12.01.2015 Views

The Foundations of Path Integration in Quantum Mechanics ... - CUMC

The Foundations of Path Integration in Quantum Mechanics ... - CUMC

The Foundations of Path Integration in Quantum Mechanics ... - CUMC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong><br />

<strong>Quantum</strong> <strong>Mechanics</strong>: From de Broglie to Feynman<br />

Marius Oltean<br />

Department <strong>of</strong> Applied Mathematics, University <strong>of</strong> Waterloo<br />

200 University Ave W, Waterloo ON, N2L 3G1, Canada<br />

Canadian Undergraduate Mathematics Conference, Québec — June 17, 2011<br />

M. Oltean, Waterloo Mathematics Review 1, 1 (2011).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Outl<strong>in</strong>e<br />

1 Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

2 Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

3 De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> World Before 1900<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

“In a few years, all great physical constants will have<br />

been approximately estimated, and the only occupation<br />

which will be left to men <strong>of</strong> science will be to carry<br />

these measurements to another place <strong>of</strong> decimals.”<br />

— J. C. Maxwell (Scientific Papers, 1871)<br />

Classical physics. <strong>Mechanics</strong>, electrodynamics, statistical thermodynamics:<br />

∇ 2 Φ = 4πGρ, mẍ = −∇Φ.<br />

∇ · B = 0, ∇ · E = ρ/ε 0, ∇ × E = −∂ tB, ∇ × B = µ 0J + µ 0ε 0∂ tE.<br />

S = k ln Ω.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> World Before 1900<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

“In a few years, all great physical constants will have<br />

been approximately estimated, and the only occupation<br />

which will be left to men <strong>of</strong> science will be to carry<br />

these measurements to another place <strong>of</strong> decimals.”<br />

— J. C. Maxwell (Scientific Papers, 1871)<br />

Classical physics. <strong>Mechanics</strong>, electrodynamics, statistical thermodynamics:<br />

∇ 2 Φ = 4πGρ, mẍ = −∇Φ.<br />

∇ · B = 0, ∇ · E = ρ/ε 0, ∇ × E = −∂ tB, ∇ × B = µ 0J + µ 0ε 0∂ tE.<br />

S = k ln Ω.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Dawn <strong>of</strong> the 20th Century: Particle or Wave<br />

“It was as if the ground had been pulled out from<br />

under one, with no firm foundation to be seen<br />

anywhere, upon which one could have built.”<br />

— A. E<strong>in</strong>ste<strong>in</strong> (Philosopher-Scientist, 1949)<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> 1927 Solvay Conference<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Axioms <strong>of</strong> Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

ψ : R 3N × R → C<br />

(q, t) = (q 1 , ..., q N , t) ↦→ ψ (q, t)<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

When no ‘measurement’ is be<strong>in</strong>g performed, the wavefunction evolves via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> von Neumann projection postulate:<br />

Upon ‘measurement’, the wavefunction randomly ‘collapses’ onto one <strong>of</strong><br />

all the possible outcomes (eigenfunctions <strong>of</strong> the Hilbert space operator<br />

correspond<strong>in</strong>g thereto), which have p.d.f. ρ (q, t) = |ψ (q, t) | 2 .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Axioms <strong>of</strong> Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

ψ : R 3N × R → C<br />

(q, t) = (q 1 , ..., q N , t) ↦→ ψ (q, t)<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

When no ‘measurement’ is be<strong>in</strong>g performed, the wavefunction evolves via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> von Neumann projection postulate:<br />

Upon ‘measurement’, the wavefunction randomly ‘collapses’ onto one <strong>of</strong><br />

all the possible outcomes (eigenfunctions <strong>of</strong> the Hilbert space operator<br />

correspond<strong>in</strong>g thereto), which have p.d.f. ρ (q, t) = |ψ (q, t) | 2 .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Axioms <strong>of</strong> Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

ψ : R 3N × R → C<br />

(q, t) = (q 1 , ..., q N , t) ↦→ ψ (q, t)<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

When no ‘measurement’ is be<strong>in</strong>g performed, the wavefunction evolves via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> von Neumann projection postulate:<br />

Upon ‘measurement’, the wavefunction randomly ‘collapses’ onto one <strong>of</strong><br />

all the possible outcomes (eigenfunctions <strong>of</strong> the Hilbert space operator<br />

correspond<strong>in</strong>g thereto), which have p.d.f. ρ (q, t) = |ψ (q, t) | 2 .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Two Conceptions <strong>of</strong> Science<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

“Physics is to be regarded not so<br />

much as the study <strong>of</strong> someth<strong>in</strong>g a<br />

priori given, but rather as the<br />

development <strong>of</strong> methods <strong>of</strong> order<strong>in</strong>g<br />

and survey<strong>in</strong>g human experience.”<br />

— N. Bohr (<strong>The</strong> Unity <strong>of</strong> Human<br />

Knowledge, 1960)<br />

Marius Oltean<br />

“If one renounces the assumption that<br />

what is present <strong>in</strong> different parts <strong>of</strong><br />

space has an <strong>in</strong>dependent, real<br />

existence, then I do not at all see<br />

what physics is supposed to describe.”<br />

— A. E<strong>in</strong>ste<strong>in</strong> (note to Born, 1948)<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

What is Wrong with Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

As a phenomenological formalism: Noth<strong>in</strong>g at all – Axioms 1 and 2<br />

have proven enormously successful <strong>in</strong> the prediction <strong>of</strong> experimental<br />

regularities <strong>in</strong> a wide range <strong>of</strong> atomic phenomena.<br />

As a theory <strong>of</strong> fundamental physics: A great deal – recall:<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

When no ‘measurement’ is be<strong>in</strong>g performed,<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> von Neumann projection postulate:<br />

Upon ‘measurement’, ψ randomly ‘collapses’ with p.d.f. ρ = |ψ| 2 .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

What is Wrong with Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

As a phenomenological formalism: Noth<strong>in</strong>g at all – Axioms 1 and 2<br />

have proven enormously successful <strong>in</strong> the prediction <strong>of</strong> experimental<br />

regularities <strong>in</strong> a wide range <strong>of</strong> atomic phenomena.<br />

As a theory <strong>of</strong> fundamental physics: A great deal – recall:<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

When no ‘measurement’ is be<strong>in</strong>g performed,<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> von Neumann projection postulate:<br />

Upon ‘measurement’, ψ randomly ‘collapses’ with p.d.f. ρ = |ψ| 2 .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> Measurement Problem<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

One possible formulation: If orthodox quantum theory is correct, then<br />

why are the laws <strong>of</strong> physics cont<strong>in</strong>gent upon the act <strong>of</strong> ‘measurement’<br />

(which is, <strong>in</strong> any event, a very vaguely def<strong>in</strong>ed concept)<br />

<br />

“Does this mean that my observations become real<br />

only when I observe an observer observ<strong>in</strong>g someth<strong>in</strong>g<br />

as it happens This is a horrible viewpo<strong>in</strong>t. Do you<br />

seriously enterta<strong>in</strong> the thought that without observer<br />

there is no reality Which observer Any observer Is<br />

a fly an observer Is a star an observer Was there no<br />

reality before 10 9 B.C. before life began Or are you<br />

the observer <strong>The</strong>n there is no reality to the world<br />

after you are dead [...] By what philosophy will the<br />

Universe without man be understood”<br />

— R. Feynman (Feynman Lectures on Gravitation)<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> Part<strong>in</strong>g <strong>of</strong> the Ways<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Conclusion: Orthodox quantum theory must be abandoned.<br />

But what other options are there<br />

Alternative, empirically equivalent formulations <strong>of</strong> quantum mechanics<br />

Pilot-wave theory<br />

Objective collapse theories<br />

Many worlds theories<br />

<strong>Quantum</strong> Bayesianism<br />

Ensemble <strong>in</strong>terpretation<br />

and so on...<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> Part<strong>in</strong>g <strong>of</strong> the Ways<br />

Development and Axioms<br />

<strong>The</strong> Measurement Problem<br />

Conclusion: Orthodox quantum theory must be abandoned.<br />

But what other options are there<br />

Alternative, empirically equivalent formulations <strong>of</strong> quantum mechanics<br />

Pilot-wave theory<br />

Objective collapse theories<br />

Many worlds theories<br />

<strong>Quantum</strong> Bayesianism<br />

Ensemble <strong>in</strong>terpretation<br />

and so on...<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

What’s <strong>in</strong> a Name<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

∣ de Broglie<br />

〉<br />

= N<br />

( ∣∣/d@"brOI/ 〉<br />

+<br />

∣ ∣/d@"brOIl/<br />

〉<br />

+ ∣ ∣ /d@"broglI@/<br />

〉<br />

+<br />

∣ ∣/d@"brOglIE/<br />

〉<br />

+ . . .<br />

)<br />

Discoverer <strong>of</strong> pilot-wave theory, also known as: de Broglie-Bohm theory,<br />

Bohmian mechanics, the causal <strong>in</strong>terpretation <strong>of</strong> quantum mechanics, the<br />

ontological <strong>in</strong>terpretation <strong>of</strong> quantum mechanics etc.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Advertisement Break<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

quant-ph/0609184<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Photons Pass<strong>in</strong>g Through a Slit: Newtonian Prediction<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

What Actually Happens: Diffraction<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Diffraction <strong>of</strong> Light Quanta<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> Inspiration for Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<br />

De Broglie hypothesized that<br />

v ∝ ∇S,<br />

where v is the particle’s velocity and<br />

S is the phase <strong>of</strong> the ‘guid<strong>in</strong>g’ wave<br />

pass<strong>in</strong>g through the slit.<br />

“Guided by the idea <strong>of</strong> a deep unity between the pr<strong>in</strong>ciple <strong>of</strong> least action<br />

and that <strong>of</strong> Fermat, [...] I was led to assume that, for a given value <strong>of</strong><br />

the total energy <strong>of</strong> the mov<strong>in</strong>g body and therefore <strong>of</strong> the frequency <strong>of</strong> its<br />

phase wave, the dynamically possible trajectories <strong>of</strong> the one co<strong>in</strong>cided<br />

with the possible rays <strong>of</strong> the other.”<br />

— L. de Broglie (Ph.D. thesis, 1924)<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Axioms <strong>of</strong> Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

(<br />

)<br />

ψ (q, t) , Q (t) ,<br />

where Q (t) = (Q 1(t), ..., Q N (t)); Q j ∈ R 3 is the position <strong>of</strong> the j -th particle.<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

<strong>The</strong> wavefunction evolves (cont<strong>in</strong>uously and at all times) via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> de Broglie guid<strong>in</strong>g equation:<br />

<strong>The</strong> position <strong>of</strong> the j -th particle is determ<strong>in</strong>ed by the equation <strong>of</strong> motion<br />

dQ j<br />

dt<br />

= m j<br />

I<br />

(<br />

∇j ψ<br />

ψ<br />

)∣<br />

∣∣∣Q(t)<br />

.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Axioms <strong>of</strong> Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

(<br />

)<br />

ψ (q, t) , Q (t) ,<br />

where Q (t) = (Q 1(t), ..., Q N (t)); Q j ∈ R 3 is the position <strong>of</strong> the j -th particle.<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

<strong>The</strong> wavefunction evolves (cont<strong>in</strong>uously and at all times) via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> de Broglie guid<strong>in</strong>g equation:<br />

<strong>The</strong> position <strong>of</strong> the j -th particle is determ<strong>in</strong>ed by the equation <strong>of</strong> motion<br />

dQ j<br />

dt<br />

= m j<br />

I<br />

(<br />

∇j ψ<br />

ψ<br />

)∣<br />

∣∣∣Q(t)<br />

.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Axioms <strong>of</strong> Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Complete Description. For a system <strong>of</strong> N particles:<br />

(<br />

)<br />

ψ (q, t) , Q (t) ,<br />

where Q (t) = (Q 1(t), ..., Q N (t)); Q j ∈ R 3 is the position <strong>of</strong> the j -th particle.<br />

Axiom 1. <strong>The</strong> Schröd<strong>in</strong>ger equation:<br />

<strong>The</strong> wavefunction evolves (cont<strong>in</strong>uously and at all times) via<br />

i ∂ψ<br />

N<br />

∂t = ∑ − 2<br />

∇ 2 j ψ + V ψ.<br />

2m j<br />

j =1<br />

Axiom 2. <strong>The</strong> de Broglie guid<strong>in</strong>g equation:<br />

<strong>The</strong> position <strong>of</strong> the j -th particle is determ<strong>in</strong>ed by the equation <strong>of</strong> motion<br />

dQ j<br />

dt<br />

= m j<br />

I<br />

(<br />

∇j ψ<br />

ψ<br />

)∣<br />

∣∣∣Q(t)<br />

.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Example <strong>of</strong> Trajectories: <strong>The</strong> Double-Slit Experiment<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Example <strong>of</strong> Trajectories: <strong>The</strong> Double-Slit Experiment<br />

“While the found<strong>in</strong>g fathers agonized over the question ‘particle’ or ‘wave’, de Broglie<br />

<strong>in</strong> 1925 proposed the obvious answer ‘particle’ and ‘wave’. Is it not clear from the<br />

smallness <strong>of</strong> the sc<strong>in</strong>tillation on the screen that we have to do with a particle And is<br />

it not clear, from the diffraction and <strong>in</strong>terference patterns, that the motion <strong>of</strong> the<br />

particle is directed by a wave [...] This idea seems to me so natural and simple, to<br />

resolve the wave-particle dilemma <strong>in</strong> such a clear and ord<strong>in</strong>ary way, that it is a great<br />

mystery to me that it was so generally ignored.”<br />

— J.S. Bell (Speakable and Unspeakable <strong>in</strong> QM, 1987)<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> Cont<strong>in</strong>uity and <strong>Quantum</strong> Hamilton-Jacobi Equations<br />

Choos<strong>in</strong>g a suitable phase function S : R 3N × R → R, we can rewrite the<br />

wavefunction <strong>in</strong> the polar form<br />

( ) i<br />

ψ = |ψ| exp<br />

S .<br />

Insert<strong>in</strong>g this <strong>in</strong>to the Schröd<strong>in</strong>ger equation, we get<br />

<strong>The</strong> cont<strong>in</strong>uity equation for |ψ| 2 : R 3N × R → R:<br />

∂|ψ| 2<br />

∂t<br />

+<br />

N∑<br />

j =1<br />

(<br />

∇ j · |ψ| 2 ∇ )<br />

j S<br />

= 0.<br />

m j<br />

<strong>The</strong> quantum Hamilton-Jacobi equation for N particles:<br />

( )<br />

∂S<br />

N<br />

∂t + ∑ ‖∇ j S‖ 2<br />

N∑ − 2 ∇<br />

2<br />

j |ψ|<br />

+ V +<br />

= 0.<br />

2m j 2m j |ψ|<br />

j =1<br />

j =1<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> Cont<strong>in</strong>uity and <strong>Quantum</strong> Hamilton-Jacobi Equations<br />

Choos<strong>in</strong>g a suitable phase function S : R 3N × R → R, we can rewrite the<br />

wavefunction <strong>in</strong> the polar form<br />

( ) i<br />

ψ = |ψ| exp<br />

S .<br />

Insert<strong>in</strong>g this <strong>in</strong>to the Schröd<strong>in</strong>ger equation, we get<br />

<strong>The</strong> cont<strong>in</strong>uity equation for |ψ| 2 : R 3N × R → R:<br />

∂|ψ| 2<br />

∂t<br />

+<br />

N∑<br />

j =1<br />

(<br />

∇ j · |ψ| 2 ∇ )<br />

j S<br />

= 0.<br />

m j<br />

<strong>The</strong> quantum Hamilton-Jacobi equation for N particles:<br />

( )<br />

∂S<br />

N<br />

∂t + ∑ ‖∇ j S‖ 2<br />

N∑ − 2 ∇<br />

2<br />

j |ψ|<br />

+ V +<br />

= 0.<br />

2m j 2m j |ψ|<br />

j =1<br />

j =1<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> Cont<strong>in</strong>uity and <strong>Quantum</strong> Hamilton-Jacobi Equations<br />

Choos<strong>in</strong>g a suitable phase function S : R 3N × R → R, we can rewrite the<br />

wavefunction <strong>in</strong> the polar form<br />

( ) i<br />

ψ = |ψ| exp<br />

S .<br />

Insert<strong>in</strong>g this <strong>in</strong>to the Schröd<strong>in</strong>ger equation, we get<br />

<strong>The</strong> cont<strong>in</strong>uity equation for |ψ| 2 : R 3N × R → R:<br />

∂|ψ| 2<br />

∂t<br />

+<br />

N∑<br />

j =1<br />

(<br />

∇ j · |ψ| 2 ∇ )<br />

j S<br />

= 0.<br />

m j<br />

<strong>The</strong> quantum Hamilton-Jacobi equation for N particles:<br />

( )<br />

∂S<br />

N<br />

∂t + ∑ ‖∇ j S‖ 2<br />

N∑ − 2 ∇<br />

2<br />

j |ψ|<br />

+ V +<br />

= 0.<br />

2m j 2m j |ψ|<br />

j =1<br />

j =1<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

(One Possible) Justification for the Guid<strong>in</strong>g Equation<br />

<strong>The</strong> cont<strong>in</strong>uity equation for |ψ| 2 : R 3N × R → R:<br />

∂|ψ| 2<br />

∂t<br />

+<br />

N∑<br />

(<br />

∇ j · |ψ| 2 ∇ )<br />

j S<br />

= 0.<br />

m j<br />

} {{ }<br />

j =1<br />

J ψ j<br />

= i<br />

2m j<br />

(ψ∇ j ψ ∗ − ψ ∗ ∇ j ψ)<br />

If we adopt the usual <strong>in</strong>terpretation <strong>of</strong> current as the product <strong>of</strong> density<br />

and velocity, then it takes no imag<strong>in</strong>ation to guess that the particle<br />

velocities might simply be determ<strong>in</strong>ed by<br />

dQ j<br />

dt<br />

= v ψ j<br />

∣<br />

Q(t)<br />

; v ψ j = J ψ j<br />

|ψ| 2 = ∇ j S<br />

m j<br />

= (<br />

∇j ψ<br />

I<br />

m j ψ<br />

)<br />

.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> <strong>Quantum</strong> Lagrangian<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> quantum Hamilton-Jacobi equation for N particles:<br />

∂S<br />

N<br />

∂t + ∑<br />

1<br />

2 mj‖vψ j ‖ 2<br />

{(<br />

}} ){<br />

( )<br />

‖∇ j S‖ 2<br />

N∑ − 2 ∇<br />

2<br />

j |ψ|<br />

+ V +<br />

= 0.<br />

2m<br />

j =1 j 2m<br />

j =1 j |ψ|<br />

} {{ } } {{ }<br />

=T<br />

:=V q<br />

A standard result <strong>in</strong> classical mechanics is the classical Hamilton-Jacobi<br />

equation, which is identical to the above expression except for the term <strong>in</strong><br />

red, with T represent<strong>in</strong>g the k<strong>in</strong>etic energy. This suggests the follow<strong>in</strong>g:<br />

Def<strong>in</strong>ition. <strong>The</strong> classical and quantum Lagrangians (respectively):<br />

L c :=T − V ,<br />

L q :=T − (V +V q ) .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> <strong>Quantum</strong> Lagrangian<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> quantum Hamilton-Jacobi equation for N particles:<br />

∂S<br />

N<br />

∂t + ∑<br />

1<br />

2 mj‖vψ j ‖ 2<br />

{(<br />

}} ){<br />

( )<br />

‖∇ j S‖ 2<br />

N∑ − 2 ∇<br />

2<br />

j |ψ|<br />

+ V +<br />

= 0.<br />

2m<br />

j =1 j 2m<br />

j =1 j |ψ|<br />

} {{ } } {{ }<br />

=T<br />

:=V q<br />

A standard result <strong>in</strong> classical mechanics is the classical Hamilton-Jacobi<br />

equation, which is identical to the above expression except for the term <strong>in</strong><br />

red, with T represent<strong>in</strong>g the k<strong>in</strong>etic energy. This suggests the follow<strong>in</strong>g:<br />

Def<strong>in</strong>ition. <strong>The</strong> classical and quantum Lagrangians (respectively):<br />

L c :=T − V ,<br />

L q :=T − (V +V q ) .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> Dynamical Orig<strong>in</strong> <strong>of</strong> <strong>Quantum</strong> Randomness<br />

Randomness <strong>in</strong> classical statistical mechanics: <strong>The</strong> apparently random<br />

behaviour <strong>of</strong> large systems (as described, for <strong>in</strong>stance, by the<br />

Maxwell-Boltzmann distribution <strong>of</strong> molecular velocities <strong>in</strong> a gas) emerges<br />

purely as a consequence <strong>of</strong> the underly<strong>in</strong>g (determ<strong>in</strong>istic) Newtonian<br />

dynamics govern<strong>in</strong>g the motions <strong>of</strong> the constitut<strong>in</strong>g particles.<br />

<strong>The</strong>orem. Subquantum H -<strong>The</strong>orem:<br />

Any N -particle system obey<strong>in</strong>g pilot-wave dynamics that has an <strong>in</strong>itial<br />

(epistemic) p.d.f. ρ ≠ |ψ| 2 will, over time, eventually approach the<br />

‘equilibrium distribution’ ρ = |ψ| 2 (with the exception <strong>of</strong> cases where<br />

there is no motion, and notwithstand<strong>in</strong>g the time reversal <strong>in</strong>variance <strong>of</strong><br />

the def<strong>in</strong><strong>in</strong>g evolution equations).<br />

Pro<strong>of</strong>.<br />

See A. Valent<strong>in</strong>i, Phys. Lett. A 156, 5 (1991).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>The</strong> Dynamical Orig<strong>in</strong> <strong>of</strong> <strong>Quantum</strong> Randomness<br />

Randomness <strong>in</strong> classical statistical mechanics: <strong>The</strong> apparently random<br />

behaviour <strong>of</strong> large systems (as described, for <strong>in</strong>stance, by the<br />

Maxwell-Boltzmann distribution <strong>of</strong> molecular velocities <strong>in</strong> a gas) emerges<br />

purely as a consequence <strong>of</strong> the underly<strong>in</strong>g (determ<strong>in</strong>istic) Newtonian<br />

dynamics govern<strong>in</strong>g the motions <strong>of</strong> the constitut<strong>in</strong>g particles.<br />

<strong>The</strong>orem. Subquantum H -<strong>The</strong>orem:<br />

Any N -particle system obey<strong>in</strong>g pilot-wave dynamics that has an <strong>in</strong>itial<br />

(epistemic) p.d.f. ρ ≠ |ψ| 2 will, over time, eventually approach the<br />

‘equilibrium distribution’ ρ = |ψ| 2 (with the exception <strong>of</strong> cases where<br />

there is no motion, and notwithstand<strong>in</strong>g the time reversal <strong>in</strong>variance <strong>of</strong><br />

the def<strong>in</strong><strong>in</strong>g evolution equations).<br />

Pro<strong>of</strong>.<br />

See A. Valent<strong>in</strong>i, Phys. Lett. A 156, 5 (1991).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>Quantum</strong> Nonequilibrium <strong>in</strong> the Early Universe<br />

Claim. A. Valent<strong>in</strong>i, Phys. Rev. D 82, 063513 (2010):<br />

<strong>The</strong>re is no a priori mathematical measure for any preferred distribution<br />

<strong>of</strong> the early Universe. Hence, the Universe probably started with some<br />

<strong>in</strong>itial p.d.f. ρ ≠ |ψ| 2 , which then (by the H -<strong>The</strong>orem) must have relaxed<br />

to the equilibrium distribution ρ = |ψ| 2 we observe today.<br />

This <strong>of</strong>fers the first possibility <strong>of</strong> an empirical dist<strong>in</strong>ction between<br />

pilot-wave theory and orthodox quantum theory, by observ<strong>in</strong>g either:<br />

a measurable signature <strong>in</strong> the spectrum <strong>of</strong> the CMB,<br />

‘relic’ particles which, <strong>in</strong> the very early Universe, stopped <strong>in</strong>teract<strong>in</strong>g<br />

with other particles before they had enough time to reach<br />

equilibrium; if we can still f<strong>in</strong>d them around today, these should be<br />

seen to violate the Heisenberg uncerta<strong>in</strong>ty relation.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

<strong>Quantum</strong> Nonequilibrium <strong>in</strong> the Early Universe<br />

Claim. A. Valent<strong>in</strong>i, Phys. Rev. D 82, 063513 (2010):<br />

<strong>The</strong>re is no a priori mathematical measure for any preferred distribution<br />

<strong>of</strong> the early Universe. Hence, the Universe probably started with some<br />

<strong>in</strong>itial p.d.f. ρ ≠ |ψ| 2 , which then (by the H -<strong>The</strong>orem) must have relaxed<br />

to the equilibrium distribution ρ = |ψ| 2 we observe today.<br />

This <strong>of</strong>fers the first possibility <strong>of</strong> an empirical dist<strong>in</strong>ction between<br />

pilot-wave theory and orthodox quantum theory, by observ<strong>in</strong>g either:<br />

a measurable signature <strong>in</strong> the spectrum <strong>of</strong> the CMB,<br />

‘relic’ particles which, <strong>in</strong> the very early Universe, stopped <strong>in</strong>teract<strong>in</strong>g<br />

with other particles before they had enough time to reach<br />

equilibrium; if we can still f<strong>in</strong>d them around today, these should be<br />

seen to violate the Heisenberg uncerta<strong>in</strong>ty relation.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Criticisms <strong>of</strong> Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Reasonable objections: Essentially just one – f<strong>in</strong>d<strong>in</strong>g relativistic/<br />

quantum field theoretical generalizations. <strong>The</strong> issue arises from the<br />

fact that pilot-wave theory is explicitly nonlocal,<br />

dQ j<br />

dt<br />

= ( ) ∣<br />

∇j ψ<br />

∣∣∣Q(t)<br />

I<br />

.<br />

m j ψ<br />

For more, see J.S. Bell, Speakable and Unspeakable <strong>in</strong> <strong>Quantum</strong><br />

<strong>Mechanics</strong> (1987), or W. Struyve, arXiv:1101.5819.<br />

Silly objections: Unfortunately too many – that the theory is<br />

‘complicated’ or ‘contrived,’ that it constitutes a regression back to<br />

classical physics, that it does not postulate ρ = |ψ| 2 , that quantum<br />

mechanics is <strong>in</strong>consistent with determ<strong>in</strong>ism, and other assertions <strong>of</strong><br />

this sort. If you really need a reply to any <strong>of</strong> these, see M. Kiessl<strong>in</strong>g,<br />

Found. Phys. 40, 418 (2010), or O. Passon, quant-ph/0412119.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Criticisms <strong>of</strong> Pilot-Wave <strong>The</strong>ory<br />

Development and Axioms<br />

Empirical Implications and Criticisms<br />

Reasonable objections: Essentially just one – f<strong>in</strong>d<strong>in</strong>g relativistic/<br />

quantum field theoretical generalizations. <strong>The</strong> issue arises from the<br />

fact that pilot-wave theory is explicitly nonlocal,<br />

dQ j<br />

dt<br />

= ( ) ∣<br />

∇j ψ<br />

∣∣∣Q(t)<br />

I<br />

.<br />

m j ψ<br />

For more, see J.S. Bell, Speakable and Unspeakable <strong>in</strong> <strong>Quantum</strong><br />

<strong>Mechanics</strong> (1987), or W. Struyve, arXiv:1101.5819.<br />

Silly objections: Unfortunately too many – that the theory is<br />

‘complicated’ or ‘contrived,’ that it constitutes a regression back to<br />

classical physics, that it does not postulate ρ = |ψ| 2 , that quantum<br />

mechanics is <strong>in</strong>consistent with determ<strong>in</strong>ism, and other assertions <strong>of</strong><br />

this sort. If you really need a reply to any <strong>of</strong> these, see M. Kiessl<strong>in</strong>g,<br />

Found. Phys. 40, 418 (2010), or O. Passon, quant-ph/0412119.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

<strong>The</strong> Fundamental Solution <strong>of</strong> the Schröd<strong>in</strong>ger Equation<br />

An important problem <strong>in</strong> quantum mechanics is the propagation <strong>of</strong> the<br />

wavefunction: Given ψ (q, t) at some <strong>in</strong>itial time t, calculate ψ (q ′ , t ′ ),<br />

∀q ′ ∈ R 3N at any future time t ′ , assum<strong>in</strong>g its evolution to be governed<br />

by the Schröd<strong>in</strong>ger equation. <strong>The</strong> solution <strong>in</strong> pilot-wave theory:<br />

<strong>The</strong>orem. <strong>The</strong> de Broglie-Bohm path <strong>in</strong>tegral:<br />

<strong>The</strong> wavefunction is propagated us<strong>in</strong>g L q := T − (V + V q ) via<br />

ψ (q ′ , t ′ ) =<br />

{<br />

exp<br />

[ ∫ t<br />

′<br />

t<br />

(<br />

i<br />

L q − 1 2<br />

) ]}<br />

N∑<br />

∇ j · v ψ j dt ψ (q, t) .<br />

j =1<br />

Pro<strong>of</strong>.<br />

For the orig<strong>in</strong>al pro<strong>of</strong>, see M. Abolhasani and M. Golshani, Annales de la<br />

Fondation Louis de Broglie 28, 1 (2003).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

<strong>The</strong> Fundamental Solution <strong>of</strong> the Schröd<strong>in</strong>ger Equation<br />

An important problem <strong>in</strong> quantum mechanics is the propagation <strong>of</strong> the<br />

wavefunction: Given ψ (q, t) at some <strong>in</strong>itial time t, calculate ψ (q ′ , t ′ ),<br />

∀q ′ ∈ R 3N at any future time t ′ , assum<strong>in</strong>g its evolution to be governed<br />

by the Schröd<strong>in</strong>ger equation. <strong>The</strong> solution <strong>in</strong> pilot-wave theory:<br />

<strong>The</strong>orem. <strong>The</strong> de Broglie-Bohm path <strong>in</strong>tegral:<br />

<strong>The</strong> wavefunction is propagated us<strong>in</strong>g L q := T − (V + V q ) via<br />

ψ (q ′ , t ′ ) =<br />

{<br />

exp<br />

[ ∫ t<br />

′<br />

t<br />

(<br />

i<br />

L q − 1 2<br />

) ]}<br />

N∑<br />

∇ j · v ψ j dt ψ (q, t) .<br />

j =1<br />

Pro<strong>of</strong>.<br />

For the orig<strong>in</strong>al pro<strong>of</strong>, see M. Abolhasani and M. Golshani, Annales de la<br />

Fondation Louis de Broglie 28, 1 (2003).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Strategy for our Alternative Pro<strong>of</strong><br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Recall that we can write the wavefunction <strong>in</strong> the polar form<br />

( ) i<br />

ψ (q, t) = |ψ (q, t)| exp<br />

S (q, t) .<br />

So to f<strong>in</strong>d ψ (q ′ , t ′ ) we can proceed along the follow<strong>in</strong>g l<strong>in</strong>es:<br />

Firstly, propagate the modulus |ψ|.<br />

Secondly, propagate the phase S.<br />

Thirdly, put these together and thus propagate ψ.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Strategy for our Alternative Pro<strong>of</strong><br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Recall that we can write the wavefunction <strong>in</strong> the polar form<br />

( ) i<br />

ψ (q, t) = |ψ (q, t)| exp<br />

S (q, t) .<br />

So to f<strong>in</strong>d ψ (q ′ , t ′ ) we can proceed along the follow<strong>in</strong>g l<strong>in</strong>es:<br />

Firstly, propagate the modulus |ψ|.<br />

Secondly, propagate the phase S.<br />

Thirdly, put these together and thus propagate ψ.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Propagation <strong>of</strong> the Modulus<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Lemma. Propagation <strong>of</strong> the modulus:<br />

<strong>The</strong> wavefunction modulus is propagated accord<strong>in</strong>g to<br />

∣<br />

∣ψ ( [ (<br />

q ′ , t ′)∣ ∣ = exp − 1 N∑<br />

∫ )]<br />

t<br />

′<br />

∇ · v ψ j<br />

2<br />

dt |ψ (q, t)| ,<br />

j =1<br />

t<br />

where v ψ j<br />

= ∇ j S/m j is the velocity function.<br />

Pro<strong>of</strong>.<br />

<strong>The</strong> cont<strong>in</strong>uity equation can be rewritten as follows:<br />

∂|ψ| 2<br />

∂t<br />

+<br />

N∑<br />

( )<br />

∇ j · |ψ| 2 ∇ j S<br />

= 0 =⇒ ln<br />

m j<br />

∣ ψ (q ′ , t ′ )<br />

ψ (q, t) ∣ = − 1 N∑<br />

2<br />

j =1<br />

Tak<strong>in</strong>g the exponential <strong>of</strong> both sides thus yields the desired result.<br />

j =1<br />

∫ t<br />

′<br />

t<br />

∇ · v ψ j dt.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

Propagation <strong>of</strong> the Phase<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Lemma. Propagation <strong>of</strong> the phase:<br />

<strong>The</strong> phase function is propagated accord<strong>in</strong>g to<br />

S ( q ′ , t ′) ∫ t<br />

′<br />

= S (q, t) + L qdt,<br />

t<br />

where L q := T − (V + V q) is the quantum Lagrangian.<br />

Pro<strong>of</strong>.<br />

Us<strong>in</strong>g the Cha<strong>in</strong> Rule, the quantum Hamilton-Jacobi equation implies<br />

∂S<br />

∂t<br />

+ T + V + Vq = 0 =⇒<br />

dS<br />

dt = N<br />

∑<br />

j =1<br />

∇ j S<br />

{}}{<br />

∂S<br />

∂q j<br />

·<br />

v ψ j<br />

{}}{<br />

dq j<br />

dt<br />

+ ∂S<br />

∂t = Lq,<br />

which, <strong>in</strong> the form <strong>of</strong> an <strong>in</strong>tegral equation, gives the desired expression.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Pro<strong>of</strong> for the de Broglie-Bohm <strong>Path</strong> Integral<br />

Pro<strong>of</strong>.<br />

So far, we have by the two previous lemmas, respectively,<br />

(<br />

(<br />

∣ ψ q ′ , t ′)∣ ∣ =<br />

[exp − 1 N∑<br />

∫ )]<br />

t<br />

′<br />

∇ · v ψ j<br />

2<br />

dt |ψ (q, t)| ,<br />

j =1 t<br />

[ i<br />

exp<br />

S ( ( ∫ )<br />

q ′ , t ′)] t<br />

′<br />

[ ]<br />

i<br />

i<br />

= exp<br />

Lqdt exp<br />

S (q, t) .<br />

Putt<strong>in</strong>g these together, we get<br />

ψ ( q ′ , t ′) = ∣ ∣ ψ<br />

(<br />

q ′ , t ′)∣ ∣ exp<br />

[ i<br />

S ( q ′ , t ′)]<br />

= exp<br />

( ∫ t<br />

′<br />

t<br />

) (<br />

i<br />

Lqdt exp − 1 2<br />

N∑<br />

j =1<br />

t<br />

∫ t<br />

′<br />

t<br />

∇ · v ψ j dt )<br />

[ ] i<br />

|ψ (q, t)| exp<br />

S (q, t) .<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> de Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

More succ<strong>in</strong>ctly,<br />

{<br />

ψ (q ′ , t ′ ) =<br />

exp<br />

[ ∫ t<br />

′<br />

t<br />

(<br />

i<br />

L q − 1 2<br />

) ]}<br />

N∑<br />

∇ j · v ψ j dt ψ (q, t) .<br />

j =1<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral (S<strong>in</strong>gle Particle Case)<br />

<strong>The</strong>orem. <strong>The</strong> s<strong>in</strong>gle particle Feynman path <strong>in</strong>tegral:<br />

Consider a s<strong>in</strong>gle particle with some wavefunction ψ (q, t). Let [t, t ′ ] ⊂ R be<br />

divided <strong>in</strong>to n <strong>in</strong>f<strong>in</strong>itesimal slices { [t k , t k+1 ]| t k+1 − t k = ∆t, ∀k} n−1<br />

k=0 with<br />

t 0 = t and t n = t ′ ; furthermore, let each t k correspond to position coord<strong>in</strong>ate<br />

q k ∈ R 3 with q 0 = q and q n = q ′ . <strong>The</strong>n, if L c := T − V ,<br />

ψ ( q ′ , t ′) =<br />

∫R 3 [<br />

lim<br />

n→∞<br />

∫<br />

(<br />

· · ·<br />

∫R 3(n−1)<br />

× exp<br />

m<br />

2πi∆t<br />

( ∫<br />

i t<br />

′<br />

L cdt<br />

t<br />

) 3<br />

2<br />

n<br />

) n−1 ∏<br />

d 3 q k<br />

]ψ (q, t) d 3 q.<br />

k=1<br />

Pro<strong>of</strong>.<br />

Follows from the de Broglie-Bohm path <strong>in</strong>tegral.<br />

For the full pro<strong>of</strong>, see M. Oltean, Waterloo Mathematics Review 1, 1 (2011).<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Conclusion<br />

Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Conclusion<br />

Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>


Orthodox <strong>Quantum</strong> <strong>The</strong>ory<br />

Pilot-Wave <strong>The</strong>ory<br />

De Broglie-Bohm and Feynman <strong>Path</strong> Integrals<br />

<strong>The</strong> De Broglie-Bohm <strong>Path</strong> Integral<br />

<strong>The</strong> Feynman <strong>Path</strong> Integral<br />

Thank you for your attention.<br />

Marius Oltean<br />

<strong>The</strong> <strong>Foundations</strong> <strong>of</strong> <strong>Path</strong> <strong>Integration</strong> <strong>in</strong> <strong>Quantum</strong> <strong>Mechanics</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!