12.01.2015 Views

Ingeborg Levin, Tobias Naegler, Renate Heinz, Daniel Osusko ...

Ingeborg Levin, Tobias Naegler, Renate Heinz, Daniel Osusko ...

Ingeborg Levin, Tobias Naegler, Renate Heinz, Daniel Osusko ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Atmospheric observation-based global SF 6<br />

emissions: comparison of top-down and<br />

bottom-up estimates<br />

I. <strong>Levin</strong> 1 , T. <strong>Naegler</strong> 1 , R. <strong>Heinz</strong> 1 , D. <strong>Osusko</strong> 1 , E. Cuevas 2 ,<br />

A. Engel 3 , J. Ilmberger 1 , R. L. Langenfelds 4 ,<br />

B. Neininger 5 , C. v. Rohden 1 , L. P. Steele 4 ,<br />

A. Varlagin 6 , R. Weller 7 , D. E. Worthy 8 , S. A. Zimov 9<br />

1<br />

IUP, Univ. Heidelberg, 2 INM Izaña Obs., 3 IAU, Univ. Frankfurt, 4 CMAR,<br />

Aspendale, 5 MetAir AG, Hausen, 6 IPEE, Moscow, 7 AWI,<br />

Bremerhaven, 8 Env. Canada, Toronto, 9 Cherskii Obs.


Sulphur Hexafluoride: SF 6<br />

… is a very stable man-made Greenhouse Gas<br />

Mean atmospheric lifetime: ≈ 3 000 years<br />

Global Warming Potential: ≈ 23 000 x CO 2 (100 yr time horizon)<br />

→ Kyoto - reported<br />

Atmospheric mixing ratio today: ≈ 7 ppt (10 -12 mol/mol)<br />

Sources of SF 6 :<br />

- ca. 75% from electrical applications<br />

- Magnesium industry<br />

- adiabatic applications<br />

Sinks of SF 6 : only in the Mesosphere > 60 km<br />

- UV Absorption (λ < 130 nm)<br />

- electron reactions


Heidelberg co-operative network of<br />

tropospheric SF 6 observations<br />

& stratospheric profiles from Kiruna, Aire sur l‘Adour, Teresina


Global long-term trend of SF 6 in the<br />

troposphere<br />

SF 6<br />

[ppt]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Alert 82°N (cylinders)<br />

Alert 82°N (flasks)<br />

Syktyvkar 61°N (flasks >2500m)<br />

Izaña 28°N (cylinders)<br />

Cape Grim 41°S (air archive)<br />

Cape Grim 41°S (flasks)<br />

Neumayer 71°S (cylinders)<br />

Neumayer 71°S (flasks)<br />

northern hemisphere<br />

2<br />

1<br />

0<br />

southern hemisphere<br />

1980 1985 1990 1995 2000 2005 2010<br />

Year


Observed tropospheric SF 6 growth rates<br />

SF 6<br />

growth rate [ppt yr -1 ]<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

Alert (cylinders & flasks)<br />

Cherskii (flasks)<br />

Syktyvkar (flasks)<br />

Schauinsland (flasks)<br />

Izana (cylinders)<br />

Cape Grim (archive & flasks)<br />

Neumayer (cylinders & flasks)<br />

UNFCCC adopted<br />

± 0.014 ppt yr -1<br />

(ca. 6 %)<br />

0.05<br />

1980 1985 1990 1995 2000 2005 2010<br />

Year<br />

Practically no SF 6 sinks:<br />

global mean growth rate ≅ global mean SF 6 emissions


Atmospheric observation-inferred global<br />

SF 6 emissions<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

total this study (±1σ)<br />

1980 1985 1990 1995 2000 2005


How well do the 2009 bottom-up EDGAR<br />

estimates compare to our<br />

atmospheric observation-based<br />

top-down emissions


Atmospheric observation-inferred global<br />

SF 6 emissions<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

total this study (±1σ)<br />

1980 1985 1990 1995 2000 2005


Comparison with new global (bottom-up)<br />

EDGAR-estimated SF 6 emissions<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

total this study (±1σ)<br />

total (EDGAR)<br />

1980 1985 1990 1995 2000 2005


How do UNFCCC-reported SF 6 emissions<br />

compare to our top-down estimate <br />

Problem:<br />

Only industrialised countries (Annex I) are required to report their<br />

GHG emissions to UNFCCC, these are<br />

Western Europe, Canada, U.S.A., Japan, Australia, New Zealand,<br />

Eastern Europe, Russia & Turkey<br />

Therefore, we separate here into<br />

Annex I and non-Annex I<br />

which are newly industrialised countries, i.e. China, India, Brazil,<br />

others


UNFCCC-based and EDGAR estimated<br />

Annex I SF 6 emissions<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

total this study (±1σ)<br />

total (EDGAR)<br />

Annex I (EDGAR)<br />

Annex I (UNFCCC-based)<br />

1980 1985 1990 1995 2000 2005


UNFCCC-based and EDGAR Annex I<br />

& non-Annex I SF 6 emissions<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

6<br />

4<br />

total this study (±1σ)<br />

total (EDGAR)<br />

Annex I (EDGAR)<br />

Annex I (UNFCCC-based)<br />

Non-Annex I (EDGAR)<br />

Non-Annex I (UNFCCC-based)<br />

total<br />

Annex I<br />

non-Annex I<br />

2<br />

0<br />

1980 1985 1990 1995 2000 2005


Are non-Annex I<br />

countries really<br />

responsible for the<br />

major part of global<br />

SF 6 emissions today<br />

<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

6<br />

total this study (±1σ)<br />

total (EDGAR)<br />

Annex I (EDGAR)<br />

Annex I (UNFCCC-based)<br />

Non-Annex I (EDGAR)<br />

Non-Annex I (UNFCCC-based)<br />

4<br />

2<br />

0<br />

1980 1985 1990 1995 2000 2005


Are non-Annex I<br />

countries really<br />

responsible for the<br />

major part of global<br />

SF 6 emissions today<br />

<br />

SF 6<br />

emission [Gg/a]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

6<br />

total this study (±1σ)<br />

total (EDGAR)<br />

Annex I (EDGAR)<br />

Annex I (UNFCCC-based)<br />

Non-Annex I (EDGAR)<br />

Non-Annex I (UNFCCC-based)<br />

4<br />

2<br />

This would require<br />

much larger SF 6<br />

emissions per electrical<br />

power production in<br />

non-Annex I than in<br />

Annex I countries<br />

Gg SF 6<br />

/a per GWh<br />

0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

total (EDGAR)<br />

Annex I (EDGAR)<br />

non-Annex I (EDGAR)<br />

Annex I (UNFCCC-based)<br />

inferred non Annex I (UNFCCC-based)<br />

1980 1985 1990 1995 2000 2005


The SF 6 north-south gradient principally also<br />

provides information on the distribution of emissions<br />

SF 6<br />

[ppt]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Alert 82°N (cylinders)<br />

Alert 82°N (flasks)<br />

Syktyvkar 61°N (flasks >2500m)<br />

Izaña 28°N (cylinders)<br />

Cape Grim 41°S (air archive)<br />

Cape Grim 41°S (flasks)<br />

Neumayer 71°S (cylinders)<br />

Neumayer 71°S (flasks)<br />

northern hemisphere<br />

2<br />

1<br />

0<br />

southern hemisphere<br />

1980 1985 1990 1995 2000 2005 2010<br />

Year


Observed difference between Alert (82°N)<br />

and Neumayer (71°S)<br />

ΔSF 6<br />

[ppt]<br />

0.6<br />

0.4<br />

0.2<br />

Alert - Neumayer:<br />

observed<br />

GRACE: Edgar adjusted<br />

GRACE: UNFCCC-based<br />

0.0<br />

1980 1985 1990 1995 2000 2005


Observed and simulated difference between<br />

Alert (82°N) and Neumayer (71°S)<br />

ΔSF 6<br />

[ppt]<br />

0.6<br />

0.4<br />

0.2<br />

Alert - Neumayer:<br />

observed<br />

GRACE: Edgar adjusted<br />

GRACE: UNFCCC-based<br />

0.0<br />

1980 1985 1990 1995 2000 2005<br />

Simulation with the coarseresolution<br />

atmospheric box<br />

model GRACE based on<br />

UNFCCC emissions


Observed and simulated difference between<br />

Alert (82°N) and Neumayer (71°S)<br />

ΔSF 6<br />

[ppt]<br />

0.6<br />

0.4<br />

0.2<br />

Alert - Neumayer:<br />

observed<br />

GRACE: Edgar adjusted<br />

GRACE: UNFCCC-based<br />

0.0<br />

1980 1985 1990 1995 2000 2005<br />

Simulations with<br />

EDGAR distribution


Observed and simulated difference between<br />

Alert (82°N) and Neumayer (71°S)<br />

ΔSF 6<br />

[ppt]<br />

0.6<br />

0.4<br />

0.2<br />

Alert - Neumayer:<br />

observed<br />

GRACE: Edgar adjusted<br />

GRACE: UNFCCC-based<br />

0.0<br />

1980 1985 1990 1995 2000 2005<br />

→ Model transport uncertainties limit constraints on the<br />

north-south distribution of emissions, this would also be a<br />

concern for high-resolution models !


Summary<br />

Global atmospheric SF 6 mixing ratio has increased from almost<br />

zero in the 1970s to almost 7 ppt today<br />

After a decrease of annual global emissions in 1996-1998, SF 6<br />

sources increase again since 1998<br />

Bottom-up estimates by EDGAR compare well with our inferred<br />

emissions, however, for some periods, they are significantly<br />

different<br />

Annex I reported emissions are surprisingly low and leave a<br />

large gap of non-reported emissions<br />

… but model transport uncertainties and the number of<br />

observational sites in our network limit emission<br />

apportionment to Annex I or non-Annex I countries


Thank you !


The coarse-resolution GRACE model


Simulating tropospheric SF 6 with EDGARestimated<br />

SF 6 emissions<br />

SF 6<br />

[ppt]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

6.0<br />

5.5<br />

5.0<br />

Alert 82°N (tanks & flasks)<br />

Neumayer 71°S (tanks & flasks)<br />

2003 2004 2005<br />

2<br />

1<br />

Cape Grim 41°S (archive & flasks)<br />

GRACE: EDGAR original<br />

0<br />

1980 1985 1990 1995 2000 2005


Simulating tropospheric SF 6 with<br />

observation-inferred emissions<br />

SF 6<br />

[ppt]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

6.0<br />

5.5<br />

5.0<br />

Alert 82°N (tanks & flasks)<br />

Neumayer 71°S (tanks & flasks)<br />

2003 2004 2005<br />

2<br />

1<br />

0<br />

Cape Grim 41°S (archive & flasks)<br />

GRACE: EDGAR original<br />

GRACE: EDGAR adjusted<br />

1980 1985 1990 1995 2000 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!