12.01.2015 Views

Silane cross-linked polyethylene pipe INTERSOL ... - Watts Industries

Silane cross-linked polyethylene pipe INTERSOL ... - Watts Industries

Silane cross-linked polyethylene pipe INTERSOL ... - Watts Industries

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Silane</strong> <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong><br />

<strong>pipe</strong> <strong>INTERSOL</strong> PEX-b<br />

Main characteristics<br />

Use of <strong>INTERSOL</strong> ®<br />

PEX-b offers the<br />

following advantages:<br />

• Resistance to electrochemical and chemical<br />

corrosion<br />

• Long life in relation to temperature and pressure<br />

• Resistance to chemicals<br />

• Resistance to high temperature peaks<br />

(up to 110°C)<br />

• Low noise level<br />

• Resistance to plastic creep<br />

• Low pressure drop<br />

• Low formation of deposits<br />

• Resistance to low temperatures<br />

• Flexibility<br />

A Division of <strong>Watts</strong> Water Technologies Inc.


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

2<br />

Piping of the <strong>INTERSOL</strong> ® PEX-b series is made from <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong>, available in versions with or<br />

without oxygen diffusion barrier, and suitable for <strong>pipe</strong>s used for supplying the heat carrier fluid in<br />

heating/plumbing systems.<br />

TPR<br />

<strong>INTERSOL</strong> ®<br />

Cross-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>. Can be used as a viable alternative to<br />

conventional piping (copper - steel - iron). Suitable for heating and plumbing<br />

systems as it is non toxic.<br />

Easy to install. Low pressure drops. Age and corrosion resistant.<br />

Max. temperature: 100 °C.<br />

Conforms with UNI 9338. Approved according to UNI 315 IIP no. 206.<br />

Type Part number Dimensions<br />

TPR 1001112 12 x 2,0<br />

TPR 1001115 15 x 2,5<br />

TPR 1001118 18 x 2,5<br />

TPR 1001120 20 x 2,0<br />

TPR 1001122 22 x 3,0<br />

TPR 1001128 28 x 3,0<br />

TPR 1001132 32 x 3,0<br />

TPRUV<br />

<strong>INTERSOL</strong> ®<br />

Cross-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong> resistant to the aging action of UV rays.<br />

Characteristics like TPR, but suitable above all for outdoor sections exposed to<br />

sunlight.<br />

Conforms with UNI 9338. Approved according to UNI 315 IIP no. 206.<br />

Type Part number Dimensions<br />

TPRUV 1001512 12 x 2,0<br />

TPRUV 1001515 15 x 2,5<br />

TPRUV 1001518 18 x 2,5<br />

TPRUV 1001522 22 x 3,0<br />

TPRUV 1001528 28 x 3,0<br />

TPRUV 1001532 32 x 3,0<br />

VPESR<br />

<strong>INTERSOL</strong> ®<br />

Cross-<strong>linked</strong> polythene <strong>pipe</strong> enclosed in corrugated <strong>polyethylene</strong> sheath.<br />

Characteristics like TPR.<br />

Black sheath.<br />

Conforms with UNI 9338. Approved according to UNI 315 IIP no. 206.<br />

(does not include the sheath).<br />

Type Part number Dimensions<br />

VPESR 1001905 15 x 2,5<br />

VPESR 1001909 18 x 2,5


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

VPEED<br />

<strong>INTERSOL</strong> ®<br />

Cross-<strong>linked</strong> polythene <strong>pipe</strong> with oxygen diffusion barrier to prevent oxygen<br />

in the air from penetrating inside the water circuit.<br />

Suitable for building radiant panel systems.<br />

Other characteristics like TPR.<br />

3<br />

Conforms with DIN 16892/16898.<br />

Approved according to DIN 4726/4729.<br />

Type Part number Dimensions<br />

VPEED 1001165 16 x 2,0<br />

VPEED 1001166 16 x 2,0<br />

VPEED 1001175 17 x 2,0<br />

VPEED 1001176 17 x 2,0<br />

VPEED 1001185 18 x 2,0<br />

VPEED 1001186 18 x 2,0<br />

VPEED 1001205 20 x 2,0<br />

VPEED 1001206 20 x 2,0<br />

TPRR<br />

<strong>INTERSOL</strong> ®<br />

Like VPEDD but without the oxygen diffusion barrier.<br />

Conforms with DIN 16892/16893 - UNI 9338.<br />

Type Part number Dimensions<br />

TPRR 1001160 16 x 2,0<br />

TPRR 1001161 16 x 2,0<br />

TPRR 1001170 17 x 2,0<br />

TPRR 1001171 17 x 2,0<br />

TPRR 1001180 18 x 2,0<br />

TPRR 1001181 18 x 2,0<br />

TPRR 1001200 20 x 2,0<br />

TPRR 1001201 20 x 2,0<br />

1 - PLASTICS USED IN HOT /COLD WATER PRESSURE PIPING<br />

<strong>INTERSOL</strong> ® PEX-b is a <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong> obtained via the silane method, starting from high density<br />

<strong>polyethylene</strong>. It finds application in the heating and plumbing sector.<br />

In this sector (floor heating, radiator <strong>pipe</strong> connecting, plumbing systems) it is possible to use the following plastic<br />

materials instead of conventional metal ones:<br />

- Polyethylene (PE)<br />

- Chlorinated polyvinyl chloride (PVC-C)<br />

- Cross-<strong>linked</strong> <strong>polyethylene</strong> (PEX)<br />

- Polypropylene random copolymer (PP-R)<br />

- Polybutylene (PB)<br />

Table 1 shows the fields of application of plastics in the pressure <strong>pipe</strong> sectors.<br />

Table 1<br />

Application PE PVC-C PEX PP-R PB<br />

Domestic cold water Yes Yes Yes Yes Yes<br />

Domestic hot water (60°C) No Yes Yes Yes Yes<br />

Floor heating No No Yes (Yes) Yes<br />

Radiator <strong>pipe</strong> connecting No No Yes No (Yes)<br />

Legend<br />

Yes = used<br />

(Yes) = used less frequently<br />

No = not used


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

2 - CROSS-LINKING METHOD<br />

4<br />

High density <strong>polyethylene</strong> is a thermoplastic macromolecular component, obtained from the polymerization of the<br />

ethylene monomer (CH2 = CH2).<br />

Its chemical formula can be represented as: - (CH2 - CH2) - n<br />

where n defines the length of the macromolecular chain (the average value of n can also lie between<br />

10,000 – 16,000). From now onwards we shall represent such chain as:<br />

Hence <strong>polyethylene</strong> consists of various macromolecular (polymer) chains, whose cohesion forces cannot strictly<br />

be considered to be true chemical bonds, rather they are electrical in nature and are commonly known as “Van<br />

der Waals” forces. Although such cohesion forces are low, the high number of intramolecular bonds favours<br />

obtaining of certain properties for the product.<br />

However the low energy of the cohesion forces makes the thermoplastic materials highly sensitive to temperature,<br />

which causes considerable decay of the properties.<br />

Suppose in addition to the “Van der Waals” forces, we introduce intramolecular chemical bonds (the so-called<br />

<strong>cross</strong>-linking bonds), the thermal properties of the product will be considerably improved.<br />

Cross-linking is a process which modifies the chemical structure of the material, by creating a three dimensional<br />

“network” structure thanks to links between the polymer chains. The new structure determines certain special<br />

characteristics, namely:<br />

• an increase in the maximum operating temperature<br />

• a reduction in creep deformation (creep)<br />

• improved chemical resistance<br />

• improved resistance to UV rays<br />

• improved abrasion resistance<br />

• greater impact strength<br />

• less notch sensitivity and abrasion<br />

• thermal memory characteristics are conferred to the material (“thermoelastic polymer”)<br />

2.1 - Classification of the <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong><br />

Cross-<strong>linked</strong> <strong>polyethylene</strong> is classified according to the methods used to perform the <strong>cross</strong>-linking as summed up<br />

in the following table:<br />

Table 2<br />

Type of <strong>cross</strong>-linking Cross-linking agent Product symbol<br />

a Chemical Peroxides PEX-a<br />

b Chemical <strong>Silane</strong>s PEX-b<br />

c Physical Electronic rays (beta) PEX-c<br />

d Chemical Azo compounds PEX-d<br />

Processes a, b and c are the most frequent ones and they will be described in the following pages.<br />

2.2 - Chemical <strong>cross</strong>-linking with peroxides (PEX-a)<br />

In the Engel method, the peroxide (chemical formula ROOR) is added to <strong>polyethylene</strong> during the extrusion phase.<br />

The process consists of two steps, namely:<br />

• formation of free radicals<br />

• <strong>cross</strong>-linking<br />

+ ROOR + ROH<br />

+<br />

Special machines that allow reaching of pressures up to 2000 bar are required to complete such process.


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

2.3 - Physical <strong>cross</strong>-linking with radiation, beta rays (PEX-c)<br />

As in the previous situation, likewise here, <strong>cross</strong>-linking depends on the formation of free radicals, in this case<br />

generated by beta radiation. Such technology is based on the method of <strong>cross</strong>-linking the finished <strong>polyethylene</strong><br />

product by radiating with a high energy electron beam, generated by a particle accelerator. The <strong>cross</strong>-linking<br />

process can be represented as follows:<br />

5<br />

• formation of free radicals<br />

ray<br />

• <strong>cross</strong>-linking<br />

+<br />

The processes based on peroxides and radiation generate a bond of the carbon-carbon type between the chains.<br />

2.4 - Chemical <strong>cross</strong>-linking with silanes <strong>INTERSOL</strong> ® PEX-b<br />

We shall now go into greater depth as regards the chemical silane <strong>cross</strong>-linking which, as will be seen below,<br />

creates a carbon-silicon-oxygen-silicon-carbon bond between the chains.<br />

In such process <strong>polyethylene</strong> is added to a silane, a small quantity of peroxide, acting as an initiator, and an<br />

organometallic catalyst. Cross-linking is performed in two steps: grafting and <strong>cross</strong>-linking.<br />

Grafting takes place via the extrusion process, which is then followed by <strong>cross</strong>-linking in water, accelerated by<br />

the catalyst.<br />

The following is a representation of the chemical reaction mechanism with silanes (e.g. vinyl trimethoxysilane<br />

contains a small quantity of dicumyl peroxide):<br />

• grafting<br />

takes place inside the extruder at high temperature (140°C – 190°C)<br />

+ CH2=CH-Si-(OCH3)3<br />

ROOR’<br />

• <strong>cross</strong>-linking<br />

CH30-Si-OCH3<br />

OCH3<br />

(takes place in contact with water, normally hot between 80°C – 85°C)<br />

+ 3 H2O + 3 CH3OH<br />

CH30-Si-OCH3<br />

OCH3<br />

HO-Si-OH<br />

OH<br />

Cross-<strong>linked</strong> <strong>polyethylene</strong> <strong>INTERSOL</strong> ® PEX-b<br />

condensation<br />

HO-Si-OH<br />

catal.<br />

+ O + H2O<br />

HO-Si-OH<br />

OH<br />

HO-Si-OH<br />

OH<br />

HO-Si-OH<br />

The intramolecular bond that is generated is of the type - Si - HO - Si – possessing an energy comparable to the<br />

- C - C - bond.


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

3 - MANUFACTURING PROCESSES INVOLVING SILANE CROSS-LINKING<br />

6<br />

The use of silanes as <strong>cross</strong>-linking agents is based mainly on two industrial methods:<br />

1) A TWO-STEP PROCESS (SIOPLAS)<br />

2) A ONE-STEP PROCESS (MONOSIL)<br />

3.1 - Two-step Sioplas method<br />

The Sioplas method was developed in 1968 and consists of two steps (see figure 2):<br />

-) step 1<br />

Polyethylene, silane and a small quantity of peroxide plus further additives (anti-oxidants) are processed in a<br />

single or twin-screw extruder. They are blended at temperatures such as to “graft” the <strong>polyethylene</strong> with the<br />

silane. Such <strong>cross</strong>-linkable product is granulated and stored in air-tight containers.<br />

-) step 2<br />

The <strong>cross</strong>-linkable <strong>polyethylene</strong> with the addition of a catalyst masterbatch is melted and reblended in a second<br />

extruder, then converted into the final product (<strong>pipe</strong>).<br />

These two steps are followed by <strong>cross</strong>-linking in hot water (normally 80 to 85°C) for a time depending on the <strong>pipe</strong><br />

wall thickness.<br />

Diagram of the two-step Sioplas method<br />

Grafting step<br />

Polyethylene+<br />

pellets<br />

<strong>Silane</strong>+<br />

peroxide<br />

Liquid of<br />

the pump<br />

Step 1<br />

Grafting extrusion<br />

(typically L/D=25)<br />

Pelletizing unit<br />

Shaping step<br />

Ppackaging and<br />

storage in dry<br />

conditions of the<br />

grafted polymer<br />

Grafted pellets<br />

Additives<br />

Anti-oxidant +<br />

Catalyst<br />

Step 2<br />

Shaping<br />

extrusion<br />

Finished product<br />

Cross-linking in water<br />

Fig.2


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

3.2 - One-step Monosil method<br />

The Monosil method was introduced by Dow Chemical in 1974 and thanks to the development of special<br />

extruders (special screw profiles) by the company Maillefer (see figure 3).<br />

In such process, <strong>polyethylene</strong>, silane, a small quantity of peroxide, catalyst and further additives are introduced<br />

in a single-screw extruder.<br />

Blending of the products, grafting reactions and formation of the <strong>pipe</strong> are completed in just one extrusion and<br />

drawing line.<br />

Cross-linking is performed in hot water as in the previous case.<br />

The <strong>INTERSOL</strong> ® PEX-b <strong>pipe</strong> is manufactured with the latter technology, starting directly from the raw materials<br />

purchased from manufacturers with consequent advantages of 100% quality control over all the <strong>pipe</strong><br />

manufacturing phases as it is not necessary to depend on intermediate manufacturers as would be required by<br />

the Sioplas method.<br />

7<br />

Diagram of the one-step Monosil process<br />

Polyethylene<br />

pellets<br />

Anti-oxidants<br />

<strong>Silane</strong>+<br />

peroxide+<br />

catalyst<br />

Finished product<br />

Grafting and shaping extrusion<br />

(typically L/D=30)<br />

Cross-linking in water<br />

Fig.3


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

4 - MANUFACTURING PROCESS AND TESTING OF <strong>INTERSOL</strong> ® PEX-b<br />

8<br />

<strong>Silane</strong> + liquid<br />

Anti-oxidant<br />

Non <strong>cross</strong>-<strong>linked</strong><br />

<strong>polyethylene</strong><br />

RAW MATERIAL<br />

Testing (organoleptic<br />

melt index, etc.)<br />

EXTRUSION<br />

Anti-diffusion barrier<br />

Process control<br />

(temperature-screw revs., etc.)<br />

FORMING<br />

Inspection (appearance, centering, wall thickness,<br />

O.D., marking)<br />

CROSS-LINKING<br />

Process control<br />

(bath temperature, duration)<br />

FINISHED PRODUCT<br />

Final testing<br />

(degree of <strong>cross</strong>-linking,<br />

resistance to internal<br />

pressure Vs. temperaturecold<br />

rupture tests,<br />

tensile tests)<br />

<strong>INTERSOL</strong>-iip 206-UNI-315-PE-X 15x2.5-PN 16 10bar/80°C<br />

Cross-<strong>linked</strong><br />

<strong>polyethylene</strong><br />

5 - PROPERTIES OF <strong>INTERSOL</strong> ® PEX-b<br />

Use of <strong>INTERSOL</strong> ® PEX-b offers various advantages, above all:<br />

1) Resistance to electrochemical and chemical corrosion<br />

2) Long life in relation to temperature and pressure<br />

3) Resistance to elevated temperature peaks (up to 100°C)<br />

4) Resistance to chemicals<br />

5) Low noise level<br />

6) Resistance to plastic creep<br />

7) Low pressure drop<br />

8) Low formation of deposits<br />

9) Resistance to low temperatures<br />

10) Flexibility


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

5.1 - Technical data of <strong>INTERSOL</strong> ® PEX-b<br />

Table 3<br />

Mechanical properties Standard Unit Value<br />

Specific gravity DIN 53479 gr/cm 3 0,95<br />

Tensile strength (20°C) DIN 53455 MPa 22 - 27<br />

Elongation at break (20°C) DIN 53455 % 350 - 550<br />

Tensile modulus of elasticity (20°C) DIN 53457 MPa > 550<br />

Impact strength (20°C) DIN 53453 KJ/m 2 No breakage<br />

Moisture absorption (100°C) DIN 53472 % 0,05<br />

Thermal properties<br />

Operating temperature - °C -100 / +100<br />

Softening point - °C 125<br />

Coefficient of linear expansion (20°C) - °C -1 1,4*10 -4<br />

Coefficient of linear expansion (100°C) - °C -1 2,0*10 -4<br />

Impact strength (20°C) - KJ/Kg°C 2,0<br />

Moisture absorption (100°C) DIN 52612 W/m°C 0,35 - 0,41<br />

Electrical properties<br />

Specific internal resistance (20°C) - m 10 15<br />

Dielectric constant (20°C) - - 2,2<br />

Dielectric strength (20°C) - KV/mm 20<br />

9<br />

6 - STANDARD SIZES OF <strong>INTERSOL</strong> ® PEX-b<br />

Standard <strong>pipe</strong> dimensions depend on the field of application and typical standards of each nation.<br />

Above all, distinction can be made between two sectors, namely:<br />

-Floor heating and connection of radiators<br />

-Plumbing systems<br />

6.1 - Floor heating and connection of radiators<br />

Two types of <strong>pipe</strong> can be used, namely:<br />

a) with oxygen diffusion barrier, consisting of a film of coextruded ethylene vinyl alcohol (EVOH)<br />

Table 4<br />

O.D. - for wall thickness Typical Countries Weight (Kg/m) Capacity (l/m)<br />

14 x 2 DD Germany 0,083 0,074<br />

16 x 2 DD Italy 0,097 0,109<br />

17 x 2 DD Germany 0,102 0,126<br />

18 x 2 DD Italy 0,109 0,148<br />

20 x 2 DD Italy - Germany 0,122 0,193<br />

Standard length: 100 - 120 - 200 - 240 metres<br />

b) without anti-oxygen barrier<br />

Table 5<br />

O.D. - for wall thickness Typical Countries Weight (Kg/m) Capacity (l/m)<br />

12 x 2 Italy 0,065 0,048<br />

16 x 2 Italy 0,092 0,108<br />

18 x 2 Italy 0,104 0,150<br />

20 x 2 Italy 0,119 0,194<br />

12 x 1,1 France 0,042 0,073<br />

16 x 1,5 France 0,072 0,128<br />

20 x 1,9 France 0,112 0,201<br />

25 x 2,3 France 0,167 0,318<br />

Standard length: 100 - 120 - 200 - 240 metres


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

6.2 - Plumbing systems<br />

10<br />

Table 6<br />

Dimensions - For wall thickness Typical Countries Weight (Kg/m) Capacity (l/m)<br />

12 x 2 Italy 0,065 0,048<br />

15 x 2,5 Italy 0,100 0,076<br />

18 x 2,5 Italy 0,124 0,127<br />

22 x 3 Italy 0,181 0,193<br />

28 x 3 Italy 0,231 0,376<br />

32 x 3 Italy 0,274 0,521<br />

16 x 2,2 Germany 0,098 0,102<br />

20 x 2,8 Germany 0,153 0,156<br />

25 x 3,5 Germany 0,233 0,251<br />

32 x 4,4 Germany 0,382 0,410<br />

12 x 1,1 France 0,042 0,073<br />

16 x 1,5 France 0,072 0,128<br />

20 x 1,9 France 0,112 0,201<br />

25 x 2,3 France 0,167 0,318<br />

Standard length: 50 - 75 - 100 metres<br />

7 - STANDARDS AND RECOMMENDATIONS<br />

Table 7<br />

GERMANY<br />

STANDARD<br />

Heating<br />

system<br />

Plumbing<br />

system<br />

DIN 16892 Pipes made from high density, <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> (VPE), X X<br />

general requirements, testing.<br />

DIN 16893 Pipes made from <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> (VPE), dimensions. X X<br />

DIN 4726 Plastic <strong>pipe</strong>s used in hot water floor heating systems, X<br />

general requirements.<br />

DIN 4729 (*) High density, <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s for use in hot water floor X<br />

heating systems, general requirements and testing<br />

DIN 4725 Hot water floor heating systems; X<br />

thermal tests (design)<br />

DIN 8076/1 Fittings for floor heating systems X<br />

DIN 1988 + KTW Code of practice for drinking water supply systems X<br />

DVGW - W531 Manufacture, safety and testing of <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s<br />

(HDPE) for drinking water in home installations<br />

X<br />

DVGW - W532 Metal fittings for <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s (HPDE)<br />

used in drinking water installations<br />

X<br />

(*) related to and cited in DIN 4726.<br />

Table 8<br />

ITALY<br />

STANDARD<br />

Heating<br />

system<br />

Plumbing<br />

system<br />

UNI 9338 High density, <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s (VPE), X X<br />

general requirements, testing.<br />

UNI 9349 Cross-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s (VPE), dimensions. X X<br />

Recommendation Plastic <strong>pipe</strong>s used in hot water floor heating systems, X X<br />

IIP n°16<br />

general requirements.


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

Table 9<br />

FRANCE<br />

STANDARD<br />

Heating<br />

system<br />

Plumbing<br />

system<br />

11<br />

NFT 54-085 Cross-<strong>linked</strong> <strong>polyethylene</strong> <strong>pipe</strong>s (PEX) for transport of fluids under X X<br />

pressure; requirements<br />

NFT 54-026 Thermoplastic <strong>pipe</strong>s used for transport of fluids; X X<br />

determination of tensile properties.<br />

NFT 54-021 Thermoplastic <strong>pipe</strong>s used for transport of fluids; X X<br />

determination of longitudinal shrinkage Vs. increase in temperature<br />

NFT 54-025 Thermoplastic <strong>pipe</strong>s used for transport of fluids; determination of X X<br />

pressure resistance at constant temperature<br />

8 - FACTORY TESTS CONDUCTED ON <strong>INTERSOL</strong> ® PEX-b<br />

Table 10<br />

TEST STANDARD MAIN REQUIREMENTS<br />

Dimensional checking UNI 9338 O.D. - 0<br />

DIN 16893 +0,3<br />

NFT 54-085 Wall thickness - 0<br />

+0,3<br />

Degree of <strong>cross</strong>-linking UNI 9338 > 65%<br />

DIN 16892<br />

Thermoxidation UNI 9338 No surface alteration<br />

DVGW-W531<br />

Pressure resistance at constant temperature UNI 9338 Temperature = 95°C<br />

DIN 16892 Stress = 4,8MPa time ≥ 1h<br />

NFT 54-085 Stress = 4,7MPa time ≥ 170h<br />

Stress = 4,4MPa time ≥ 1000h<br />

Cold rupture test<br />

Tensile properties NFT 54-026 Yield stress ≥ 20 MPa<br />

Stress to rupture<br />

20 MPa<br />

Elongation at break ≥ 20 MPa<br />

Linear shrinkage Vs. increase in temperature NFT 54-021 Shrinkage 2,5 %<br />

(120°C - 1h)<br />

Microstructural analysis UNI 4729<br />

DVGW-W531<br />

9 - LONG-TERM PROPERTIES OF <strong>INTERSOL</strong> ® PEX-b<br />

For determination of permissible stress levels in long-term operation, the mechanical behaviour of the <strong>pipe</strong> was<br />

evaluated experimentally (minimum resistances) by submitting it to pressure at different temperatures for long<br />

periods of time. The regression curves of the <strong>INTERSOL</strong> ® PEX-b <strong>pipe</strong> at various temperatures (see figure) were<br />

derived from these tests. In the case of very long times, resistances were calculated by extrapolation.<br />

For a <strong>pipe</strong> under pressure the equivalent stress generated by the internal pressure is calculated using the<br />

following formula:<br />

e =<br />

P x (de - s)<br />

20 x s<br />

where e is the equivalent stress in N/mm 2<br />

P is the pressure in bar<br />

de is the outer diameter of the <strong>pipe</strong> in mm<br />

s is the wall thickness of the <strong>pipe</strong> in mm


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

We shall show an example of calculating the factor of safety :<br />

12<br />

Suppose we have a <strong>pipe</strong> with dimensions 16 x 2 - Max. operating pressure = 3 bar<br />

Max. operating temperature = 70°C - Required duration = 50 years<br />

On the basis of the above data, we can deduce the equivalent force:<br />

e =<br />

P x (de - s)<br />

20 x s<br />

=<br />

3 x (16 - 2)<br />

20 x 2<br />

= 1,05 N mm 2<br />

from the regression curve at 70°C it can be seen that max. stress for the period of 50 years is equal to:<br />

max = 5,4 N/mm 2<br />

hence the factor of safety is as follows:<br />

fs = max<br />

e<br />

= 5,4 = 5,1<br />

1,05<br />

For example, in accordance with UNI 9338 standard, two classes of nominal pressure are defined (max. permissible<br />

pressure for continuous duty with water at 20°C), namely PN10 and PN16, depending on the dimensions, as given<br />

table 11. Therefore having defined a factor of safety equal to 1.3, table 12 shows the safety operating pressures for<br />

different temperature and time ranges.<br />

Table 11 Table 12<br />

Nominal<br />

O.D.<br />

Average<br />

O.D.<br />

Wall thickness<br />

PN 10 PN 16<br />

10 10 +0,3 - 1,8 +0,1<br />

12 12 +0,3 - 2,0 +0,2<br />

14 14 +0,3 - 2,0 +0,2<br />

15 15 +0,3 2,0 +0,2 2,5 +0,2<br />

16 16 +0,3 2,0 +0,2 2,5 +0,2<br />

17 17 +0,3 2,0 +0,2 2,3 +0,2<br />

18 18 +0,3 2,0 +0,2 2,5 +0,2<br />

20 20 +0,3 2,0 +0,2 2,8 +0,2<br />

22 22 +0,3 2,0 +0,2 3,0 +0,3<br />

25 25 +0,3 2,3 +0,2 3,5 +0,3<br />

28 28 +0,3 3,0 +0,3 4,0 +0,3<br />

32 32 +0,3 3,0 +0,3 4,4 +0,4<br />

Temperature (°C) Factor Duration Max.permissible Max. permissible<br />

of safety (years) safety force operating pressure<br />

(MPa)<br />

(bar)<br />

PN 10 PN 16<br />

up to 60°C 1,3 50 5,0 10 16<br />

over 60°C<br />

up to 80°C<br />

1,3 50 3,8 6 10<br />

over 80°C<br />

up to 95°C<br />

1,3 10 3,2 6 10


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

REGRESSION CURVE<br />

13<br />

10<br />

20 °C<br />

30 °C<br />

40 °C<br />

Hydrostatic stress (MPa)<br />

50 °C<br />

60 °C<br />

70 °C<br />

80 °C<br />

90 °C<br />

95 °C<br />

110 °C<br />

0<br />

0,1<br />

1,0 10,0 100,0 1000,0 10000,0 100000,0 1000000,0<br />

Time to fracture (h)<br />

50 years


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

10 - LINEAR THERMAL EXPANSION OF <strong>INTERSOL</strong> ® PEX-b<br />

The variation in <strong>pipe</strong> length against rise in temperature can be calculated using the following formula:<br />

14<br />

ΔL = ∂ x L x ΔT<br />

where<br />

ΔL = variation in length (mm)<br />

ΔT = variation in temperature (°C)<br />

L = <strong>pipe</strong> length (m)<br />

∂ = coefficient of linear expansion = (average value 1,8 x 10 -4 )<br />

Example:<br />

ΔT = 50°C<br />

L = 6 m<br />

ΔL = 54 mm<br />

(see graph)<br />

180<br />

Linear expansion Vs. increase in temperature<br />

10<br />

160<br />

140<br />

Pipe lenght (m)<br />

9<br />

8<br />

7<br />

Variation in lenght (mm)<br />

120<br />

100<br />

80<br />

60<br />

6<br />

5<br />

4<br />

3<br />

40<br />

2<br />

20<br />

1<br />

0<br />

0 20 40 60 80 100<br />

Variation in temperature (°C)


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

11 - OTHER PROPERTIES OF <strong>INTERSOL</strong> ® PEX-b<br />

11.1 - Two-step Sioplas method<br />

Thanks to its flexibility, <strong>INTERSOL</strong> ® PEX-b can be “cold” bent up to bend radii equal to 5 times the outer diameter.<br />

For smaller bend radii, it is necessary to heat the <strong>pipe</strong> using hot air at 130 – 150°C (never use a direct flame).<br />

15<br />

Table 13<br />

Outer diameter Cold bending Hot bending<br />

12 60 27<br />

14 70 31<br />

15 75 34<br />

16 80 36<br />

17 85 38<br />

18 90 40<br />

20 100 45<br />

25 125 56<br />

11.2 Behaviour on exposure to light<br />

<strong>INTERSOL</strong> ® PEX-b should be stored and installed away from direct exposure to sunlight. The UV rays would<br />

cause aging of the material, thus impairing the chemical-physical and mechanical properties.<br />

11.3 Behaviour at low temperature<br />

The water contained in the <strong>pipe</strong> must not freeze because the variation in phase would cause an increase in<br />

volume with risk of the <strong>pipe</strong> caving in.<br />

Anti-freeze substances can be used for applications below 0°C.<br />

11.4 Pressure drop<br />

The advantage of <strong>INTERSOL</strong> ® PEX-b is that it has an internal surface free from roughness. Therefore it will<br />

remain free from encrustations during the years of service and with very low coefficient of friction. The pressure<br />

drops for transport of water at 20°C are given in the following graph where the correction factors associated with<br />

the different water temperatures are given. N.B. where anti-freeze substances are present, due account should<br />

be taken of the variation in viscosity of such solutions.<br />

10000<br />

Pressure drop per metre of <strong>pipe</strong> (Water temperature = 20°C)<br />

Conversion temperatures for other temperatures: 30°C=0,95 40°C=0,92 50°C=0,88 60°C=0,85 80°C=0,82<br />

Pressure drop/metre (mm CA/m)<br />

1000<br />

100<br />

10<br />

1<br />

8<br />

10<br />

Inner diameter (mm)<br />

12 13 14<br />

16<br />

18<br />

20<br />

22 24 26 0,1 m/s<br />

0,2 m/s<br />

0,3 m/s<br />

1,0 m/s<br />

0,9 m/s<br />

0,8 m/s<br />

0,7 m/s<br />

0,6 m/s<br />

0,5 m/s<br />

0,4 m/s<br />

4,0 m/s<br />

3,5 m/s<br />

3,0 m/s<br />

2,5 m/s<br />

2,0 m/s<br />

1,5 m/s<br />

0,1<br />

10 100 1000 10000<br />

Flow rate (lt/h)


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

11.5 Behaviour to chemical agents<br />

16<br />

Cross-<strong>linked</strong> <strong>polyethylene</strong> exhibits good resistance to chemical agents. The following table shows the behaviour<br />

of <strong>INTERSOL</strong> ® PEX-b in relation to the substance and temperature where there is no external stress.<br />

SUBSTANCE 20°C 60°C SUBSTANCE 20°C 60°C SUBSTANCE<br />

20°C 60°C<br />

acetic acid 10% formaldehyde 40% polyglycols<br />

acetone formic acid potassium chloride (wat. sol.)<br />

acrylonitrile frigene potassium dichromate 40%<br />

aliphatic esters fuel oil potassium hydroxide 30%<br />

allyl alcohol glycerine propanol<br />

aluminium sulphate (wat.sol.) glycol propionic acid 50%<br />

ammonia (wat. sol.) hexane propyl alcohol<br />

ammonium sulphate (wat.sol.) hydrofluoric acid 70% pure aniline<br />

aromatic esters hydrogen peroxide 30% pyridine<br />

beer hydrogen peroxide 100% silicone oil<br />

benzene hydrogen sulphide sodium hydroxide<br />

benzoic acid (wat. sol.) linseed oil sodium hypochloride<br />

bitumen liquid soap sulphur trioxide<br />

bleach liquor magnesium salts (wat.sol.) sulphuric acid 50%<br />

bromium maleic acid sulphuric acid 98%<br />

butanol mercury synthetic detergents<br />

butter methanol tetrahydrofuran<br />

butyl acetate methyl ethyl ketone tetralin<br />

butyne diol methyl phenol tincture of iodine<br />

butyric acid methylene chloride toluene<br />

carbon dioxide milk transformer oil<br />

carbon tetrachloride motor lubricants trichloroethylene<br />

chloroform naphtha turpentine<br />

chromic acid 50% naphthalene vaseline<br />

citric acid nitric acid 30% vegetable oils<br />

conc. hydrochloric acid nitric acid 50% washing detergents<br />

cyclanone nitrobenzene water<br />

cyclohexanol oleum wine<br />

cyclohexanone oxalic acid 50% xylene<br />

decalin<br />

ozone<br />

dibutyl phthalate<br />

paraffin oil<br />

dichlorobenzene<br />

petrol<br />

dichloroethylene<br />

petroleum<br />

diesel oil<br />

petroleum ether<br />

diethyl ether<br />

phenol<br />

ethyl acetate<br />

phosphates (water.sol.)<br />

ethyl alcohol phosphoric acid 95%<br />

ethylene glycol phthalic acid 50%<br />

Legend :<br />

Resistant Fairly resistant Non resistant


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

12 - APPROVALS FOR <strong>INTERSOL</strong> ® PEX-b<br />

As the <strong>pipe</strong> manufacturing system is certified to ISO 9002, there are certain receiving, in-process and final<br />

test/inspection procedures, as already mentioned previously. Consequently all <strong>INTERSOL</strong> ® PEX-b <strong>pipe</strong>s are<br />

submitted to in-house final testing, in accordance with the requirements of European standards in the sector,<br />

which differ according to the country of destination (e.g. UNI 9338/9349, DIN 16892/16893, DIN 4726/4729, UNE<br />

53-381-89/53-023-86-53133-82, see previous table). Furthermore there are various product certifications,<br />

entrusted to officially recognized testing body which can be summed up as follows:<br />

17<br />

Table 15<br />

Country Approval Body Floor heating Plumbing Main captions<br />

ITALY I I P – Istituto Italiano Plastici X X UNI 315 IIP 206<br />

GERMANY SKZ X X DIN GEPRUEFT<br />

Süddeutsche (only chemical (only chemical DIN 4726<br />

Kunstoff Zentrum physical tests) physical tests) DIN 16892<br />

DIN 4726<br />

DIN 16892<br />

GERMANY DVGW - Igiene Institut X DVGW<br />

(migration) DW 8306 AL 2002<br />

GERMANY MPA - NRW X Diffusionsdicht<br />

Materialprufungsamt<br />

(oxygen<br />

Nord-RheinWstfalen<br />

diffusion)<br />

FRANCE C.S.T.B. Centre Scientifique et X X<br />

Technique du Batiment<br />

PORTUGAL LNCE National Civil Engineering X X<br />

Laboratory<br />

HUNGARY EMI - TÜV X X<br />

Hungarian Section of German TÜV<br />

SPAIN AENOR Spanish Standards Institute X X<br />

U.S.A. NSF International X X Standard 14<br />

Body Certification<br />

product standard<br />

ASTM F876-877,<br />

included chlorine,<br />

CSA 137.5.<br />

Standard 61<br />

13 - COMPARISON OF DFFERENT PLASTICS USED IN HOT WATER PIPING<br />

Table 16 shows different behaviours of <strong>cross</strong>-<strong>linked</strong> <strong>polyethylene</strong> (PEX), polybutylene (PB) and polypropylene<br />

random copolymer (PP/R) materials with reference to certain important properties for applications in the heating<br />

and plumbing industries.<br />

Table 16<br />

Property PEX PP-R PN<br />

Stability in hot water (95°C) A C B<br />

Long-term behaviour (up to 95°C) A C B<br />

Flexibility A B A<br />

Impact strength (also at low temperatures) A C B<br />

Elongation (longitudinal tensile test) C B C<br />

Toxicity A A A<br />

Creep properties A C B<br />

Thermal conductivity B B B<br />

Surface A A A<br />

A = very good B = good C = sufficient


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

Table 17 is compiled from literature data and gives a detailed survey of typical values for certain characteristics<br />

compared to those of <strong>INTERSOL</strong> ® PEX-b<br />

18<br />

Table 17<br />

Property Standard Unit PEX-a <strong>INTERSOL</strong> ® PEX-b PEX-c PP-R PB<br />

Specific gravity DIN 53479 G/cm 3 0,94 0,95 0,94 0,90 0,93<br />

Ultimate tensile strength DIN 53455 N/mm 2 26-30 22-27 22-25 40 33<br />

Elongation DIN 53455 % 350-550 350-550 350-450 800 300<br />

Tensile modulus of elasticity<br />

(20°) DIN 53457 N/mm 2 >550 >550 >550 >800 >350<br />

Coefficient of linear expansion<br />

(20°C) - °C 1,4.10-4 1,4.10-4 1,4.10-4 1,5.10-4 1,5.10-4<br />

Thermal conductivity - °C 2,0.10-4 2,0.10-4 2,0.10-4 - -<br />

Coefficient of linear expansion<br />

(20-100°C) - W/mk 0,38 0,35-0,41 0,35 0,24 0,23<br />

Degree of <strong>cross</strong>-linking DIN 16892 % >75 >65 >60 - -<br />

The descriptions and photographs contained in this product specification sheet are supplied by way of information only and are not binding.<br />

<strong>Watts</strong> <strong>Industries</strong> reserves the right to carry out any technical and design improvements to its products without prior notice.


SILANE CROSS-LINKED POLYETHYLENE PIPE<br />

WARRANTY FOR CROSS-LINKED POLYETHYLENE (PEX)<br />

PIPE FOR HOT FLUID PRESSURE PIPING<br />

19<br />

TUBO <strong>INTERSOL</strong> ®<br />

The <strong>pipe</strong> is produced within a certified quality management system in accordance with UNI EN<br />

ISO 9001:2000. The <strong>INTERSOL</strong> ® <strong>pipe</strong> is produced using top quality raw materials and a high<br />

technology production cycle.<br />

Product quality is guaranteed by strict control plans in every phase of the transformation, from<br />

the raw materials to the process to the finished product. In addition, all coils produced are<br />

subject to a final hydraulic test.<br />

The specific tests for the <strong>INTERSOL</strong> ® , <strong>pipe</strong>, performed in-house, comply with sector<br />

regulations that vary based on the country for which the <strong>pipe</strong> is intended (for example UNI<br />

9338/9349 - DIN 16892/16893 - DIN 4726/4729 - NFT 54085 - UNE 53381).<br />

As a result, <strong>Watts</strong> <strong>Industries</strong> Italia S.r.l. warrants the <strong>INTERSOL</strong> ® <strong>pipe</strong> as indicated below :<br />

1) <strong>INTERSOL</strong> ® <strong>pipe</strong>s will be replaced free of charge up to 10 years after the date of supply if<br />

damage is caused by manufacturing defects (note: “Manufacturer's warranty provided<br />

based on technical experience in product obsolescence”)<br />

2) damage to third parties due to manufacturing defects in the <strong>INTERSOL</strong> ® <strong>pipe</strong> based on<br />

current provisions of law (Presidential Decree 224 of May 24, 1988), will be indemnified<br />

through insurance coverage pursuant to product liability policy VO 100008604 from<br />

Winterthur Assicurazioni.<br />

There is a single maximum coverage per claim per year, of €453,780.00.<br />

Points 1) and 2) above will be valid provided the following conditions are met :<br />

a) The <strong>INTERSOL</strong> ® d<strong>pipe</strong> must be stored, handled and installed according to the instructions<br />

reported in our technical specifications<br />

b) Operating conditions (pressure and temperature) must comply with the limits reported in our<br />

technical specifications<br />

c) The product must bear our fully intact identification mark.<br />

The customer must provide the following information when requesting warranty service :<br />

- place and date of installation<br />

- the <strong>pipe</strong>'s identifying data and mark<br />

- information on conditions of <strong>pipe</strong> installation and operation (temperature and pressure)<br />

- sample on which the breakage occurred (preferably at least 1 meter long with the break in<br />

the middle)<br />

<strong>Watts</strong> <strong>Industries</strong> Italia S.r.l. reserves the right to examine the cause of the break on site before<br />

initiating the warranty procedures.<br />

A Division of <strong>Watts</strong> Water Technologies Inc.


Product range <strong>Watts</strong> <strong>Industries</strong><br />

- System disconnectors<br />

- Backflow protection devices<br />

- Check valves<br />

- Safety units<br />

- Safety relief valves<br />

- Pressure reducing valves<br />

- Automatic control valves<br />

- Butterfly valves<br />

- Shut off valves<br />

- Measuring gauges<br />

- Temperature control<br />

- Expansion vessels<br />

- Process switches<br />

- Fuel products<br />

- Gas products<br />

- Electronic controls<br />

- Installation protection products<br />

- Radiator valves<br />

- System products<br />

- Manifolds and fittings<br />

Re-order no. 90-0005-UK-IT/1-07-06-Rev.0<br />

A Division of <strong>Watts</strong> Water Technologies Inc.<br />

<strong>Watts</strong> <strong>Industries</strong> Italia S.r.l.<br />

Via Brenno, 21 - 20046 Biassono (MI), Italy<br />

Ph. +39 039 49.86.1 - Fax +39 039 49.86.222<br />

e-mail : info@wattsindustries.it - www.wattsindustries.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!