12.01.2015 Views

Chapter 4 Stereochemistry and Chirality Flow chart for determining ...

Chapter 4 Stereochemistry and Chirality Flow chart for determining ...

Chapter 4 Stereochemistry and Chirality Flow chart for determining ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> 4 <strong>Stereochemistry</strong> <strong>and</strong> <strong>Chirality</strong><br />

if different<br />

connectivity<br />

ISOMERS<br />

CONSITUTIONAL<br />

ISOMERS<br />

if they have<br />

same connectivity<br />

CONFORMATIONAL<br />

ISOMERS<br />

ENANTIOMERS<br />

if a rotation about σ<br />

bond makes<br />

them identical<br />

if they are<br />

nonsuperimposable<br />

mirror images<br />

STEREOISOMERS<br />

CONFIGURATIONAL<br />

ISOMERS<br />

if bonds must be broken <strong>and</strong><br />

re<strong>for</strong>med to make them identical<br />

if they are not<br />

nonsuperimposable<br />

mirror images<br />

Z, E ISOMERS<br />

(DIASTEREOMERS)<br />

if they have<br />

no stereogenic<br />

centers<br />

DIASTEREOISOMERS<br />

<strong>Flow</strong> <strong>chart</strong> <strong>for</strong> <strong>determining</strong> the relationship between isomers.<br />

1


Symmetry Elements<br />

A mirror plane in Cartesian coordinates that includes the y <strong>and</strong> z axis<br />

means that <strong>for</strong> every point {x,y,z} there is a corresponding point {–x,y,z}. Ifa<br />

molecule has a mirror plane, then <strong>for</strong> every atom on one side of the plane there<br />

is an equivalent atom that is the mirror equivalent on the opposite side of the<br />

plane. When two identical groups are on one carbon, there is an internal mirror<br />

plane passing through the molecule.<br />

H<br />

H<br />

H<br />

O<br />

H<br />

H<br />

H<br />

H<br />

H<br />

2


Symmetry Elements (continued)<br />

An inversion center takes every point {x,y,z} to an equivalent point<br />

{–x,–y,–z}:<br />

Br<br />

CH 3<br />

H<br />

H<br />

H<br />

H<br />

H 3 C<br />

Br<br />

3


<strong>Chirality</strong><br />

The word "chirality" (from the Greek) refers to the property of "h<strong>and</strong>edness".<br />

To first approximation your right <strong>and</strong> left h<strong>and</strong>s are mirror images that cannot<br />

be superimposed on top of each other.<br />

4


<strong>Chirality</strong> (continued)<br />

Molecules that lack both a mirror plane <strong>and</strong> an inversion center can have nonsuperimposable<br />

mirror images <strong>and</strong> are said to be chiral. A chiral center<br />

usually is a tetrahedral carbon with four different groups attached to it. Chiral<br />

carbons are also referred to as stereocenters, stereogenic centers, or<br />

asymmmetric centers.<br />

1-Bromo-1-chloroethane is chiral:<br />

1<br />

H<br />

H<br />

4<br />

3<br />

2<br />

H 3 C<br />

Br<br />

Cl<br />

Br<br />

Cl<br />

CH 3<br />

H<br />

H<br />

H 3 C<br />

Br<br />

Cl<br />

H 3 C<br />

Cl<br />

Br<br />

H<br />

CH 3<br />

H 3 C<br />

Br<br />

Cl<br />

H<br />

Br<br />

Cl<br />

5


<strong>Chirality</strong> (continued)<br />

Any molecule that has an internal mirror plane is achiral.<br />

Cl<br />

Br<br />

H<br />

H<br />

H 3 C CH 3<br />

Cl<br />

Cl Br Br<br />

H 3 C CH 3<br />

Cl<br />

Cl<br />

Br Br<br />

A molecule that has an inversion center is achiral.<br />

Br<br />

CH 3<br />

H 3 C<br />

Br<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H 3 C<br />

Br<br />

Br<br />

rotate 90°<br />

CH 3<br />

Br<br />

CH 3<br />

H<br />

CH 3<br />

H<br />

H<br />

H<br />

H<br />

H<br />

Br<br />

Br<br />

H<br />

H 3<br />

C<br />

Br<br />

H 3 C<br />

H<br />

rotate 180°<br />

6


<strong>Chirality</strong> (continued)<br />

Further examples of achiral <strong>and</strong> chiral molecules:<br />

HO<br />

OH<br />

H<br />

H<br />

Br<br />

Br<br />

H<br />

Cl<br />

Cl<br />

H<br />

achiral achiral achiral<br />

HO<br />

OH<br />

Cl<br />

H CH 3<br />

Br<br />

H 3 C<br />

H<br />

Cl<br />

Cl<br />

H<br />

Br<br />

chiral chiral chiral<br />

7


Stereoisomers: Enantiomers<br />

Molecules that are mirror images but are not superimposable are called<br />

enantiomers. Enantiomers are stereoisomers. That is, they are isomers that<br />

have the same connectivity, but have groups that occupy different regions of<br />

space.<br />

Enantiomers have the same physical properties (e.g. melting points,<br />

boiling points, etc) but differ in the way they interact with other chiral objects<br />

(e.g. polarized light or different chiral molecules).<br />

It is possible to have a molecule with no chiral center that is chiral.<br />

Consider 1,3-dimethylallene, shown below:<br />

H 3 C<br />

•<br />

H<br />

H<br />

•<br />

CH 3<br />

H<br />

CH 3<br />

H 3 C<br />

H<br />

H 3 C<br />

H<br />

•<br />

H<br />

CH 3<br />

H 3 C<br />

H<br />

•<br />

H<br />

CH 3<br />

H 3 C<br />

•<br />

H<br />

H<br />

•<br />

H<br />

H<br />

CH 3<br />

H 3 C<br />

CH 3<br />

8


Stereoisomers: Diastereomers<br />

Stereoisomers that are not enantiomers are called diastereomers.<br />

H 3 C<br />

C 2 H 5<br />

Cl<br />

Br<br />

Br Cl<br />

H 3 C<br />

C 2 H 5<br />

Br<br />

Br<br />

Cl Cl<br />

For a molecule with multiple chiral centers, the number of possible<br />

stereoisomers is given by:<br />

x = 2 n<br />

where x is the number of possible isomers <strong>and</strong> n is the number of chiral centers.<br />

Thus, <strong>for</strong> molecules with two chiral centers there are four possible<br />

stereoisomers. (e.g. cholesterol, which has eight stereogenic centers, has 256<br />

possible stereoisomers!! )<br />

9


Stereoisomers: Meso compounds<br />

Another type of stereoisomer is called a meso compound.<br />

• A meso compound contains at least two stereogenic centers, yet the<br />

molecule itself is not chiral.<br />

• Meso compounds contain an internal plane of symmetry.<br />

H 3 C CH 3<br />

Cl<br />

Cl Br Br<br />

H 3 C CH 3<br />

Cl<br />

Cl<br />

Br Br<br />

.<br />

10


Cahn-Ingold-Prelog Convention <strong>for</strong> Assigning Absolute Configurations<br />

The rules <strong>for</strong> assignment of priorities in order to assign absolute configuration<br />

are based on the same set of rules <strong>for</strong> assigning E <strong>and</strong> Z stereochemistry. Use<br />

the Cahn-Ingold-Prelog scheme to assign priorities to the groups attached to<br />

the carbon atom as follows:<br />

I. Consider each group attached to the carbon in question separately.<br />

II. Rank the priority of the substituent on the carbon as follows.<br />

A. The atom with the higher molecular weight takes top priority. If<br />

there are two isotopes of the same atom, the isotope with the higher<br />

mass takes priority.<br />

B. If this does not distinguish, then move down the chain of the<br />

substituent assigning priorities until you reach the first point of<br />

difference.<br />

III. Multiple bonds count as multiples of that same atom.<br />

IV. Once the priorities have been assigned, rotate the molecule in space so<br />

that the lowest priority group is pointing back.<br />

V. Connect the three remaining groups in order of decreasing priority <strong>and</strong><br />

examine the direction of the resulting rotation.<br />

VI. Clockwise rotation is termed R (rectus; right) <strong>and</strong> counterclockwise<br />

rotation is termed S (sinister; left).<br />

• Alternatively, if the lowest priority is NOT in the back simply switch the<br />

group that is lowest priority with another group. You have just made the<br />

mirror image of the molecule. Now assign R or S to the compound as it<br />

IS drawn, <strong>and</strong> then SWITCH THE R AND S LABEL TO GET THE<br />

ORIGINAL COMPOUNDS.<br />

11


Cahn-Ingold-Prelog Convention <strong>for</strong> Assigning Absolute Configurations<br />

H<br />

Cl<br />

H 3 C<br />

Br<br />

Cl<br />

120° rotation<br />

H 3 C<br />

H<br />

Br<br />

4<br />

2<br />

120° rotation<br />

1<br />

4<br />

3<br />

2<br />

3<br />

1<br />

Counterclockwise = S<br />

12


Fischer Projections<br />

The conversion of a perspective drawing to a Fischer projection requires<br />

rotating the molecule so that the "top" <strong>and</strong> "bottom" groups are oriented back,<br />

away from you as is shown <strong>for</strong> the two molecules below.<br />

H<br />

H<br />

H 3 C<br />

OH<br />

H 3 C<br />

OH<br />

CH 2 OH<br />

CH 2 OH<br />

HO<br />

H<br />

H<br />

HO<br />

H<br />

OH<br />

H<br />

OH<br />

CHO<br />

CH 2 OH<br />

H<br />

HO<br />

H<br />

H<br />

H<br />

OH<br />

OH<br />

CH 2 OH<br />

CHO<br />

OH<br />

A Fischer projection can be used to assign absolute configuration (R or S).<br />

4<br />

4<br />

3<br />

1<br />

3<br />

1<br />

2<br />

4<br />

R<br />

2<br />

4<br />

1<br />

3<br />

1<br />

3<br />

2<br />

S<br />

2<br />

13


A rotation of three groups, as shown below, is equivalent to rotating the<br />

molecule around a single bond (here the CH 3 -C central bond).<br />

H 3 C<br />

H 3 C<br />

HOH 2 C<br />

H<br />

HO<br />

CH 2 OH<br />

OH<br />

H<br />

A 180 degree rotation of the entire molecule regenerates the identical<br />

configuration.<br />

OH<br />

OH<br />

H<br />

CH 2 OH<br />

H<br />

CH 2 OH<br />

CH 3<br />

CH 3<br />

S<br />

CH 3<br />

H 3 C<br />

HOH 2 C<br />

H<br />

HOH 2 C<br />

H<br />

OH<br />

S<br />

OH<br />

Are we having fun yet<br />

14


A 90 degree rotation of the entire molecule generates the enantiomer of the<br />

original molecule.<br />

H<br />

H<br />

H 3 C<br />

OH<br />

H 3 C<br />

OH<br />

CH 2 OH<br />

R<br />

CH 2 OH<br />

OH<br />

OH<br />

H<br />

CH 2 OH<br />

H<br />

CH 2 OH<br />

CH 3<br />

S<br />

CH 3<br />

If you flip the molecule out of the page, you generate the enantiomer of the<br />

original molecule.<br />

H<br />

H<br />

H 3 C<br />

OH<br />

H 3 C<br />

OH<br />

CH 2 OH<br />

R<br />

CH 2 OH<br />

H<br />

H<br />

CH 2 OH<br />

HO CH 3<br />

S<br />

CH 2 OH<br />

HO CH 3<br />

15


Fischer projections are also very convenient <strong>for</strong> identifying whether pairs of<br />

molecules are identical, enantiomers or diastereomers.<br />

For example:<br />

H<br />

H<br />

HO<br />

CH 2 OH<br />

Enantiomers<br />

HOH 2 C<br />

OH<br />

H 3 C<br />

OH<br />

HO<br />

CH 3<br />

H<br />

H<br />

Diastereomers<br />

Diastereomers<br />

Diastereomers<br />

H<br />

H<br />

HO<br />

CH 2 OH<br />

Enantiomers<br />

HOH 2 C<br />

OH<br />

HO<br />

CH 3<br />

H 3 C<br />

OH<br />

H<br />

H<br />

16


In summary:<br />

• Exchanging any two groups around a Fischer projection generates the<br />

enantiomer of the original compound.<br />

• Rotating 90° generates enantiomers.<br />

• Flipping the molecule out of the page generates enantiomers.<br />

• Rotating 180° regenerates the same molecule.<br />

• Rotating three groups is like a rotation about a bond <strong>and</strong> does not change<br />

the configuration.<br />

• Exchanging groups twice regenerates the original stereochemistry.<br />

Review:<br />

• A molecule with one chiral center will be chiral.<br />

• A molecule need not have a chiral center to be chiral.<br />

• A molecule with an inversion center cannot be chiral.<br />

• A molecule with one or more internal mirror planes cannot be chiral.<br />

A molecule can have more than one chiral center <strong>and</strong> not be chiral (if the chiral<br />

centers are symmetry related by a mirror plane or an inversion center).<br />

17


If you have a molecule with two chiral centers with different sets of things<br />

attached (1 <strong>and</strong> 2) either which can be R or S, there are four possible molecules<br />

that can result:<br />

(1R, 2S), (1R, 2R), (1S, 2S), (1S, 2R).<br />

• Since <strong>for</strong> a single chiral center R <strong>and</strong> S are related by mirror symmetry then<br />

if in a molecule all possible centers are switched from R to S <strong>and</strong> vice versa,<br />

then the resultant molecule will be an enantiomer of the original molecule.<br />

• If one or more chiral centers, but not all centers are switched from R to S, the<br />

molecules will not be related by mirror images, <strong>and</strong> there<strong>for</strong>e are not<br />

enantiomers.<br />

Such molecules are called diastereomers <strong>and</strong> they have<br />

different physical <strong>and</strong> chemical properties.<br />

This is illustrated in the example below:<br />

1<br />

2<br />

Cl<br />

Cl<br />

OH Diastereomers OH<br />

(1R, 2R) (1S, 2R)<br />

Enantiomers<br />

Enantiomers<br />

Diastereomers<br />

(1S, 2S) (1R, 2S)<br />

Diastereomers<br />

Cl<br />

OH<br />

Cl<br />

OH<br />

18


If you have a molecule with two chiral centers with the same sets of things<br />

attached (1 <strong>and</strong> 2) either which can be R or S, four possible molecules that can<br />

result:<br />

(1R, 2S), (1R, 2R), (1S, 2S), (1S, 2R)<br />

The following relations will hold as illustrated below:<br />

OH<br />

H 3 C H<br />

H 3 C<br />

1 OH<br />

H<br />

2 H<br />

OH<br />

H 3 C<br />

H 3 C<br />

OH<br />

H<br />

Enantiomers<br />

(1R, 2R) (1S, 2S)<br />

Diastereomers<br />

Diastereomers<br />

(1R, 2S) (1S, 2R)<br />

Identical, MESO<br />

H 3 C<br />

H 3 C<br />

H 3 C<br />

H<br />

OH<br />

OH<br />

H<br />

H 3 C<br />

OH<br />

H<br />

H<br />

OH<br />

The chemical <strong>and</strong> physical properties of diastereomers can be completely<br />

different. Thus, they will react at different rates <strong>and</strong> can have different melting<br />

<strong>and</strong> boiling points etc.<br />

The properties of enantiomers will be identical (so long as they are not<br />

interacting with a chiral perturbation as will be described in more detail later).<br />

Thus, they react with achiral materials at the same rates <strong>and</strong> have identical<br />

melting points.<br />

19


Disubstituted Cyclohexanes<br />

Cis <strong>and</strong> trans isomers can be drawn as planar views that are convenient <strong>for</strong><br />

looking <strong>for</strong> symmetry elements. Thus cis 1,2-dimethylcyclohexane can be<br />

drawn as shown below. Note: that the isomers with both methyl groups up out<br />

of the page is related to that with both into the page by rotating 180° about an<br />

axis as shown below:<br />

Note also that in the planar view there is a mirror plane perpendicular to the<br />

page bisecting the C-C bonds with the methyl groups attached, thus we<br />

conclude that the molecule is achiral. This is not obvious looking at the mirror<br />

image in the chair <strong>for</strong>m until you take into account that the molecule is<br />

con<strong>for</strong>mationally flexible <strong>and</strong> a rotation followed by a chair-chair-flip makes<br />

the mirror images congruent.<br />

20


otate 120°<br />

chair-chair<br />

flip<br />

noncongruent<br />

rotate 120°<br />

Note that if you cooled cis 1,2-diethycyclohexane to a temperature at which the<br />

chair-chair flip was extremely slow, then the two mirror images would be<br />

nonconguent <strong>and</strong> in principle you could separate each of the enantiomers.<br />

In contrast the trans <strong>for</strong>m of 1,2-dimethylcyclohexane has no mirror plane<br />

when drawn in the planar <strong>for</strong>m. It does however have a two-fold axis of rotation<br />

which relates the up <strong>and</strong> down methyl groups.<br />

Since there is no mirror (<strong>and</strong> no inversion center) the trans <strong>for</strong>m is chiral <strong>and</strong><br />

we would there<strong>for</strong>e expect the mirror image not to be superimposable on the<br />

original molecule as shown below.<br />

rotate 120°<br />

rotate 180°<br />

noncongruent<br />

noncongruent<br />

21


1,3-dimethylcyclohexane<br />

• If we consider cis <strong>and</strong> trans 1,3-dimethylcyclohexane then we see again that<br />

the cis isomer has a mirror plane <strong>and</strong> the trans isomer does not.<br />

• Note also that in the chair <strong>for</strong>m both the axial-axial, <strong>and</strong> the equatorialequatorial<br />

<strong>for</strong>ms have mirrors as drawn <strong>and</strong> thus are achiral even when each<br />

<strong>for</strong>m is frozen out at low temperature.<br />

chair-chair<br />

flip<br />

22


Equivalence<br />

Homotopic hydrogens: If you have two identical molecules each with a<br />

methylene group of the <strong>for</strong>m X- CH(1)H(2)-X, <strong>and</strong> you replace one of the<br />

hydrogens of the H(1) in one molecule with a dummy atom (Y) <strong>and</strong> then you<br />

independently replace the H(2) in the other molecule with a dummy atom(Y), if<br />

then the two molecules thus created will be identical to each other, the<br />

hydrogens are said to be homotopic. (e.g. The protons on a methyl group are<br />

homotopic)<br />

H<br />

X<br />

C<br />

X<br />

H<br />

Y<br />

H<br />

X<br />

C<br />

X<br />

X<br />

C<br />

X<br />

H<br />

Y<br />

Identical<br />

Enantiotopic: If you have a methylene group of the <strong>for</strong>m X- CH 2 -Z, <strong>and</strong> you<br />

replace one of the hydrogens of the CH 2 with a dummy atom <strong>and</strong> then you<br />

independently replace the other hydrogen of the CH 2 group with a dummy<br />

atom (Y), the two molecules thus created will be enantiomers of each other.<br />

The protons are said to be enantiotopic. In a nonchiral environment<br />

enantiotopic protons are equivalent. However, in a chiral environment such as<br />

a chiral solvent, they can, in principle, have different chemical shifts.<br />

H<br />

Z<br />

C<br />

X<br />

H<br />

Y<br />

H<br />

Z<br />

C<br />

X<br />

Z<br />

C<br />

X<br />

H<br />

Y<br />

Enantiomers<br />

23


Diastereotopic: If you have a methylene group <strong>for</strong> example, in a chiral<br />

molecule X- CH 2 -Z* (where the * indicates that Z is a chiral group), <strong>and</strong> you<br />

replace one of the hydrogens of the CH 2 with a dummy atom (Y) <strong>and</strong> then you<br />

independently replace the other hydrogen of the CH 2 group with a dummy<br />

atom the two molecules thus created will be diastereomers to each other. Thus,<br />

in principle, the two hydrogens should have different chemical shifts.<br />

H<br />

Z*<br />

C<br />

X<br />

H<br />

Y<br />

H<br />

Z*<br />

C<br />

X<br />

Z*<br />

C<br />

X<br />

H<br />

Y<br />

Diastereomers<br />

24


On The Interaction of Enantiomers with Chiral Perturbations:<br />

A chiral perturbation is any physical or chemical perturbation that has a<br />

h<strong>and</strong>edness.<br />

• Let us assume that we have a pair of chiral acids that are enantiomers. If a<br />

solution is made up of equal amounts of the R <strong>and</strong> S isomers, the mixture is<br />

said to be racemic.<br />

• If sodium hydroxide is added to the solution, then the acids will be<br />

deprotonated <strong>and</strong> will result in a racemic solution of the carboxylate anions.<br />

• We then crystallize them with a chiral cation as shown below:<br />

H 3 C<br />

Enantiomers<br />

H 3 C<br />

H<br />

H 3 C<br />

R<br />

COO<br />

H 3 C<br />

H<br />

S<br />

COO<br />

H 3 C<br />

H 3 C<br />

H<br />

N<br />

S<br />

H 3 C<br />

H 3 C<br />

H 3 C<br />

H 3 C<br />

H<br />

H 3 C<br />

R<br />

COO<br />

H 3 C<br />

H<br />

N<br />

S<br />

H 3 C<br />

H<br />

S<br />

COO<br />

H 3 C<br />

H<br />

N<br />

S<br />

Diastereomers<br />

25


• In such a case the two salts that are <strong>for</strong>med are diastereomers. (Remember:<br />

they will have different physical properties including melting points <strong>and</strong><br />

solubility)<br />

• As a result of these different physical properties, one salt may preferentially<br />

crystallize from the solution leaving the other behind. If the crystallized salt<br />

is isolated <strong>and</strong> then acidified, the chiral acid of just one of the enatiomers<br />

will be regenerated. Such as process is call a chemical resolution of<br />

enantiomers.<br />

Note: There are many examples of interactions of chiral molecules with<br />

chiral perturbations leading to diastereomeric interactions.<br />

• Different molecules can be separated by chromatography. If the stationary<br />

phase is chiral, then each enantiomer in a racemic solution will interact<br />

differently with the stationary phase since the interactions will be<br />

diastereomeric. As a result, each enantiomer may move through the chiral<br />

material at a different speed. Thus, a chiral resolution can be effected.<br />

26


The Interaction of Chiral Molecules with Light<br />

• Plane polarized light is light wherein the electric field oscillates in one plane.<br />

• Plane polarized light can be thought of being made up of a superposition of<br />

two chiral <strong>and</strong> opposite circularly polarized electric fields.<br />

• If we now consider each h<strong>and</strong> of the circularly polarized light interacting<br />

with one enantiomer of the chiral carboxylate that we considered above, we<br />

see that the interaction of the light with the molecule is a diastereomeric<br />

interaction.<br />

• Accordingly, the index of refraction (speed of light in the solution relative to<br />

that of light in a vacuum) <strong>for</strong> the left <strong>and</strong> right circularly polarized light will<br />

be different. Thus, one h<strong>and</strong> of the circularly polarized light will get slowed<br />

down more.<br />

H 3 C<br />

H 3 C<br />

H<br />

H 3 C<br />

R<br />

COO<br />

H<br />

H 3 C<br />

R<br />

COO<br />

diasteriomeric interaction with each<br />

h<strong>and</strong> of circularly polarized light<br />

27


• As a result when the light passes through a cell containing a non-racemic<br />

assembly of chiral molecules, the phase shift of one h<strong>and</strong> of the circularly<br />

polarized light relative to the other will result in the plane of light being<br />

rotated by angle α. Such a solution is optically active. 0<br />

in<br />

α<br />

out<br />

• Since a racemic solution has equal amounts of chiral molecules that have<br />

opposite configurations, <strong>for</strong> each molecule rotating the light in one direction,<br />

there will be a molecule of opposite configuration rotating the light in the<br />

opposite direction. Thus, the two rotations will cancel, <strong>and</strong> there will be no<br />

net rotation of light. Such a solution is not optically active. = 0<br />

Note: A solution of a meso compound is not chiral, <strong>and</strong> it is not racemic. A<br />

racemic solution is made up of an equal mixture of chiral molecules. Since a<br />

meso compound is not chiral, it is not optically active. = 0<br />

28


Amine Inversions<br />

Tertiary amines substituted with three different groups in frozen configurations<br />

are chiral. Thus, their mirror images are not superimposable.<br />

H 3 C<br />

N<br />

H<br />

CH 2OH<br />

HOH 2C<br />

H<br />

N<br />

CH 3<br />

.<br />

However there is a process called amine inversion wherein the substituents on<br />

the nitrogen distort through a plane transition state such that there is an<br />

inversion of configuration:<br />

H 3 C<br />

H<br />

CH 2 OH<br />

H 3 C<br />

N<br />

H<br />

CH 2 OH<br />

H 3 C<br />

N<br />

H<br />

CH 2 OH<br />

29


Such a process creates the enantiomer of the original molecule:<br />

H 3 C<br />

N<br />

H<br />

CH 2 OH<br />

HOH 2 C<br />

H<br />

N<br />

CH 3<br />

H 3 C<br />

N<br />

H<br />

CH 2 OH<br />

• This inversion process, which is an equilibrium, will take a single chiral<br />

isomer into a racemic mixture. Any process that allows one chiral isomer to<br />

interconvert with its enantiomer is termed racemization.<br />

• Since amine inversion can be fast at room temperature, it is often impossible<br />

to isolate one enantiomer of chiral amines. For example in ammonia the<br />

barrier <strong>for</strong> inversion is 5.8 kcal/mol (the rate at ambient temperature is about<br />

2 x 10 11 / sec), <strong>and</strong> <strong>for</strong> methylamine the barrier <strong>for</strong> inversion is 4.8 kcal/mol.<br />

If a chiral amine has the nitrogen tied down into a bicyclic ring system, then it<br />

would be impossible <strong>for</strong> the nitrogen to invert without introducing an<br />

unreasonable amount of strain into the molecule. In such cases, it should be<br />

possible to isolate one enantiomer:<br />

1<br />

N<br />

3<br />

2<br />

R<br />

It is possible to assign configurations to chiral amines. Simply use the Cahn-<br />

Ingold-Prelog convention <strong>and</strong> always assign the lone pair the lowest priority.<br />

30


Stereoselective <strong>and</strong> Stereospecific Reactions.<br />

• Regioselective reaction: A reaction in which one structural isomer is<br />

<strong>for</strong>med preferentially over another. (In some cases, this preference can be<br />

extremely lopsided such that essentially only one isomeric product is<br />

<strong>for</strong>med. In such cases, this is termed a regiospecific reaction.)<br />

• Stereoselective reaction: Is a reaction in which one stereoisomer in a<br />

mixture is created or consumed more quickly than other, such that one<br />

stereoisomeric product is preferentially <strong>for</strong>med.<br />

Note: a reaction can be moderately or very stereoselective.<br />

• Stereospecific reaction: A reaction in which relative chemistry of starting<br />

materials defines, due to the mechanism of the reaction relative<br />

stereochemistry of the products is stereospecific<br />

Note: all stereospecific reactions are stereoselective, but the reverse is not<br />

necessarily so.<br />

Consider the reaction of Br 2 with Z, <strong>and</strong> E-2-butene:<br />

H 3 C<br />

BrH<br />

Br 2<br />

CH 3<br />

H 3 C<br />

CH 3<br />

Br H<br />

meso<br />

H 3 C CH 3 Br 2<br />

HBr<br />

H 3 C<br />

CH 3<br />

Br H<br />

R,R<br />

BrH<br />

CH<br />

H 3 C<br />

3<br />

HBr<br />

S,S<br />

Here the mechansim, i.e. anti addition of the bromine to the double in combination<br />

with the stereochemistry of the starting materials (cis or trans) determines the<br />

stereochemistry of the products.<br />

31


Enantiomeric <strong>and</strong> Diastereomeric Transition States<br />

Achiral molecule reacts with an achiral reactant: If an achiral molecule or<br />

intermediate interacts with an achiral reactant then the transition state will be<br />

either be achiral or enantiomeric (if a chiral center is being <strong>for</strong>med).<br />

Br<br />

H 3 C<br />

Br<br />

H<br />

CH 2 CH 3<br />

H 3 C<br />

Br<br />

H<br />

CH 2 CH 3<br />

R<br />

+<br />

H 3 C CH 2 CH 3<br />

H<br />

Br<br />

S<br />

Enantiomeric transition states have the same energy. Thus, the R <strong>and</strong> S isomer<br />

will <strong>for</strong>m at identical rates <strong>and</strong> a racemic mixture will always result.<br />

R<br />

S<br />

R<br />

Achiral<br />

S<br />

Chiral molecule reacts with a chiral reactant: If a chiral molecule or<br />

intermediate interacts with a chiral reactant then the transition state will be<br />

diastereomeric.<br />

Ph<br />

R<br />

H<br />

CH 3<br />

R<br />

R<br />

Ph<br />

R<br />

H<br />

CH 3<br />

H<br />

B<br />

H<br />

Ph<br />

H<br />

CH 3<br />

B<br />

B<br />

H<br />

CH 3<br />

S<br />

H<br />

PH<br />

CH 3<br />

S H<br />

H<br />

Ph<br />

B<br />

H<br />

CH 3<br />

H<br />

Ph<br />

B<br />

32


Enantiomeric <strong>and</strong> Diastereomeric Transition States (continued)<br />

There<strong>for</strong>e, each transition state will be a different energy <strong>and</strong> the diasteriomeric<br />

products will be <strong>for</strong>med at different rates, <strong>and</strong> they will have different energies.<br />

R RR<br />

S RR<br />

S <strong>and</strong> R<br />

S RR<br />

R RR<br />

Achiral molecule reacts with a chiral resolved reagent: If an achiral<br />

molecule interacts with a chiral resolved reagent (such as an enzyme) in such a<br />

manner that in the transition state one or more chiral centers is being <strong>for</strong>med,<br />

then the transition states <strong>for</strong> the R or S center will be diastereomeric. There<strong>for</strong>e,<br />

the R <strong>and</strong> S product will <strong>for</strong>m at different rates.<br />

fumarase<br />

S<br />

fumarase<br />

S<br />

OH<br />

H 2 O<br />

H<br />

OOC<br />

Achiral<br />

COO<br />

H<br />

H<br />

OOC<br />

HO<br />

H<br />

Achiral<br />

COO<br />

H<br />

OOC<br />

H<br />

S<br />

CH 2 COO<br />

34


Enantiomeric <strong>and</strong> Diastereomeric Transition States (continued)<br />

R RR<br />

S RR<br />

S <strong>and</strong> R<br />

S RR<br />

R RR<br />

In the case of an enzyme this stereoselectivity (i.e. the preferential <strong>for</strong>mation of<br />

one stereoisomer over another) can be very high such that in biological systems<br />

often only one isomer is <strong>for</strong>med.<br />

This means that the two diastereomeric transition states are most likely different<br />

in energy by 3 kcal/mol or more.<br />

Tremendous ef<strong>for</strong>t has been devoted toward developing reagents <strong>and</strong> catalysts<br />

<strong>for</strong> use in organic synthesis that work in much then same manner such that a<br />

chemist can select the chiral configuration of a given center. (A Nobel Prize<br />

was awarded <strong>for</strong> this last year).<br />

35


Inversion of Configuration<br />

In a nucleophilic substitution reaction that is concerted (i.e. bonds are being<br />

made <strong>and</strong> broken at the same time), the nucleophile (Nu) attacks the molecule<br />

from the side opposite from the group that will leave (called the leaving group,<br />

LG) (left).<br />

A<br />

B<br />

A<br />

B<br />

B<br />

A<br />

Nu<br />

LG<br />

Nu<br />

LG<br />

Nu<br />

LG<br />

C<br />

C<br />

C<br />

• As this happens the other groups distort to accommodate the incoming<br />

group <strong>and</strong> the molecule goes through a transition state that is basically<br />

symmetrical (middle).<br />

• Then as the bond <strong>for</strong>ming step with the nucleophile is completed <strong>and</strong> the<br />

leaving group departs, the geometry of the rest of the molecule continues to<br />

relax in such a way to restore tetrahedral geometry about the central carbon<br />

atom (right).<br />

• This process involves a net inversion of configuration as illustrated in the<br />

example below.<br />

Cl<br />

H 3 C<br />

H<br />

Cl<br />

δ<br />

Cl<br />

H CH 3<br />

δ<br />

Cl<br />

Cl<br />

CH 3H<br />

Cl<br />

D<br />

D<br />

D<br />

S<br />

R<br />

• Note that with this degenerate substitution of Cl - <strong>for</strong> Cl - the configuration is<br />

inverted.<br />

36


<strong>Stereochemistry</strong> of "Carbocation" - Addition to Alkenes<br />

C<br />

A<br />

D<br />

E<br />

B<br />

Nu<br />

C<br />

Nu<br />

A<br />

D<br />

B<br />

E<br />

C<br />

A<br />

Nu<br />

E<br />

D<br />

B<br />

C<br />

A<br />

B<br />

D<br />

E Nu<br />

E<br />

D<br />

C<br />

Nu<br />

B<br />

A<br />

E<br />

D<br />

C<br />

B<br />

Nu<br />

A<br />

Nu<br />

C<br />

A<br />

top or bottom<br />

addition<br />

D<br />

E<br />

B<br />

Nu<br />

C<br />

A<br />

Nu<br />

E<br />

D<br />

B<br />

D<br />

E<br />

C<br />

Nu<br />

Nu<br />

A<br />

B<br />

E-Nu E-Nu E-Nu<br />

START<br />

HERE!!<br />

C<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B D<br />

C<br />

D<br />

A<br />

B<br />

E-Nu E-Nu E-Nu<br />

top or bottom<br />

addition<br />

C<br />

A<br />

E<br />

D<br />

B<br />

Nu<br />

A<br />

C<br />

E<br />

B<br />

D<br />

Nu<br />

D<br />

C<br />

E<br />

Nu<br />

Nu<br />

B<br />

A<br />

Nu<br />

C<br />

A<br />

E<br />

D<br />

Nu<br />

B<br />

C<br />

A<br />

Nu<br />

D<br />

E<br />

B<br />

A<br />

C<br />

E Nu<br />

B D<br />

A<br />

C<br />

E<br />

Nu<br />

B<br />

D<br />

C<br />

D<br />

E<br />

B<br />

Nu<br />

A<br />

C<br />

D<br />

E<br />

Nu<br />

B<br />

A<br />

37


<strong>Stereochemistry</strong> of Syn- Addition to Alkenes<br />

A<br />

Y<br />

B<br />

C<br />

Y<br />

X<br />

C<br />

X<br />

Y<br />

C<br />

D<br />

X<br />

A<br />

D<br />

B<br />

D<br />

B<br />

A<br />

rotatate<br />

60°<br />

A<br />

C<br />

B<br />

Y<br />

X<br />

D<br />

A C<br />

X Y<br />

D<br />

B<br />

X<br />

C<br />

D<br />

Y<br />

B<br />

A<br />

X Y X Y X Y<br />

START<br />

HERE!!<br />

A<br />

C<br />

B<br />

D<br />

C<br />

A<br />

B D<br />

C<br />

D<br />

A<br />

B<br />

X Y X Y X Y<br />

A<br />

Y<br />

B<br />

A D B<br />

C<br />

C<br />

D<br />

B<br />

A<br />

C<br />

X<br />

D<br />

Y X<br />

X<br />

Y<br />

rotatate<br />

60°<br />

Y<br />

C<br />

A<br />

X<br />

B<br />

D<br />

C<br />

Y<br />

A<br />

X<br />

D<br />

B<br />

D<br />

X<br />

C<br />

Y<br />

B<br />

A<br />

38


39<br />

B<br />

A<br />

C<br />

D<br />

A<br />

B<br />

D<br />

C<br />

D<br />

B<br />

C<br />

A<br />

B<br />

A<br />

C<br />

D<br />

E<br />

A<br />

B<br />

C<br />

D<br />

E<br />

Nu<br />

E<br />

A<br />

B<br />

C<br />

D<br />

B<br />

Nu<br />

A<br />

E<br />

C<br />

D<br />

D<br />

B<br />

C<br />

A<br />

E<br />

D<br />

B<br />

C<br />

A<br />

E<br />

Nu<br />

B<br />

A<br />

C<br />

D<br />

E<br />

B<br />

C<br />

D<br />

E<br />

Nu<br />

E<br />

A<br />

B<br />

C<br />

D<br />

B<br />

Nu<br />

A<br />

E<br />

C<br />

D<br />

D<br />

B<br />

C<br />

A<br />

E<br />

D<br />

B<br />

C<br />

A<br />

E<br />

Nu<br />

A<br />

E-Nu<br />

Nu<br />

inversion<br />

Nu<br />

E-Nu<br />

E-Nu<br />

Nu<br />

inversion<br />

inversion<br />

Nu<br />

inversion<br />

Nu<br />

Nu<br />

inversion<br />

inversion<br />

E-Nu E-Nu E-Nu<br />

<strong>Stereochemistry</strong> of Anti- Addition to Alkenes<br />

START<br />

HERE


Addition to 1-Methyl Cyclohexane<br />

E Nu<br />

X 2<br />

Hg(OAc) 2<br />

HOX<br />

where X = Br Cl<br />

E<br />

Nu<br />

E<br />

E<br />

Nu<br />

substitution<br />

with<br />

INVERSION<br />

E<br />

Nu<br />

E<br />

Nu<br />

E<br />

E Nu<br />

E<br />

HX (DX)<br />

HX (DX), H 2 O<br />

HX (DX), ROH<br />

where X = Br Cl<br />

Nu<br />

E<br />

E<br />

Nu<br />

syn <strong>and</strong><br />

anti<br />

addition<br />

E<br />

Nu<br />

E<br />

Nu<br />

E<br />

D<br />

D<br />

D<br />

D<br />

Nu<br />

E<br />

E<br />

Nu<br />

E<br />

X<br />

1. X Y<br />

Y 2. step 2<br />

syn addition<br />

E<br />

X<br />

Y, (Y')<br />

X<br />

Y<br />

H 2 BH<br />

OOs(O) 2 O<br />

OMn(O) 2 O<br />

H-H, catalyst<br />

X<br />

Y<br />

X<br />

Y, (Y')<br />

40


E Nu<br />

H<br />

H<br />

X 2<br />

Hg(OAc) 2<br />

HOX<br />

where X = Br Cl<br />

E Nu<br />

H<br />

E<br />

H<br />

E<br />

Nu<br />

substitution<br />

with<br />

INVERSION<br />

E<br />

H<br />

Nu<br />

H E<br />

H<br />

Nu<br />

E<br />

H<br />

E<br />

H<br />

NuH<br />

E<br />

H<br />

H<br />

Nu<br />

H<br />

H<br />

E Nu<br />

HX (DX)<br />

HX (DX), H 2<br />

O<br />

HX (DX), ROH<br />

where X = Br Cl<br />

E Nu<br />

H<br />

E<br />

H<br />

H<br />

E<br />

H<br />

Nu<br />

syn <strong>and</strong><br />

anti<br />

addition<br />

E<br />

H<br />

Nu<br />

E<br />

H<br />

Nu<br />

E<br />

H<br />

D<br />

D<br />

D<br />

D<br />

E<br />

Nu<br />

H<br />

E<br />

Nu<br />

H<br />

E<br />

H<br />

X<br />

Y<br />

H<br />

H<br />

H 2 BH<br />

OOs(O) 2<br />

O<br />

OMn(O) 2 O<br />

H-H, catalyst<br />

H<br />

1. X Y<br />

Y X 2. step 2<br />

H<br />

syn addition<br />

X<br />

H<br />

X<br />

Y<br />

H<br />

Y<br />

Y<br />

X<br />

Addition to Cis Double Bonds<br />

E<br />

H<br />

H<br />

X<br />

Y, (Y')<br />

H<br />

X<br />

H<br />

Y, (Y')<br />

H<br />

Y, (Y')<br />

H<br />

X<br />

H<br />

Y, (Y')<br />

X<br />

H<br />

Homework draw out all the products <strong>for</strong> each of these additions <strong>for</strong> (E)-2-<br />

pentene.<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!