12.01.2015 Views

Optimum Selection for Identified Major Genes - Department of ...

Optimum Selection for Identified Major Genes - Department of ...

Optimum Selection for Identified Major Genes - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Animal Genomics<br />

and<br />

Genomic <strong>Selection</strong><br />

Jack Dekkers<br />

Animal Breeding & Genetics<br />

<strong>Department</strong> <strong>of</strong> Animal Science<br />

Iowa State University


Outline<br />

• Limitations <strong>of</strong> past and current selection strategies<br />

• Including Marker-assisted selection<br />

• A revolution in genomic technology<br />

Genomic or Whole-Genome <strong>Selection</strong><br />

• Opportunities to enhance breeding programs<br />

• Redesign <strong>of</strong> breeding programs<br />

• Dairy cattle example<br />

• Layer chicken example<br />

• <strong>Selection</strong> <strong>for</strong> crossbred per<strong>for</strong>mance in field<br />

• Genetic improvement in developing countries<br />

• Conclusions


Past and Current<br />

<strong>Selection</strong> Strategies<br />

selection<br />

Black box <strong>of</strong><br />

<strong>Genes</strong><br />

Quantitative genetics<br />

h 2<br />

Phenotype<br />

Estimated<br />

Breeding<br />

Value<br />

Environment<br />

Phenotype<br />

<strong>of</strong> relatives


‘70 – ‘00:<br />

= effect <strong>of</strong> # G alleles<br />

Promise <strong>of</strong><br />

Mean<br />

weight (kg)<br />

Effect ‘G’ allele = +5<br />

105<br />

100<br />

Molecular Genetics<br />

95<br />

G<br />

G<br />

G<br />

A<br />

A<br />

A<br />

Q<br />

Q<br />

Q<br />

q<br />

q<br />

q<br />

Find major genes<br />

or<br />

markers linked to QTL<br />

and use these <strong>for</strong><br />

Marker-Assisted <strong>Selection</strong>


Use <strong>of</strong> MAS to enhance <strong>Selection</strong><br />

Molec.<br />

<strong>Genes</strong><br />

genetics<br />

<strong>Major</strong> genes<br />

Markers<br />

QTL<br />

Phenotypic<br />

data<br />

Molecular<br />

data<br />

Marker-Assisted<br />

<strong>Selection</strong><br />

• Expressed in both sexes<br />

• Expressed at early age<br />

• Doesn’t require phenotypes on<br />

animal itself or close relatives


Estrogen Receptor Gene<br />

(Rothschild et al. 1991, Short et al. 1997)<br />

Effect on Number Born Alive<br />

ESR First parity Later parities<br />

genotype n=4,262 n=4,753<br />

AA 9.4 10.0<br />

AB 9.9 10.5<br />

BB 10.2 10.7


a<br />

Allele 1<br />

homozygote<br />

sequence<br />

Allele 2<br />

homozygote<br />

sequence<br />

293 295 297 299 300<br />

C N S I I D P L I Y<br />

C N S I I N P L I Y<br />

MC4R mutation<br />

and Test<br />

(Kim et al., Mam. Gen. 2000)<br />

H 2<br />

Transmembrane<br />

domains<br />

I II III IV V VI VII<br />

1/1 2/2 1/2<br />

COO<br />

H<br />

11 vs 22 genotype<br />

in 2 commercial types<br />

Backfat<br />

(mm)<br />

Loin<br />

depth<br />

(mm)<br />

Daily<br />

Gain<br />

(g/d)<br />

Daily<br />

Feed<br />

Intake<br />

(kg/d)<br />

542<br />

466<br />

-1.3 +1.4 -26.0 -0.15<br />

P


Many markers and<br />

QTL have been<br />

reported but few<br />

have been utilized<br />

Examples <strong>of</strong> gene<br />

tests in<br />

commercial<br />

breeding<br />

D = dairy cattle<br />

B = beef cattle<br />

C = poultry<br />

P = pigs<br />

S = sheep<br />

Dekkers, 2004, J.Anim.Sci<br />

Trait Direct markers LD markers LE LE markers<br />

Congenital BLAD (D)<br />

defects<br />

Citrulinaemia (D,B)<br />

DUMPS (D)<br />

CVM (D)<br />

Maple syrup urine (D,B)<br />

Mannosidosis (D,B)<br />

RYR (P)<br />

RYR (P)<br />

Appearance CKIT (P) Polled (B)<br />

MC1R/MSHR (P,B,D)<br />

MGF (B)<br />

Milk quality<br />

-Casein (D)<br />

-lactoglobulin (D)<br />

FMO3 (D)<br />

Meat quality RYR (P) RYR (P)<br />

RN/PRKAG3 (P)<br />

RN/PRKAG3 (P)<br />

A-FABP/FABP4 (P)<br />

H-FABP/FABP3 (P)<br />

CAST (P, B)<br />

>15 PICmarq TM (P)<br />

THYR (B)<br />

Leptin (B)<br />

Feed intake<br />

MC4R (P)<br />

Disease Prp (S) B blood group (C)<br />

F18 (P)<br />

K88 (P)<br />

Reproduction Booroola (S) Booroola (S)<br />

Inverdale(S)<br />

ESR (P)<br />

Hanna (S)<br />

PRLR (P)<br />

RBP4 (P)<br />

Growth &<br />

composition<br />

Milk yield &<br />

composition<br />

MC4R (P) CAST (P) QTL (P)<br />

IGF-2 (P)<br />

IGF-2 (P)<br />

Myostatin (B)<br />

QTL (B)<br />

Callipyge (S)<br />

Carwell (S)<br />

DGAT (D) PRL (D) QTL (D)<br />

GRH (D)<br />

-Casein (D)


Reasons <strong>for</strong> limited<br />

use <strong>of</strong> Genetic Markers<br />

• Available markers only explain a limited % <strong>of</strong><br />

genetic variance<br />

• High genotyping costs<br />

• Marker effects are not always consistent<br />

across populations


Since 2000: A Revolution in Molecular Technology<br />

2.8 million SNPs<br />

Nature 2004<br />

Single<br />

Nucleotide<br />

Polymorphisms<br />

High-through-put<br />

SNP genotyping<br />

International Swine Genome<br />

Sequencing Consortium<br />

AAGCCTTGATAATT<br />

maternal<br />

paternal<br />

AAGCCTTGCTAATT<br />

NOW AVAILABLE:<br />

Illumina Bovine 50k Beadchip<br />

+ discovery <strong>of</strong> many<br />

Single<br />

Nucleotide<br />

Polymorphisms<br />

SNPs<br />

50,000 DNA tests <strong>for</strong>


How to use these new tools<br />

Genotype large # <strong>of</strong><br />

Individuals<br />

<strong>for</strong> large numbers <strong>of</strong> SNPs<br />

+ collect their phenotypes<br />

Statistical Analysis<br />

to estimate SNP effects


Repeat <strong>for</strong> all 50,000 SNPs<br />

Estimation <strong>of</strong><br />

SNP effects<br />

AAGCCTTGATAATT<br />

Progeny tested bulls grouped by SNP genotype<br />

A<br />

A<br />

A<br />

C<br />

C<br />

C<br />

SNP<br />

Genotype<br />

AAGCCTTGCTAATT<br />

Average EBV<br />

protein yield<br />

AA +20<br />

AC +15<br />

CC +10<br />

SNP effect estimate = +5 <strong>for</strong> A


Use <strong>of</strong> high-density SNPs<br />

Genotype large # <strong>of</strong><br />

Individuals<br />

<strong>for</strong> large numbers <strong>of</strong> SNPs<br />

+ collect their phenotypes<br />

Statistical Analysis<br />

to estimate effect <strong>of</strong> each SNP<br />

Use only<br />

significant SNPs<br />

<strong>for</strong> MAS<br />

Use all<br />

SNPs<br />

<strong>for</strong> MAS<br />

Genomic<br />

selection<br />

(Meuwissen et al. ‘01)


Genomic <strong>Selection</strong><br />

Breeding Value Estimation using<br />

high-density SNPs<br />

Meuwissen et al. 2001 Genetics<br />

• All SNPs are analyzed simultaneously, i.e. 50,000 vs. 1 at a time<br />

y i = m + S k g ik<br />

SNP k<br />

+ e i<br />

Estimates <strong>of</strong> SNP effects k<br />

Implemented using Bayesian methods<br />

Or by using genomic vs. pedigree<br />

relationships in animal model BLUP (GBLUP)<br />

^<br />

Use to estimate<br />

breeding value <strong>of</strong> new<br />

animals based on SNP<br />

genotypes alone<br />

^<br />

Genomic EBV = S k g ik


Animal<br />

Example Genomic EBV<br />

with 3 SNPs<br />

with estimated effects ( <strong>for</strong> # A alleles) <strong>of</strong>:<br />

SNP 1 SNP 2 SNP 3<br />

Genotype Value Genotype Value Genotype Value<br />

GEBV<br />

1 AA +10 AA +5 AA -10 +5<br />

2 AA +10 AA +5 BB +10 +25<br />

3 AB 0 BB -5 AB 0 -5<br />

4 AB 0 BB -5 AA -10 -15<br />

5 BB -10 AA +5 AB 0 -5<br />

^<br />

+10 <strong>for</strong> SNP 1<br />

+ 5 <strong>for</strong> SNP 2<br />

–10 <strong>for</strong> SNP 3<br />

Genomic EBV = S^ k g ik


Genomic <strong>Selection</strong><br />

Meuwissen et al. 2001<br />

<strong>Selection</strong> based on high-density SNP genotyping<br />

Select at young age<br />

Phenotype<br />

Genotype<br />

<strong>for</strong> >30,000<br />

SNPs<br />

Genotype<br />

<strong>for</strong> >30,000<br />

SNPs<br />

Genotype<br />

<strong>for</strong> >30,000<br />

SNPs<br />

Training data<br />

Estimate<br />

effect <strong>of</strong><br />

each SNP<br />

Predict BV<br />

from marker<br />

genotypes at<br />

early age<br />

Predict BV<br />

from marker<br />

genotypes at<br />

early age


Genomic EBV increase accuracy<br />

<strong>for</strong> young animals<br />

E.g. <strong>for</strong> Young Holstein Bulls<br />

(VanRaden and Tooker, 2009 USDA-AIPL)<br />

ftp://aipl.arsusda.gov/pub/outgoing/GenomicReliability0608.doc<br />

Trait<br />

Net merit + 23<br />

Milk yield + 32<br />

Fat yield + 36<br />

Protein yield + 28<br />

Productive life + 33<br />

Dtr. Pregancy rate + 20<br />

Gain over parent average<br />

reliability (~39%)


The Promise <strong>of</strong> Genomic <strong>Selection</strong><br />

(based on simulation)<br />

• Ability to increase accuracy <strong>of</strong> EBV<br />

at a young age<br />

• Reduce generation intervals<br />

• Reduce rates <strong>of</strong> inbreeding<br />

• Reduce requirement to obtain<br />

phenotypes on selection candidates<br />

and / or on close relatives


Outline<br />

• Limitations <strong>of</strong> past and current selection strategies<br />

• Including Marker-assisted selection<br />

• A revolution in genomic technology<br />

Genomic or Whole-Genome <strong>Selection</strong><br />

• Opportunities to enhance breeding programs<br />

• Redesign <strong>of</strong> breeding programs<br />

• Dairy cattle example<br />

• Layer chicken example<br />

• <strong>Selection</strong> <strong>for</strong> crossbred per<strong>for</strong>mance in field<br />

• Genetic improvement in developing countries<br />

• Conclusions


ow could Genomic <strong>Selection</strong> change dairy breeding<br />

Illumina Bovine 50k Beadchip<br />

Superior progenytested<br />

bull<br />

X<br />

Embryo<br />

Transfer<br />

Superior genometested<br />

young bull<br />

5 yrs<br />

&<br />

$$$$$$<br />

later<br />

Semen<br />

samples<br />

Which is best<br />

DNA<br />

samples<br />

< 6 mo<br />

&<br />

$$<br />

later


Implementation <strong>of</strong> Genomic<br />

<strong>Selection</strong> in Layer Chickens<br />

Jack Dekkers 1 , Chris Stricker 2<br />

Rohan Fernando 1 , Dorian Garrick 1 , Susan Lamont 1<br />

Neil O’Sullivan 3 , Janet Fulton 3 , Jesus Arango 3 , Petek Settar 3<br />

Andreas Kranis 4 , Jim McKay 5 , Kellie Watson 4 ,<br />

Alfons Koerhuis 4 , Rudi Preisinger 6<br />

1<br />

Iowa State University<br />

2<br />

applied genetics network,<br />

3<br />

Hy-Line Int<br />

4<br />

Aviagen Ltd.,<br />

5<br />

EW Group<br />

6<br />

Lohmann Tierzucht


Implementation <strong>of</strong> Genomic<br />

<strong>Selection</strong> in Layer Chickens<br />

Research Objective<br />

Evaluate and demonstrate<br />

the advantages and pitfalls <strong>of</strong> Genomic <strong>Selection</strong><br />

in a commercial breeding population<br />

Research Questions / Goals<br />

In layer chickens, Genomic <strong>Selection</strong> can:<br />

• increase response by halving the generation interval<br />

• without increasing the rate <strong>of</strong> inbreeding per year<br />

• in a breeding program comprising fewer individuals


Implementation<br />

A Commercial Breeding Line was split in two<br />

Traditional and Genomic Selectrion compared side-by-side<br />

<strong>Selection</strong> strategy Traditional Genomic<br />

<strong>Selection</strong> parameters ♂♂ ♀♀ ♂♂ ♀♀<br />

# candidates/gener. 1,000 3,000 300 300<br />

# phenotyped a 3,000 300<br />

# selected 60 360 50 b 50 b<br />

Generation interval 12 mo c 12 mo c 6 mo d 6 mo d<br />

a Complete phenotypes available at ~10 months <strong>of</strong> age<br />

b<br />

Equal selection <strong>of</strong> ♂ and ♀ maximizes response <strong>for</strong> given F<br />

c Traditional selection is after ♀♀ are phenotyped 12 mo.<br />

Traditional selection is limited by cost to rear and phenotype<br />

Male traditional selection is on sib data low accuracy high F


Expected Response and Inbreeding<br />

Based on simulation


Outline<br />

• Limitations <strong>of</strong> past and current selection strategies<br />

• Including Marker-assisted selection<br />

• A revolution in genomic technology<br />

Genomic or Whole-Genome <strong>Selection</strong><br />

• Opportunities to enhance breeding programs<br />

• Redesign <strong>of</strong> breeding programs<br />

• dairy cattle example<br />

• Layer chicken example<br />

• <strong>Selection</strong> <strong>for</strong> crossbred per<strong>for</strong>mance in field<br />

• Genetic improvement in developing countries<br />

• Conclusions


Current Pyramid <strong>Selection</strong> Programs<br />

Limitations: - limited selection <strong>for</strong> per<strong>for</strong>mance in the field<br />

- no selection <strong>for</strong> traits not recorded in nucleus<br />

- disease traits<br />

Sire<br />

line<br />

NUCLEUS<br />

herds<br />

Dam<br />

line<br />

High health<br />

environment<br />

Multiplier<br />

Multiplier<br />

r g < 1<br />

Crossbred animals in<br />

Production herds<br />

Field<br />

environment


Field data on relatives<br />

<strong>Selection</strong> <strong>for</strong> Per<strong>for</strong>mance in Field<br />

‘Traditional’ Breeding Solution:<br />

Collect phenotypes on relatives in field<br />

Combined Crossbred-Purebred <strong>Selection</strong><br />

Purebred<br />

data<br />

Sire<br />

line<br />

Multiplier<br />

Crossbred animals in<br />

Production herds<br />

<br />

<br />

G field<br />

F<br />

Bijma & van Arendonk, ‘98<br />

Requirements/limitations:<br />

- Costly logistics - Pedigree-based<br />

phenotyping in field<br />

- Longer generation intervals<br />

- Higher rates <strong>of</strong> inbreeding<br />

- family data vs. own phenotype


<strong>Selection</strong> <strong>for</strong> Per<strong>for</strong>mance in Field<br />

Genomic <strong>Selection</strong> Solution<br />

Genomic<br />

<strong>Selection</strong><br />

(Dekkers 2007 JAS)<br />

Genomic selection using SNP<br />

effects estimated in field data<br />

Genomic<br />

EBV<br />

^<br />

^<br />

S k g ik<br />

g ik<br />

Genotype<br />

Sire<br />

line<br />

Multiplier<br />

Advantages:<br />

- Potential to increase response<br />

and reduce inbreeding<br />

- Removes requirement <strong>for</strong><br />

pedigree-based phenotypes<br />

- Opportunities to select <strong>for</strong><br />

traits not observed in nucleus<br />

SNP effect<br />

estimates<br />

Genotype<br />

Phenotype<br />

Crossbred animals in<br />

Production herds<br />

(Ibanez-Escriche, Fernando, Toosi, Dekkers, GSE, 2009)


Genetic Improvement in Developing Countries<br />

Limitations<br />

• G x E interactions<br />

• Limited acceptance<br />

by local farmers<br />

• Lack <strong>of</strong> pedigree<br />

at field level<br />

Nucleus<br />

Breeding<br />

Program<br />

Bulls<br />

or<br />

Semen<br />

Field<br />

population


Genotype<br />

Phenotype<br />

Genetic Improvement in Developing Countries<br />

Potential Genomic <strong>Selection</strong> Solution<br />

Bulls or<br />

Semen<br />

Identify best<br />

genetics in the<br />

field using<br />

Genomic EBV<br />

S^ k g ik<br />

Genotype<br />

g ik<br />

Field<br />

population<br />

^<br />

SNP effect<br />

estimates


Outline<br />

• Limitations <strong>of</strong> past and current selection strategies<br />

• Including Marker-assisted selection<br />

• A revolution in genomic technology<br />

Genomic or Whole-Genome <strong>Selection</strong><br />

• Opportunities to enhance breeding programs<br />

• Redesign <strong>of</strong> breeding programs<br />

• dairy cattle example<br />

• Layer chicken example<br />

• <strong>Selection</strong> <strong>for</strong> crossbred per<strong>for</strong>mance in field<br />

• Genetic improvement in developing countries<br />

• Conclusion


College <strong>of</strong> Agriculture and Life Sciences<br />

Genomic <strong>Selection</strong> has potential to<br />

revolutionize Animal Breeding<br />

by removing limitations on<br />

• when<br />

• where<br />

• and on which animals<br />

phenotypes are recorded<br />

• With opportunities to<br />

• reduce generation intervals<br />

• reduce inbreeding<br />

• improve field per<strong>for</strong>mance<br />

• reduce phenotyping costs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!