12.01.2015 Views

and L- band Interferometric SAR (InSAR)

and L- band Interferometric SAR (InSAR)

and L- band Interferometric SAR (InSAR)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Comparative Analysis of Soil Moisture Retrieval using<br />

C- <strong>and</strong> L- b<strong>and</strong> <strong>Interferometric</strong> <strong>SAR</strong> (In<strong>SAR</strong>)<br />

Brian W. Barrett 1<br />

Ned Dwyer 2 , Padráig Whelan 1<br />

1 Dept. of Zoology, Ecology <strong>and</strong> Plant Science (ZEPS), University College Cork (UCC)<br />

2 Coastal & Marine Resources Centre (CMRC), University College Cork, (UCC)<br />

UCC<br />

University College Cork


Presentation Overview<br />

• Why measure soil moisture<br />

• Objective<br />

Acquisition<br />

• Why use Microwave RS<br />

• Data Selection<br />

Analysis<br />

• In<strong>SAR</strong> & DIn<strong>SAR</strong><br />

Application<br />

• Soil moisture estimation<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Why Soil Moisture<br />

The Water Cycle<br />

0.05%<br />

Key Impact<br />

• Climatology<br />

• Meteorology<br />

• Agriculture<br />

• Ecology<br />

• Socio-economic<br />

Objective<br />

Soil moisture retrieval<br />

ESA®<br />

using interferometric<br />

<strong>SAR</strong> techniques<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Microwave Remote Sensing<br />

– Uses frequencies between 0.3 <strong>and</strong> 300 GHz<br />

– Active <strong>and</strong> Passive<br />

– <strong>SAR</strong><br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Microwave Remote Sensing & Soil Moisture<br />

• Theory is based on the large contrast between the<br />

dielectric properties of liquid water (ε~ 80) <strong>and</strong> dry soil (ε~6)<br />

• Many radar models & methods have been developed for<br />

the estimation of soil moisture, e.g. IEM, Oh, Dubois, WCM.<br />

•These models only use the amplitude part of the<br />

backscattered signal.<br />

•Very little has been reported concerning the sensitivity of the<br />

signal phase to soil moisture content.<br />

= +<br />

•In<strong>SAR</strong> <strong>and</strong> DIn<strong>SAR</strong>: established techniques for the creation<br />

of DEM`s <strong>and</strong> detecting surface displacements.<br />

SLC Amplitude Phase


<strong>Interferometric</strong> Synthetic Aperture Radar (In<strong>SAR</strong>)<br />

Repeat-pass Interferometry<br />

•2 independent passes of the sensor over the<br />

target<br />

S M<br />

i<br />

B<br />

B<br />

B<br />

S S<br />

B ||<br />

•The <strong>SAR</strong> system records both the amplitude<br />

i<br />

(strength) <strong>and</strong> the phase (time) of the<br />

backscattered microwave signals<br />

θ<br />

R M<br />

R S<br />

H<br />

•Interferometry calculates on a pixel by pixel<br />

P<br />

basis, the phase difference (interferogram)<br />

between two successive <strong>SAR</strong> images,<br />

acquired from slightly different geometries,<br />

cancelling out the reflectivity phase term.<br />

Ellipsoid<br />

P’<br />

H P<br />

In<strong>SAR</strong> Geometry<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


<strong>SAR</strong> Interferometry (In<strong>SAR</strong>)<br />

L- b<strong>and</strong><br />

15 th July 2007<br />

FBD HH<br />

Complex Interferogram<br />

30 th August 2007<br />

FBD HH<br />

Azimuth<br />

Coherence<br />

Range<br />

Co- registration of SLC`s to<br />

common geometry<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


In<strong>SAR</strong> Data Selection<br />

•The <strong>SAR</strong> data selection has a significant influence on the resulting interferogram.<br />

•Selection criteria vary according to the specific needs of an investigation however the<br />

primary <strong>and</strong> most straightforward concern is the availability of the data.<br />

•The ┴ baseline <strong>and</strong> the time interval between acquisitions are the main factors affecting the<br />

coherence .<br />

•Total decorrelation occurs when the critical baseline is reached.<br />

B<br />

CRIT<br />

R<br />

2L cos<br />

r<br />

Comparison of Critical Baselines<br />

Sensor B<strong>and</strong>width Incidence Angle Critical Baseline (m)<br />

ENVISAT A<strong>SAR</strong> I1 16 MHz ~18.7 o ~745<br />

ENVISAT A<strong>SAR</strong> 12 16 MHz ~22.7 o ~936<br />

ALOS PAL<strong>SAR</strong> FBD 14 Mhz ~38.7 o ~6550<br />

ALOS PAL<strong>SAR</strong> FBS 28 MHz ~38.7 o ~13100<br />

ALOS PAL<strong>SAR</strong> PLR 14 MHz ~23.7 ~3287<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


<strong>SAR</strong> Data Acquisition<br />

**Systematic Observation Strategy**<br />

ALOS PAL<strong>SAR</strong><br />

ENVISAT A<strong>SAR</strong><br />

Launch: 24 th January 2006<br />

Altitude: 692km<br />

λ: 23.6cm<br />

Cycle:<br />

46 days<br />

Launch: 1 st March 2002<br />

Altitude: 800km<br />

λ: 5.66cm<br />

Cycle: 35 days<br />

SLC FBS – Fine Beam Single<br />

SLC FBD – Fine Beam Dual<br />

SLC PLR – Polarimetric<br />

16 Acquisitions (4-8-4)<br />

SLC APS – Alternating polarisation<br />

37 new Acquisitions (HH/HV & HH/VV)<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


<strong>Interferometric</strong> Pairs<br />

Pair Master Slave Day diff Baseline Diff<br />

(m)<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009<br />

Track Swath 2π<br />

Ambiguity<br />

Height<br />

Doppler<br />

Centroid<br />

Diff (Hz)<br />

A<strong>SAR</strong> APS<br />

1. 06/07/2007 10/08/2007 35 75 352 I1 89.7 4.8<br />

2. 01/06/2008 06/07/2008 35 187 80 I1 35.7 1.3<br />

3. 06/07/2008 19/10/2008 105 52 80 I1 129.5 9.3<br />

4. 26/08/2008 04/11/2008 70 43 309 I2 188.2 26.4<br />

5. 05/06/2009 10/07/2009 35 65 352 I1 101.9 -34.3<br />

PAL<strong>SAR</strong> FBD<br />

Frame<br />

6. 15/7/2007 15/10/2007 92 974 3 1030 59.5 30.7<br />

7. 15/7/2007 30/8/2007 46 838 3 1030 69.2 45.8<br />

8. 30/8/2007 15/10/2007 46 537 3 1030 108.1 -15.1<br />

9. 20/07/2009 04/09/2009 46 604 3 1030 106.6 5.5<br />

PAL<strong>SAR</strong> FBS<br />

10. 1/3/2008 16/4/2008 46 597 3 1030 97.2 -28.7<br />

11. 15/1/2008 16/4/2008 92 1156 3 1030 55.7 -11.2<br />

12. 15/1/2008 1/3/2008 46 802 3 1030 68.4 17.4<br />

FBD2FBS<br />

13. 15/1/2008 15/10/2007 92 706 3 1030 91.2 1.7<br />

14. 1/3/2008 1/6/2008 92 886 3 1030 65.5 -55<br />

15. 16/4/2008 1/6/2008 46 419 3 1030 138.7 -26<br />

PAL<strong>SAR</strong> PLR<br />

16. 7/10/2008 22/11/2008 46 484 668 1040 67.7 23.2


<strong>Interferometric</strong> Processing<br />

Two SLC Images<br />

Baseline Estimation<br />

Co-registering the two SLC`s<br />

Complex Multiplication of the two SLC`s (Interferogram generation)<br />

Interferogram flattening Interferogram filtering (Adapted Goldstein filter)<br />

DEM (90m SRTM)<br />

Coherence Generation<br />

Phase unwrapping<br />

Geo-referencing<br />

Phase editing Orbital refinement DEM Interferogram re-flattening<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Analysis - Coherence<br />

Study Area<br />

Great Isl<strong>and</strong><br />

Cork, Eire<br />

OSi©<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


<strong>Interferometric</strong> Correlation (Coherence)<br />

The coherence is a measure of the phase correlation between two co-registered complex <strong>SAR</strong><br />

images, I 1 <strong>and</strong> I 2 <strong>and</strong> is defined as the correlation coefficient<br />

I<br />

1<br />

I<br />

I<br />

1<br />

2<br />

I<br />

2<br />

I<br />

2<br />

I<br />

1<br />

γ = γ System Noise<br />

+ γ Geomtrical<br />

+ γ Temporal<br />

1 st March 08 L-b<strong>and</strong><br />

HH Amplitude Image<br />

Coherence<br />

Image<br />

16 th April 08 L-b<strong>and</strong> HH<br />

Amplitude Image<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Temporal Coherence Loss – C-b<strong>and</strong><br />

T┴ 35 T┴ 70 T┴ 105


L-b<strong>and</strong> FBD HH Coherence<br />

20 th July 2009<br />

4 th Sept 2009<br />

Temporal change that causes loss<br />

of coherence can be caused by two<br />

types of decorrelation factors<br />

-a permittivity change<br />

- or a scatterer geometry change<br />

between the two image acquisitions<br />

Red – high coherence<br />

Green – backscatter decrease<br />

Blue – backscatter increase<br />

20th July 2009 H 84.67cm 4th Sept 2009 H 65.14cm<br />

M v<br />

σ 0 (dB) M v<br />

σ 0 (dB)<br />

PS01 8.80% -7.47647 18.23% -5.23561<br />

PS02 8.53% -9.67607 11.23% -5.97024<br />

PS03 8.90% -8.52073 13.03% -6.17416<br />

PS04 10.52% -11.3852 16.03% -9.22385<br />

PS05 9.62% -8.79838 9.03% -5.86285<br />

PS06 10.09% -8.69904 9.00% -6.03956<br />

PS07 6.38% -13.3604 9.20% -11.3553<br />

PS08 3.44% -8.14554 13.20% -5.93864


L-b<strong>and</strong> Coherence<br />

20th July 2009 4th Sept 2009<br />

M v<br />

σ 0 (dB) M v<br />

σ 0 (dB)<br />

SM01 5.94% -15.7221 15.13% -11.9309<br />

SM02 4.80% -5.27002 13.50% -6.2148<br />

SM03 5.00% -11.2345 18.63% -17.1424<br />

SM07 5.78% -11.9314 25.83% -15.9249<br />

SM08 4.72% -14.7369 25.73% -16.4532<br />

SM04 22.70% -20.3621 24.47% -20.8223<br />

SM05 18.03% -18.4512 22.77% -17.6879<br />

SM06 17.63% -15.175 26.73% -14.7335


DIn<strong>SAR</strong> for Soil Moisture Estimation<br />

D R<br />

m sin(<br />

)<br />

S 1 & S 2<br />

D<br />

2<br />

D<br />

R<br />

θ<br />

m<br />

D R<br />

P<br />

dz<br />

2<br />

m sin<br />

θ<br />

P′ dx<br />

H<br />

m<br />

2<br />

.<br />

.sin<br />

D<br />

After<br />

P’<br />

P<br />

Ellipsoid<br />

Before<br />

H P<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


DIn<strong>SAR</strong> for Soil Moisture Estimation<br />

Flat<br />

Elevation<br />

Disp<br />

Atmos<br />

Noise<br />

D R is actually an extra phase shift in addition to the<br />

phase differences resulting from the surface<br />

topography.<br />

DEM of the area is used to model the<br />

topographically-induced phase difference <strong>and</strong><br />

subtract it from the interferogram (2-pass DIn<strong>SAR</strong>)<br />

Raw Interferogram<br />

To examine the relationship between <strong>SAR</strong> phase<br />

<strong>and</strong> soil moisture, a time-series of 16 differential<br />

interferograms spanning 26 months from July 2007<br />

to September 2009 using ALOS PAL<strong>SAR</strong> <strong>and</strong><br />

ENVISAT A<strong>SAR</strong> data were processed.<br />

Differential Interferogram<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


T┴35<br />

T┴105<br />

T┴35<br />

T┴70<br />

T┴35<br />

Time series of A<strong>SAR</strong> C-<br />

b<strong>and</strong> Interferograms<br />

showing phase changes<br />

during 35 -105 days<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


PAL<strong>SAR</strong> FBS Differential Interferograms<br />

•One full phase cycle in a differential interferogram is equivalent to a deformation of λ/2 along<br />

the slant range direction or LOS.<br />

•For L-b<strong>and</strong>, one color cycle in the interferogram represents 11.5cm of range change between<br />

the ground surface <strong>and</strong> the radar antenna.<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


T┴46<br />

T┴92<br />

T┴46<br />

T┴46<br />

T┴46<br />

Figure: Time series of PAL<strong>SAR</strong> L-<br />

b<strong>and</strong> Interferograms showing<br />

phase changes during 46 -92 days<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Phase Changes<br />

L- b<strong>and</strong><br />

20/07/2009 – 04/09/2009<br />

C- b<strong>and</strong><br />

05/06/2009 – 10/07/2009<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Phase Changes due to Soil Moisture<br />

Soil moisture is expected to vary<br />

between fields because of differences in<br />

evaporation <strong>and</strong> drainage due to cover<br />

crops, soil type, <strong>and</strong> farming practices.<br />

L-b<strong>and</strong> July-August 2007<br />

No causal mechanisms other than soil<br />

moisture has been identified that can explain<br />

changes across such linear boundaries.<br />

July 2007 August 2007<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


Conclusions<br />

• The higher sensitivity of L-b<strong>and</strong> <strong>SAR</strong> signal<br />

into the canopy reduces the sensitivity to<br />

vegetation constituents <strong>and</strong> improves the<br />

<strong>SAR</strong> capability to estimate <strong>and</strong> monitor soil<br />

moisture content.<br />

• In vegetated areas, the longer wavelength<br />

L-b<strong>and</strong> <strong>SAR</strong> provides more useable<br />

interferometric pairs over longer timeframes<br />

than provided by C-b<strong>and</strong> <strong>SAR</strong>.<br />

• Differential interferograms have been<br />

presented that contain abrupt changes in<br />

phase patterns at field boundaries where<br />

soil moisture variances would be expected<br />

dues to differences in tilling, evaporation<br />

etc.<br />

Further efforts for statistical analysis of<br />

<strong>Interferometric</strong> phase differences using in<br />

situ soil moisture measurements are<br />

required to verify whether they can be<br />

useful for quantitative soil moisture retrieval.<br />

3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009


3 rd Annual Irish Earth Observation Symposium<br />

12 &13 th November 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!