

∫ π<br />

16. secxdx<br />

∫<br />

1<br />

2<br />

x 2 −1 dx 18. z 2 lnzdz<br />

0<br />

0


MA111: Prepared by Dr.Archara Pacheenburawana 50<br />

Answer to <strong>Exercise</strong> 6.5<br />

1.<br />

1<br />

2<br />

2. D 3. 1 4. D 5. 0 6. −ln 2 3<br />

7. D 8. e2 4<br />

9. D 10. D 11. 1<br />

12. 2 √ 3 13. D 14. D 15. D 16. D 17. D 18. 8 3 ln2− 8 9<br />

<strong>Exercise</strong> 7.1<br />

1. List the first five terms of the sequence.<br />

(a) a n = 1−(0.2) n (b) a n = n+1<br />

3n−1<br />

(c) a n = 3(−1)n<br />

(e)<br />

{<br />

sin nπ 2<br />

n!<br />

}<br />

(d) {2·4·6·····(2n)}<br />

(f) a 1 = 1, a n = 1<br />

1+a n<br />

2. Findaformulaforthegeneraltermterma n ofthesequence, assuming thatthepattern<br />

of the first few terms continuous.<br />

(a) { 1<br />

2 , 1 4 , 1 8 , 1<br />

16 ,...} (b) { 1<br />

2 , 1 4 , 1 6 , 1 8 ,...}<br />

(c) {2,7,12,17,...} (d) { − 1 4 , 2 9 ,− 3<br />

16 , 4 25 ,...}<br />

(e) { 1,− 2 3 , 4 9 ,− 8<br />

27 ,...} (f) {0,2,0,2,0,2,...}<br />

3. Determine whether the sequence converges of diverges. If it converges, find the limit.<br />

(a) a n = n(n−1) (b) a n = n+1<br />

3n−1 √<br />

(c) a n = 3+5n2<br />

n<br />

(d) a<br />

n+n 2 n =<br />

1+ √ n<br />

(e) a n = 2n<br />

3 n+1 (f) a n =<br />

(g) a n = (−1)n−1 n<br />

n 2 +1<br />

(i) a n = 2+cosnπ<br />

{ } 3+(−1)<br />

n<br />

(k)<br />

n<br />

{ 2 } ln(n 2 )<br />

(m)<br />

n<br />

(o) { √ n+2− √ n}<br />

n<br />

1+ √ n<br />

(h) a n = sin(nπ/2)<br />

(j) {arctan2n}<br />

{ } n!<br />

(l)<br />

(n+2)!<br />

(n) {(−1) n sin(1/n)}<br />

{ } ln(2+e n )<br />

(p)<br />

3n<br />

(q) a n = n2 −n<br />

(r) a n = ln(n+1)−lnn


MA111: Prepared by Dr.Archara Pacheenburawana 51<br />

(s) a n = cos2 n<br />

2 n (t) a n = (1+3n) 1/n<br />

(u) a n = 1 n + 2 2 n +···+ n (v) a 2 n 2<br />

n = ncosn<br />

n 2 +1<br />

(w) a n = n!<br />

(x) a<br />

2 n n = (−3)n<br />

n!<br />

Answer to Selected <strong>Exercise</strong> 7.1<br />

1. (a) 0.8,0.96,0.992,0.9984,0.99968 (c) −3, 3 2 ,−1, 1,− 1 (e) {1,0,−1,0,1,...}<br />

2 8 40<br />

2. (a) a n = 1/2 n (c) 5n−3 (e) ( − 2 3<br />

) n−1<br />

3. (a) D (c) 5 (e) 0 (g) 0 (i) D (k) 0 (m) 0 (o) 0 (q) 0 (s) 0 (u) 1 2<br />

(w) D<br />

<strong>Exercise</strong> 7.2<br />

Determine whether the series is convergent or divergent. If it is convergent, find its sum.<br />

1. 4+ 8 + 16 + 32 +··· 2. −2+ 5 − 25 + 125 −···<br />

5 25 125 2 8 32<br />

∞∑<br />

3. 5 ( 2 n−1<br />

∞∑ (−3)<br />

3) n−1<br />

4.<br />

5.<br />

7.<br />

9.<br />

11.<br />

13.<br />

15.<br />

17.<br />

n=1<br />

∞∑<br />

3 −n 8 n+1 6.<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

1<br />

n(n+2)<br />

n<br />

√<br />

1+n<br />

2<br />

8.<br />

10.<br />

∞∑<br />

arctann 12.<br />

n=1<br />

∞∑ [ (<br />

2<br />

1<br />

) n ( )<br />

4 +3 −<br />

1 n ]<br />

5<br />

n=1<br />

14.<br />

∞∑<br />

( 1<br />

n − 1 )<br />

n−1<br />

16.<br />

∞∑ ( e<br />

) n+1<br />

π<br />

18.<br />

n=2<br />

n=1<br />

n=1<br />

n=1<br />

4 n<br />

∞∑ n<br />

n+5<br />

∞∑<br />

[2(0.1) n +(0.2) n ]<br />

n=1<br />

∞∑ 3 n +2 n<br />

n=1<br />

6 n<br />

∞∑ n<br />

ln<br />

n+1<br />

n=1<br />

∞∑ n−5<br />

n+2<br />

n=1<br />

∞∑ n!<br />

100 n<br />

n=1<br />

∞∑<br />

(<br />

3<br />

(n−1) − 3 )<br />

2 n 2<br />

n=2


MA111: Prepared by Dr.Archara Pacheenburawana 52<br />

Answer to <strong>Exercise</strong> 7.2<br />

1.<br />

20<br />

3<br />

2. D 3. 15 4. 1 7<br />

5. D 6. D 7. 3 4<br />

8. 17<br />

36<br />

9. D 10. 3 2<br />

11. D 12. D<br />

13.<br />

31<br />

6<br />

14. D 15. −1 16. D 17.<br />

e 2<br />

π(π−e)<br />

18. 3<br />

n=1<br />

<strong>Exercise</strong> 7.3<br />

Determine whether the series converges or diverges.<br />

∞∑ 1<br />

∞∑ 1<br />

∞∑<br />

1.<br />

2.<br />

3. ne −n<br />

n 4 3n+1<br />

n=1<br />

n=1<br />

n=1<br />

∞∑ 1<br />

4.<br />

5. 1+ 1 n 1.0001 8 + 1 27 + 1<br />

64 +··· 6. ∑ ∞<br />

5−2 √ n<br />

n 3<br />

n=5<br />

n=1<br />

∞∑<br />

∞∑ n<br />

∞∑ 1<br />

7. ne −n2 8.<br />

9.<br />

n 2 +1<br />

nlnn<br />

n=1<br />

n=1<br />

n=2<br />

∞∑ arctann<br />

∞∑ 1<br />

∞∑ −2<br />

10.<br />

11.<br />

12. √<br />

1+n 2 n 2 +2n+2 n+2<br />

13.<br />

16.<br />

19.<br />

22.<br />

25.<br />

28.<br />

31.<br />

34.<br />

37.<br />

40.<br />

∞∑<br />

n=2<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

7<br />

4n+2<br />

1<br />

n 2 +n+1<br />

14.<br />

17.<br />

3<br />

n2 n 20.<br />

3+cosn<br />

3 n 23.<br />

1<br />

1+ √ n<br />

26.<br />

n+1<br />

n2 n 29.<br />

n<br />

n 2 +2n+3<br />

32.<br />

n!<br />

n 100 35.<br />

n+3<br />

n 2√ n<br />

1<br />

(2n)!<br />

38.<br />

41.<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

3<br />

(4+3n) 7/6 15.<br />

5<br />

2+3 n 18.<br />

1<br />

√<br />

n(n+1)(n+2)<br />

21.<br />

n<br />

√<br />

n5 +4<br />

n 2 +1<br />

n 4 +1<br />

1<br />

n!<br />

1<br />

n √ n+1<br />

n 3<br />

(2n)!<br />

n 2<br />

n!<br />

24.<br />

27.<br />

30.<br />

33.<br />

36.<br />

39.<br />

sin2n<br />

n 2 42.<br />

n=1<br />

∞∑<br />

n=2<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

ne −3n2<br />

n+1<br />

n 2<br />

n 2 +1<br />

n 3 −1<br />

2 n<br />

1+3 n<br />

1+n+n 2<br />

√<br />

1+n2 +n 6<br />

( 1<br />

sin<br />

n)<br />

8 n<br />

n!<br />

n<br />

n+200<br />

4n 3 +3n<br />

n 5 −4n 2 +1<br />

n(−3) n<br />

4 n−1


MA111: Prepared by Dr.Archara Pacheenburawana 53<br />

43.<br />

46.<br />

49.<br />

52.<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

10 n<br />

(n+1)4 2n+1 44.<br />

n n<br />

3 1+3n 47.<br />

n n<br />

(2n)!<br />

50.<br />

∞∑ n!<br />

(−10) n 45.<br />

∞∑<br />

( ) n 2 n<br />

+1<br />

2n 2 +1<br />

48.<br />

∞∑ 4 n +n<br />

n!<br />

51.<br />

n=1<br />

n=1<br />

n=1<br />

∞∑ cos(nπ/3)<br />

n!<br />

∞∑ 1<br />

2+sin 2 n<br />

∞∑<br />

( n<br />

3n+2<br />

1<br />

1·2 + 1<br />

2·3 + 1<br />

3·4 + 1<br />

4·5 +··· 53. 1 3 + 2 3 2 + 3 3 3 + 4 3 4 +···<br />

54. 1+ 1<br />

2 √ 2 + 1<br />

3 √ 3 + 1<br />

4 √ 4 +··· 55. ∞<br />

∑<br />

56.<br />

2<br />

1·3·4 + 3<br />

2·4·5 + 4<br />

3·5·6 + 5<br />

4·6·7 +···<br />

n=1<br />

Answer to <strong>Exercise</strong> 7.3<br />

n=1<br />

n=1<br />

n=1<br />

2·4·6·····(2n)<br />

n!<br />

1. C 2. D 3. C 4. C 5. C 6. C 7. C 8. D 9. D 10. C 11. C 12. D<br />

13. D 14. C 15. C 16. C 17. C 18. D 19. C 20. C 21. D 22. C 23. C<br />

24. C 25. D 26. C 27. D 28. C 29. C 30. D 31. D 32. C 33. C 34. D<br />

35. C 36. D 37. C 38. C 39. C 40. C 41. C 42. C 43. C 44. D 45. C<br />

46. D 47. C 48. C 49. C 50. C 51. C 52. C 53. C 54. C 55. D 56. C<br />

<strong>Exercise</strong> 7.4<br />

1. Find the Maclaurin series for the function.<br />

(a) e −x (b) e ax (c) cosπx<br />

(d) sinπx (e) ln(1+x)<br />

1<br />

(f)<br />

1+x<br />

(g) coshx (h) sinhx (i) xsinx<br />

(j) xe x<br />

2. Find the Taylor series of the function f(x) centered at the given value of a.<br />

(a) e x ; a = 1 (b) e −x ; a = ln2 (c) 1 x ; a = −1<br />

1<br />

(d)<br />

x+2 ; a = 3 (e) sinπx; a = 1 (f) cosx; a = π 2<br />

2<br />

(g) lnx; a = 1<br />

(h) lnx; a = e<br />

) n


MA111: Prepared by Dr.Archara Pacheenburawana 54<br />

1. (a)<br />

(i)<br />

2. (a)<br />

(g)<br />

∞∑ (−1) n<br />

x n (c)<br />

n!<br />

n=0<br />

∞∑<br />

n=0<br />

∞∑<br />

n=0<br />

(−1) n<br />

(2n+1)! x2n+2<br />

e<br />

n! (x−1)n (c)<br />

Answer to Selected <strong>Exercise</strong> 7.4<br />

∞∑ (−1) n π 2k<br />

x 2n (e)<br />

(2n)!<br />

n=0<br />

∞∑ (−1) n−1<br />

(x−1) n<br />

n<br />

n=0<br />

∞∑<br />

(−1)(x+1) n (e)<br />

n=0<br />

∞∑ (−1) n+1<br />

x n (g)<br />

n<br />

n=0<br />

∞∑ (−1) n π 2n<br />

n=0<br />

(2n)!<br />

∞∑<br />

n=0<br />

(<br />

x− 1 ) 2n<br />

2<br />

1<br />

(2n)! x2n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!