Variation of leaf morphological traits in natural popu - EdituraSilvica.ro

Variation of leaf morphological traits in natural popu - EdituraSilvica.ro Variation of leaf morphological traits in natural popu - EdituraSilvica.ro

editurasilvica.ro
from editurasilvica.ro More from this publisher
12.01.2015 Views

Ann. For. Res. 54 (2), _-_ 2011 ANNALS OF FOREST RESEARCH www.e-afr.org rong>Variationrong> rong>ofrong> rong>leafrong> rong>morphologicalrong> rong>traitsrong> rong>inrong> rong>naturalrong> rong>popurong>lations rong>ofrong> Fagus orientalis Lipsky rong>inrong> the Caspian forests rong>ofrong> Northern Iran V. Bayramzadeh Bayramzadeh V., 2011. rong>Variationrong> rong>ofrong> rong>leafrong> rong>morphologicalrong> rong>traitsrong> rong>inrong> rong>naturalrong> rong>popurong>lations rong>ofrong> Fagus orientalis Lipsky rong>inrong> the Caspian forests rong>ofrong> Northern Iran. Ann. For. Res. 54(2), _-_ 2011. Abstract. Oriental beech (Fagus orientalis Lipsky) is a domrong>inrong>ant tree species rong>inrong> the Caspian forests, where occupies approximately 18% rong>ofrong> the forested area and produce more than 35% rong>ofrong> the total wood stock volume rong>inrong> this region. However, little rong>inrong>formation is available about its variation along the Caspian forests rong>ofrong> Northern Iran. This work studied the rong>morphologicalrong> variation rong>ofrong> five native oriental beech rong>popurong>lations grown rong>inrong> the western Caspian region rong>inrong> Guilan provrong>inrong>ce (Astara, Asalem, Fuman, Chere, Shenrud). Eight rong>leafrong> rong>morphologicalrong> rong>traitsrong>, rong>inrong>cludrong>inrong>g rong>leafrong> length, rong>leafrong> width, petiole length, rong>leafrong> area, rong>leafrong> dry mass per unit rong>leafrong> area, rong>leafrong> thickness, rong>leafrong> density were measured rong>inrong> 200 trees. The results showed that all measured rong>leafrong> rong>morphologicalrong> rong>traitsrong> were remarkably different among the rong>popurong>lations, with the exception rong>ofrong> distance between verong>inrong>s. A hierarchical classification rong>ofrong> all rong>popurong>lations led to the formation rong>ofrong> three major groups: (i) Astara, (ii) Asalem, (iii) the rest rong>ofrong> rong>popurong>lations. Leaf rong>morphologicalrong> dissimilarities are possibly attributed to the genetic variations, developed as a result rong>ofrong> adaptation to diverse environmental conditions. However, multisite common garden experiments would be needed rong>inrong> order to completely separate environmental and genetic factors explarong>inrong>rong>inrong>g the observed level rong>ofrong> rong>naturalrong> variability. Keywords Caspian forest, rong>leafrong> area, rong>leafrong> rong>morphologicalrong> rong>traitsrong>, rong>naturalrong> rong>popurong>lation, oriental beech. Author. Vilma Bayramzadeh (v.bayramzadeh@kiau.ac.ir) - Head rong>ofrong> Soil Science Department, Faculty rong>ofrong> Agriculture and Natural Resources, Karaj Islamic Azad University. Manuscript received May 27, 2011; revised July 26, 2011; accepted August 3, 2011; onlrong>inrong>e first August 9, 2011. Introduction Leaves are highly important organs rong>ofrong> a tree, which are very sensitive to growth conditions, especially durrong>inrong>g a rong>leafrong> expansion phase (Masarovicova 1988, Bayramzadeh et al. 2008). Consequently, they can effectively adapt to the habitat from which the plants origrong>inrong>ate (Ni-

Ann. For. Res. 54 (2), _-_ 2011<br />

ANNALS OF FOREST RESEARCH<br />

www.e-afr.org<br />

<st<strong>ro</strong>ng>Variation</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis Lipsky <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the Caspian<br />

forests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Northern Iran<br />

V. Bayramzadeh<br />

Bayramzadeh V., 2011. <st<strong>ro</strong>ng>Variation</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis Lipsky <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the Caspian forests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Northern Iran. Ann. For. Res.<br />

54(2), _-_ 2011.<br />

Abstract. Oriental beech (Fagus orientalis Lipsky) is a dom<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ant tree species<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the Caspian forests, where occupies app<strong>ro</strong>ximately 18% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the forested<br />

area and p<strong>ro</strong>duce more than 35% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the total wood stock volume <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this<br />

region. However, little <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation is available about its variation along the<br />

Caspian forests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Northern Iran. This work studied the <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> variation<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> five native oriental beech <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations g<strong>ro</strong>wn <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the western Caspian<br />

region <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce (Astara, Asalem, Fuman, Chere, Shenrud).<br />

Eight <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width, petiole<br />

length, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> dry mass per unit <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> density<br />

were measured <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 200 trees. The results showed that all measured <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> were remarkably different among the <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations, with<br />

the exception <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> distance between ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s. A hierarchical classification <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> all<br />

<st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations led to the formation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> three major g<strong>ro</strong>ups: (i) Astara, (ii) Asalem,<br />

(iii) the rest <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations. Leaf <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> dissimilarities are possibly<br />

attributed to the genetic variations, developed as a result <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> adaptation<br />

to diverse envi<strong>ro</strong>nmental conditions. However, multisite common garden<br />

experiments would be needed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> order to completely separate envi<strong>ro</strong>nmental<br />

and genetic factors expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g the observed level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> variability.<br />

Keywords Caspian forest, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>, <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lation,<br />

oriental beech.<br />

Author. Vilma Bayramzadeh (v.bayramzadeh@kiau.ac.ir) - Head <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Soil Science<br />

Department, Faculty <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Agriculture and Natural Resources, Karaj Islamic Azad<br />

University.<br />

Manuscript received May 27, 2011; revised July 26, 2011; accepted August 3,<br />

2011; onl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e first August 9, 2011.<br />

Int<strong>ro</strong>duction<br />

Leaves are highly important organs <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> a tree,<br />

which are very sensitive to g<strong>ro</strong>wth conditions,<br />

especially dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> expansion phase (Masa<strong>ro</strong>vicova<br />

1988, Bayramzadeh et al. 2008).<br />

Consequently, they can effectively adapt to the<br />

habitat f<strong>ro</strong>m which the plants orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ate (Ni-


Ann. For. Res. 54(2): _-_ 2011<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>emets & Kull 1994, Ni<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>emets 1995, Bussotti<br />

et al. 1995, Tognetti et al. 1995, García-<br />

Plazaola & Becerril 2000, Wittmann et al.<br />

2001, Toan et al. 2010, Amjad Ali et al. 2011)<br />

by mak<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g app<strong>ro</strong>priate changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> their morphology<br />

and anatomy (Cast<strong>ro</strong>-Diez et al. 1997,<br />

Gravano et al. 1999, Kull et al. 1999, Bussotti<br />

et al. 2000, Gratani et al. 2003). For example,<br />

Frax<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>us pennsylvanica, Quercus petraea and<br />

Fagus crenata, the tree species distributed<br />

widely <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> North America, Italy and Japan respectively,<br />

exhibited <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> and physiological<br />

variations which could be related to<br />

their habitat (Abrams et al. 1990, Gratani et al.<br />

2003, Bayramzadeh et al. 2008).<br />

The analysis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng><br />

p<strong>ro</strong>vides deep <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>sight <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to the taxonomy, genetics,<br />

biogeography and evolution, which are<br />

the parts <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the b<strong>ro</strong>ad classification <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> scientific<br />

areas related to an effective preservation<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> ecosystems (Ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 1966). Therefore,<br />

such k<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ds <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> studies can be very useful <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> species<br />

with wide geographical ranges, for which<br />

the little <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation is available.<br />

Up to now, examples <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng><br />

variation are rema<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed undocumented for the<br />

Caspian forests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Northern Iran, where envi<strong>ro</strong>nmental<br />

and edaphic conditions differ noticeably.<br />

One <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the tree species occurs th<strong>ro</strong>ughout<br />

the Caspian Sea p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ces is thr oriental beech<br />

(Fagus orientalis Lipsky). It is a dom<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ant tree<br />

species <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the Caspian forests, which occupies<br />

app<strong>ro</strong>ximately 18% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the forested areas <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

the region-ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ly extend<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a wide range<br />

Research papers<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 700 to 2200 m above the Caspian Sea level<br />

and p<strong>ro</strong>duce more than 35% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the total wood<br />

stock volume (Ahmadi et al. 2009).<br />

In this study, five <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

oriental beech g<strong>ro</strong>wn <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the western Caspian<br />

forests were <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>vestigated to determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e variations<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>. This study<br />

will make a suitable framework for researcher,<br />

who would like to p<strong>ro</strong>be the genetic variation<br />

among <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis<br />

Lipsky <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the Caspian forests <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Iran.<br />

Materials and methods<br />

Study sites description<br />

The research was conducted <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> five <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> oriental beech, g<strong>ro</strong>wn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the<br />

western Caspian region (Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce): Astara,<br />

Asalem, Fuman, Chere, and Shenrud (Figure<br />

1). The <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations were distant enough to<br />

present climatic as well as edaphic differences<br />

among them (Table 1). A seventeen-year meteo<strong>ro</strong>logical<br />

data (1988-2005) extracted f<strong>ro</strong>m the<br />

records <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the nearest meteo<strong>ro</strong>logical stations<br />

for each location were related to the monthly<br />

means <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> precipitation and temperature (Figure<br />

1). To observe the dissimilarities <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the<br />

edaphic factors, n<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e soil samples <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 0-40 cm<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> depth were collected <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> each location. The<br />

samples were air dried and g<strong>ro</strong>und to enable<br />

passage th<strong>ro</strong>ugh a 2 mm sieve. Soil analyses<br />

were carried out by the follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g methods:<br />

Table 1 Locations, climatic and edaphic characteristics <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> five <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce.<br />

Population Longitude Latitude<br />

<br />

Yearly<br />

precipitation<br />

mm ± (SD)<br />

Mean<br />

yearly<br />

temperature<br />

(°C)<br />

Soil<br />

texture<br />

pH ± (SD)<br />

Organic<br />

matter<br />

% ± (SD)<br />

Astara 48° 52’ E 38° 24’ N 1400 ± (64) 15.1 Sy loam 5.62 ± (0.12) 5.53 ± (0.63)<br />

Asalem 48° 94’ E 37° 70’ N 1685 ± (124) 16.3 Loam 5.47 ± (0.14) 4.99 ± (0.82)<br />

Fuman 49° 18’ E 37° 13’ N 994 ± (49) 15.9 Loam 5.17 ± (0.08) 5.53 ± (0.56)<br />

Chere 50° 00’ E 37° 12’ N 1081 ± (73) 16.4 Loam 5.72 ± (0.12 ) 5.71 ± (0.85)<br />

Shenrud 49° 28’ E 36° 44’ N 1469 ± (71) 16.7 Clay 7.72 ± (0.05) 3.06 ± (0.54)


Bayramzadeh <st<strong>ro</strong>ng>Variation</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations ...<br />

Astara<br />

Asalem<br />

Fuman<br />

Shenrud<br />

120 240 Km<br />

Astara<br />

Chere<br />

Asalem<br />

Shenrud<br />

Air temperature ( 0 C)<br />

Fuman<br />

Chere<br />

Precipitation (mm)<br />

Figure 1 Localization <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

particle size distribution by the hyd<strong>ro</strong>meter<br />

method (Gee & Bauder 1986), organic matter<br />

(OM) content by the Walkley-Black p<strong>ro</strong>cedure<br />

(Nelson & Sommers 1996), and pH values<br />

us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a glass elect<strong>ro</strong>de <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> mixture <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> soil and<br />

deionized water (1:5, w/v).<br />

Leaf collection and measurement<br />

Forty fully expanded leaves (sunned leaves<br />

f<strong>ro</strong>m the middle part <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> tree c<strong>ro</strong>wn) were collected<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> summer 2010 f<strong>ro</strong>m 40 healthy trees<br />

(<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> total 1600 leaves f<strong>ro</strong>m each <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the study


Ann. For. Res. 54(2): _-_ 2011<br />

Research papers<br />

locations), that were 30-50 cm <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> diameter at<br />

breast height. The trees g<strong>ro</strong>wn <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 1000-1300 m<br />

a.s.l. were selected randomly f<strong>ro</strong>m north-fac<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

slope <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the locations.<br />

Leaf length (LL, mm), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width (LW, mm),<br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area (LA, cm 2 ), and distance between<br />

ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s (DBV) were determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed on fresh ones by<br />

the image analysis s<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng>tware, ImageJ (National<br />

Institutes <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Health, Maryland, USA). A digital<br />

caliper with an accuracy <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 0.01 mm was used<br />

to measure petiole length (PL, mm)(Fig. 2).<br />

Leaves were oven-dried at 80º C for 72 hours<br />

and weighed for the calculation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> dry<br />

mass per unit <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area (LMA, gr cm -2 ). Leaf<br />

density (LD, gr cm -3 ) was obta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed accord<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

to Witkowski and Lamont (1991) as the ratio<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> LMA to <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness (LT, mm). LT was<br />

also measured on <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> c<strong>ro</strong>ss sections.<br />

Statistical analysis<br />

Means <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> every<br />

<st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lation were compared us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Fisher tests<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> ANOVA analysis at 5% and 1% level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> significance.<br />

The statistical analysis <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the data<br />

was carried out us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g the SPSS version 16.0<br />

and the Stat Graphics Plus version 5.1 statistical<br />

packages. A Pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal Component Analysis<br />

Petiole<br />

Length<br />

(PCA) was conducted on the <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dividual-tree<br />

mean for each trait. An acceptable pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal<br />

component (PC) solution was determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

based on visual exam<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the scree plot<br />

and the Kaiser criterion (all eigen values greater<br />

than 1). Component scores and PC load<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs<br />

were determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed after Varimax axis <strong>ro</strong>tation to<br />

maximize the variance <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the squared load<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs<br />

(Johnson & Wichern 1992). As a f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al po<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>t,<br />

a hierarchical cluster analysis was performed<br />

and a dissimilarity matrix was computed us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

the Ward (1963) method.<br />

Results<br />

Morphological <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng><br />

Differences amongst <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus orientalis for all measured <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> were<br />

remarkable, with the exception <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> DBV (Figure<br />

3). Asalem had the largest <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length (11.54<br />

cm), LW (6.88 cm), and LA (43.81 cm 2 ). However<br />

Shenrud showed the smallest LW, and LA<br />

(5.38 cm and 34.36 cm 2 , respectively). Unlike,<br />

the smallest LL (10.08 cm) belonged to Astara<br />

(Figure 3 a,b,c). This result can be expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by<br />

the st<strong>ro</strong>nger relationship between LA and LW (r<br />

Leaf Length<br />

Distance between<br />

Ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

Leaf Width<br />

Figure 2 Diagram <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> oriental beech <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> illustrat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g measurements <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length (LL), petiole length (PL),<br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width (LW), and distance between ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s (DBV)


Bayramzadeh <st<strong>ro</strong>ng>Variation</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations ...<br />

LMA (gr cm -2 )<br />

LD (gr cm -3 )<br />

DBV (mm)<br />

LT (mm)<br />

LA (cm 2 )<br />

PL (mm)<br />

LL (mm)<br />

LW (mm)<br />

Figure 3 Different foliar <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the five <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis. Leaf length (LL), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width<br />

(LW), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area (LA), petiole length (PL), distance between ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s (DBV), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness (LT), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng><br />

dry mass per area (LMA), and <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> density (LD). Means with the same letters are not significantly<br />

different ANOVA, P < 0.05<br />

= 0.80), rather than LL (r = 0.39)(Table 2).<br />

Astara and Fuman showed the highest and<br />

lowest values for LT that were 0.013 mm and<br />

0.007 mm, respectively (Figure 3f).<br />

Asalem and Chere had the maximum and<br />

m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>imum values for LMA <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 0.097 and 0.070


Ann. For. Res. 54(2): _-_ 2011<br />

Research papers<br />

gr cm -2 , respectively (Figure 3g). Shenrud<br />

(11.99 gr cm -3 ) and Astara (6.86 gr cm -3 )<br />

showed m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>imum and maximum values for<br />

LD (Figure 3h).<br />

Correlations between <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>. Table 2 shows the correlation between<br />

<st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>. As shown <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this table,<br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area was positively correlated with <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng><br />

length and <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width (p < 0.05). However the<br />

relationship <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area with <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width (r =<br />

0.80) was st<strong>ro</strong>nger than <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length (r = 0.39)<br />

(Table 2).<br />

There was a high positive correlation between<br />

dry mass <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the leaves, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng><br />

width, <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length and petiole length (p < 0.05).<br />

However, the correlation between dry mass <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

leaves and their thickness was not significant.<br />

The f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g relationship between dry mass and<br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness for Fagus orientalis is <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement<br />

with the f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Teklehaimanot et al.<br />

(1998), reported lack <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> significant relationship<br />

between dry mass and <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Parkia biglobosa.<br />

There was a highly correlated relationship<br />

between LT and LD (r = -0.95). However, the<br />

l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>kage between LT and LMA as well as the<br />

correlation between LD and LMA were fairly<br />

weak (Pearson coefficient = 0.34 and -0.11, respectively).<br />

The different k<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ds <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> relationship<br />

among LMA, LD and LT were reported by different<br />

authors (Körner & Diemer 1987, Dijkstra<br />

1990, Witkowski & Lamont 1991, Choong<br />

et al. 1992) suggest that the above mentioned<br />

connections among LMA, LD and LT are possible.<br />

Soil characteristics<br />

Some <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the studied edaphic factors also varied<br />

obviously among the five <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis. Soil texture was sandy<br />

loam for Astara, clay for Shenrud, and loam<br />

for the others. Soil pH and percentage <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the<br />

organic matter <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Shenrud were noticeably<br />

different f<strong>ro</strong>m the others (7.72 and 3.05%, respectively).<br />

Multivariate analysis<br />

Pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal component analysis reduced the 9<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put variables to 3 PCs expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g 97.04% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

the total variance <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our dataset. The first pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal<br />

component, PCA1, expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed 44.24% <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

the total variance, while PCA2 and PCA3 expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

40.65% and 12.15%, respectively (Table<br />

3). Communality values (a measure <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> how<br />

well the <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put variables are expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by the<br />

three result<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g PCs) were greater than 0.90 for<br />

all variables. The relationship <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al<br />

variables with PCs is <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicated by PC load<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs,<br />

Table 2<br />

<br />

Pearson coefficient (r) <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> correlation between pairs <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> (n = 40). LW (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng><br />

width), LL (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length), LA (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area), PL (petiole length), DM (dry mass), LT (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness),<br />

DBV (distance between ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s), LMA (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> dry mass per unit <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area), LD (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> density)<br />

LW LL LA PL DM LT DBV LMA LD<br />

LW 1<br />

LL 0.702** 1<br />

LA 0.797** 0.387* 1<br />

PL -0.061 -0.544** 0.366* 1<br />

DM 0.862** 0.347* 0.851** 0.445** 1<br />

LT -0.237 -0.802** 0.092 0.896** 0.255 1<br />

DBV 0.772** 0.564** 0.611** 0.285 0.863** 0.022 1<br />

LMA 0.339* 0.030 -0.006 0.263 0.521** 0.340* 0.655** 1<br />

LD 0.315 0.772** -0.158 -0.949* -0.187 -0.950** 0.026 -0.110 1<br />

Note: ** - significant at p < 0.01 level, * - significant at p < 0.05


Ann. For. Res. 54(2): _-_ 2011<br />

which are ak<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> to correlation coefficients between<br />

orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al characters and the PC (Table 3).<br />

Scores <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> PC1 were positively related to Pl<br />

and LT as well as negatively related to LD and<br />

LL. Scores <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> PC2 were positively related to<br />

LL, LA, DM and DBV. Scores <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> PC3 were<br />

positively related to LMA.<br />

F<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ally, all <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> were used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

a hierarchical cluster analysis (Figure 4). The<br />

result<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g dend<strong>ro</strong>gram allowed dist<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>guish<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

three g<strong>ro</strong>ups for this species <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the area studieds:<br />

(i) Astara, (ii) Asalem, and (iii) the rest <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations.<br />

Discussion<br />

Research papers<br />

We found a high level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> variability<br />

among <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce (Figure 3). Pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal component<br />

analysis as well <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicated that there<br />

were several multivariate directions <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> variation<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> among the <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>vestigated, which are represented by<br />

s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gle PCs. <st<strong>ro</strong>ng>Variation</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> all <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put variables was<br />

adequately expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by 3 pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal components<br />

(accumulated variables, PCs). Nevertheless,<br />

these axes <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> variation were <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dependent<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> each other (because <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the nature <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> PCA),<br />

there are relationships among the majority <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

the studied variables (Table 2), and these al-<br />

Table 3<br />

Pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cipal components (PC) solution <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 9 variables measured <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> leaves f<strong>ro</strong>m different <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis. Data are PC load<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs and communalities determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed after Varimax axis <strong>ro</strong>tation.<br />

The PC load<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs < 0.5 are not shown. ). LW (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> width), LL (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> length), LA (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area), PL<br />

(petiole length), DM (dry mass), LT (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> thickness), DBV (distance between ve<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s), LMA (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> dry<br />

mass per unit <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area), LD (<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> density).<br />

Variable PC1 PC2 PC3 Communality<br />

lw - 0.89 - 0.94<br />

ll -0.79 - - 0.95<br />

la - 0.96 - 0.99<br />

pl 0.93 - - 0.95<br />

dm - 0.90 - 0.98<br />

Lt 0.97 - 0.98<br />

dbv - 0.76 - 0.92<br />

lma - - 0.97 0.99<br />

ld -0.99 - - 0.99<br />

Expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed variance (%) 44.24 40.65 12.15 -<br />

SHENRUD<br />

FUMAN<br />

CHERE<br />

ASALEM<br />

ASTARA<br />

Figure 4 Dend<strong>ro</strong>gram <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the five <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis based on <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng>, made<br />

us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g hierarchical cluster<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g method (Ward 1963)


Ann. For. Res. 54(2): _-_ 2011<br />

most represent that similar envi<strong>ro</strong>nmental or<br />

genetic factors cont<strong>ro</strong>l the studied <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fagus orientalis .<br />

The observed foliar differences may be attributed<br />

to different genetic architectures developed<br />

as a result <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> adaptation to diverse<br />

envi<strong>ro</strong>nmental conditions exit<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> distributional<br />

area <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis.<br />

Our sampl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g covered a nar<strong>ro</strong>w latitud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al<br />

(f<strong>ro</strong>m 36° 44’ N to 38° 24’ N) and longitud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al<br />

(f<strong>ro</strong>m 48° 52’ E to 50° 0’ E) ranges (Table 1).<br />

As well, the mean annual temperature didn’t<br />

differ noticeably among the studied locations.<br />

Therefore, it can be said that the dissimilarities<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> leaves <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis<br />

were unrelated to the latitude, longitude<br />

and mean annual temperature <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the studied<br />

locations. Unlike the chosen <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations cover<br />

a ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fall gradient <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> 1685 mm per year <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Asalem<br />

to 994 mm per year <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fuman (Table 1).<br />

As Asalem and Astara, which have the higher<br />

ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>falls than the other locations (Table 1),<br />

differed significantly f<strong>ro</strong>m the other locations<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> the studied <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> (Figure<br />

4), <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> dissimilarities is possibly<br />

attributed to the genetic variations caused<br />

by the ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fall <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the locations.<br />

Some <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the studied edaphic factors also varied<br />

obviously among the <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations. The difference<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> the studied edaphic conditions, however,<br />

was not <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement with Fig. 4 show<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

the three g<strong>ro</strong>ups for Fagus orientalis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> studied<br />

areas. The authors concluded that the <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus orientalis were not<br />

affected significantly with the studied edaphic<br />

factors <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this research.<br />

In our study, we found a high level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng><br />

variability among <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

Fagus orientalis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce. However,<br />

multisite common garden experiments would<br />

be needed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> order to completely separate envi<strong>ro</strong>nmental<br />

and genetic factors expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g the<br />

observed level <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> variability.<br />

<br />

Conclusions<br />

Research papers<br />

(1) Morphological <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> noticeably differed<br />

among the five <st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

orientalis th<strong>ro</strong>ughout Guilan p<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

the western Caspian region <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> northern Iran.<br />

(2) The observed foliar differences may be<br />

attributed to different genetic architectures<br />

developed as a result <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> adaptation to diverse<br />

ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fall exit<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> distributional area <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Fagus<br />

orientalis.<br />

(3) Cluster analysis differentiated the 5 p<strong>ro</strong>venances<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> three g<strong>ro</strong>ups: (i) Astara, (ii) Asalem,<br />

and (iii) the rest <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>popu</st<strong>ro</strong>ng>lations.<br />

Acknowledgements<br />

This work was supported by grants <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> aid f<strong>ro</strong>m,<br />

Karaj Branch, Islamic Azad University.<br />

References<br />

Abrams MD., Kubiske ME., Ste<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>er KC., 1990. D<strong>ro</strong>ught<br />

adaptations and responses <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> five genotypes <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Frax<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>us<br />

pennsylvanica Marsh: photosynthesis, water relations<br />

and <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> morphology. Tree Physiology 6(3): 305–315.<br />

Ahmadi MT., Atta<strong>ro</strong>d P., Marvi Mohadjer MR., Rahmani<br />

R., Fathi J., 2009. Partition<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fall <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to th<strong>ro</strong>ughfall,<br />

stemfow, and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terception loss <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> an oriental beech<br />

(Fagus orientalis Lipsky) forest dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g the g<strong>ro</strong>w<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g season.<br />

Turkish Journal <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Agriculture and Forestry 33(6):<br />

557–568.<br />

Amjad Ali M., Jabran K., Awan SI., Abbas A., Ullah E.,<br />

Zulkiffal M., Acet T., Fa<strong>ro</strong>oq J., Rehman A., 2011.<br />

Morpho-physiological diversity and its implications for<br />

imp<strong>ro</strong>v<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g d<strong>ro</strong>ught tolerance <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> gra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sorghum at different<br />

g<strong>ro</strong>wth stages. Australian journal <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> C<strong>ro</strong>p Science<br />

5(3): 311–320.<br />

Bayramzadeh V., Funada R., Kubo T., 2008. Relationships<br />

between vessel element anatomy and physiological as<br />

well as <st<strong>ro</strong>ng>morphological</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>traits</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> leaves <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fagus crenata<br />

seedl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>at<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g f<strong>ro</strong>m different p<strong>ro</strong>venances. Trees<br />

22(2): 217–224.<br />

Bussotti F., Borgh<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i F., Celesti C., Leonzio C., Bruschi P.,<br />

2000. Leaf morphology and mac<strong>ro</strong>nutrients <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> b<strong>ro</strong>adleaved<br />

trees <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> central Italy. Trees 14(7): 4(7): 361–368. 36–368.<br />

Bussotti F., Bottacci A., Bartolesi A., G<strong>ro</strong>ssoni P., Tani C.,<br />

1995. Morphoanatomical alterations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> leaves collected<br />

f<strong>ro</strong>m beech trees (Fagus sylvatica L.) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> conditions <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>natural</st<strong>ro</strong>ng> water stress. Envi<strong>ro</strong>nmental and Experimental


Ann. For. Res. 54(2): _-_ 2011<br />

Research papers<br />

Botany 35(2): 201–213.<br />

Cast<strong>ro</strong>-Diez P., Villar-Salvador P., Perez-Rontome C.,<br />

Maest<strong>ro</strong>-Mart<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ez G., Montserrat-Marti G.,1997. Leaf<br />

morphology and <st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> chemical composition <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> three<br />

Quercus (Fagaceae) species along a ra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fall gradient <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

NE Spa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Trees 11(3): 127–134.<br />

Choong MF., Lucas PW., Ong JSY., Pereira B., Tan HTW.,<br />

Turner IM., 1992. Leaf fracture toughness and scle<strong>ro</strong>phylly:<br />

their correlation and ecological implications.<br />

New Physiologist 121(4): 597–610.<br />

Dijkstra P., 1990. Cause and effect <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> differences <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> specific<br />

<st<strong>ro</strong>ng>leaf</st<strong>ro</strong>ng> area. In: H. Lambers, M.L. Cambridge, H. Kon<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs<br />

and T.L. Pons (eds.), Causes and consequences <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> variation<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> g<strong>ro</strong>wth rate and p<strong>ro</strong>ductivity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> higher plants,<br />

SPB Academic Publication, The Hague, pp. 125-140<br />

García-Plazaola JI., Becerril JM., 2000. Effects <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> d<strong>ro</strong>ught<br />

on photop<strong>ro</strong>tective mechanisms <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Eu<strong>ro</strong>pean beech<br />

(Fagus sylvatica L.) seedl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs f<strong>ro</strong>m different p<strong>ro</strong>venances.<br />

Trees, 14(8): 485–490.<br />

Gee GW., Bauder JW., 1986. Particle-size analysis. In: A.<br />

Klute (eds.), Methods <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> soil analysis, Soil Science Society<br />

<st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> America, Madison, pp. 383-411<br />

Gratani L., Menegh<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i M., Pesoli P., Crescente M.F.<br />

2003., Structural and functional plasticity <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> Quercus<br />

ilex seedl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs <st<strong>ro</strong>ng>of</st<strong>ro</strong>ng> different p<strong>ro</strong>venances <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Italy. Trees<br />

17(6): 515–521.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!