(−)-Ephedrine as an auxiliary for the asymmetric synthesis of ...

(−)-Ephedrine as an auxiliary for the asymmetric synthesis of ... (−)-Ephedrine as an auxiliary for the asymmetric synthesis of ...

clor2.ch.man.ac.uk
from clor2.ch.man.ac.uk More from this publisher
12.01.2015 Views

Pergamon Tetrahedron Letters 42 (2001) 3163–3166 TETRAHEDRON LETTERS ()-Ephedrine as an auxiliary for the asymmetric synthesis of atropisomeric amides by dynamic resolution under thermodynamic control Jonathan Clayden* and Lai Wah Lai Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK Received 20 December 2000; revised 29 January 2001; accepted 12 March 2001 Abstract—N,N-Dialkyl-2-formylbenzamides and N,N-dialkyl-2-formyl-1-naphthamides condense with ()-ephedrine in refluxing toluene to give oxazolidines both as single diastereoisomers with respect to the new stereogenic centre and as single conformers with respect to the slowly-rotating ArCONR 2 bond. In the naphthamide series, removal of the ephedrine auxiliary by hydrolysis returns the starting aldehyde (isolated by reduction to the more stable alcohol) in enantiomerically enriched form (up to 94% ee). Overall, the two-step sequence amounts to a dynamic resolution under thermodynamic control. © 2001 Elsevier Science Ltd. All rights reserved. We 1 and others, 2 have recently demonstrated that nonbiaryl atropisomers (such as hindered aromatic amides and anilides) are powerful agents of intramolecular stereocontrol. The development of reactions employing non-biaryl atropisomers for intermolecular control of stereochemistry has been hampered by the shortage of effective methods for their asymmetric synthesis. A handful of methods for the asymmetric synthesis of axially chiral aromatic amides (with varying degrees of generality) have now been described, 3–7 including one involving dynamic resolution under thermodynamic control, 5 and one of these allowed us to demonstrate for the first time a non-biaryl atropisomer acting as a chiral ligand in an asymmetric metal-promoted reaction. 6 In this Letter, we report that thermodynamic control over amide conformation may be achieved more simply and directly by using ()-ephedrine-derived oxazolidines formed in one-step by condensation of commercially available ()-ephedrine with 2-formyl benzamides and naphthamides. 8 It is well established that that (1R,2S)-()-ephedrine 1 9 and (1S,2S)-(+)-pseudoephedrine 2 10 condense with aromatic aldehydes diastereoselectively (with respect to the ‘aminal’ centre) to form oxazolidines. In order to establish the ability of ephedrine and pseudoephedrine to control not only the configuration of a new stereogenic centre in the ring but also that of an adjacent stereogenic axis, we condensed them with N,N-diisopropyl-2-formyl-1-naphthamide 3 11,12 in refluxing toluene under a Dean–Stark condenser (Scheme 1). In each case, we obtained single diastereoisomers 4 and 5, with no trace (in the NMR spectrum of the crude reaction mixture) of epimers at either the new stereogenic centre in the oxazolidine ring or at the rotationally restricted ArCO axis. The oxazo- HO 1 Ph HO 1 Ph O N 4, 74% H O N Ph Me MeHN 2 Me 1 (1R, 2S)-(–)- ephedrine toluene, ∆ MeHN 2 Me N 2 N (1S, 2S)-(+)- O O H pseudoephedrine CHO O toluene, N ∆ 3 5 , 74% Scheme 1. Condensation of ()-ephedrine and (+)-pseudoephedrine with a 2-formyl-1-naphthamide. Ph Me * Corresponding author. 0040-4039/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00416-6

Pergamon<br />

Tetrahedron Letters 42 (2001) 3163–3166<br />

TETRAHEDRON<br />

LETTERS<br />

(<strong>−</strong>)-<strong>Ephedrine</strong> <strong>as</strong> <strong>an</strong> <strong>auxiliary</strong> <strong>for</strong> <strong>the</strong> <strong>as</strong>ymmetric syn<strong>the</strong>sis <strong>of</strong><br />

atropisomeric amides by dynamic resolution under<br />

<strong>the</strong>rmodynamic control<br />

Jonath<strong>an</strong> Clayden* <strong>an</strong>d Lai Wah Lai<br />

Department <strong>of</strong> Chemistry, University <strong>of</strong> M<strong>an</strong>chester, Ox<strong>for</strong>d Road, M<strong>an</strong>chester M13 9PL, UK<br />

Received 20 December 2000; revised 29 J<strong>an</strong>uary 2001; accepted 12 March 2001<br />

Abstract—N,N-Dialkyl-2-<strong>for</strong>mylbenzamides <strong>an</strong>d N,N-dialkyl-2-<strong>for</strong>myl-1-naphthamides condense with (<strong>−</strong>)-ephedrine in refluxing<br />

toluene to give oxazolidines both <strong>as</strong> single di<strong>as</strong>tereoisomers with respect to <strong>the</strong> new stereogenic centre <strong>an</strong>d <strong>as</strong> single con<strong>for</strong>mers<br />

with respect to <strong>the</strong> slowly-rotating ArCONR 2 bond. In <strong>the</strong> naphthamide series, removal <strong>of</strong> <strong>the</strong> ephedrine <strong>auxiliary</strong> by hydrolysis<br />

returns <strong>the</strong> starting aldehyde (isolated by reduction to <strong>the</strong> more stable alcohol) in en<strong>an</strong>tiomerically enriched <strong>for</strong>m (up to 94% ee).<br />

Overall, <strong>the</strong> two-step sequence amounts to a dynamic resolution under <strong>the</strong>rmodynamic control. © 2001 Elsevier Science Ltd. All<br />

rights reserved.<br />

We 1 <strong>an</strong>d o<strong>the</strong>rs, 2 have recently demonstrated that nonbiaryl<br />

atropisomers (such <strong>as</strong> hindered aromatic amides<br />

<strong>an</strong>d <strong>an</strong>ilides) are powerful agents <strong>of</strong> intramolecular<br />

stereocontrol. The development <strong>of</strong> reactions employing<br />

non-biaryl atropisomers <strong>for</strong> intermolecular control <strong>of</strong><br />

stereochemistry h<strong>as</strong> been hampered by <strong>the</strong> shortage <strong>of</strong><br />

effective methods <strong>for</strong> <strong>the</strong>ir <strong>as</strong>ymmetric syn<strong>the</strong>sis. A<br />

h<strong>an</strong>dful <strong>of</strong> methods <strong>for</strong> <strong>the</strong> <strong>as</strong>ymmetric syn<strong>the</strong>sis <strong>of</strong><br />

axially chiral aromatic amides (with varying degrees <strong>of</strong><br />

generality) have now been described, 3–7 including one<br />

involving dynamic resolution under <strong>the</strong>rmodynamic<br />

control, 5 <strong>an</strong>d one <strong>of</strong> <strong>the</strong>se allowed us to demonstrate<br />

<strong>for</strong> <strong>the</strong> first time a non-biaryl atropisomer acting <strong>as</strong> a<br />

chiral lig<strong>an</strong>d in <strong>an</strong> <strong>as</strong>ymmetric metal-promoted<br />

reaction. 6<br />

In this Letter, we report that <strong>the</strong>rmodynamic control<br />

over amide con<strong>for</strong>mation may be achieved more simply<br />

<strong>an</strong>d directly by using (<strong>−</strong>)-ephedrine-derived oxazolidines<br />

<strong>for</strong>med in one-step by condensation <strong>of</strong> commercially<br />

available (<strong>−</strong>)-ephedrine with 2-<strong>for</strong>myl benzamides<br />

<strong>an</strong>d naphthamides. 8 It is well established that that<br />

(1R,2S)-(<strong>−</strong>)-ephedrine 1 9 <strong>an</strong>d (1S,2S)-(+)-pseudoephedrine<br />

2 10 condense with aromatic aldehydes di<strong>as</strong>tereoselectively<br />

(with respect to <strong>the</strong> ‘aminal’ centre) to <strong>for</strong>m<br />

oxazolidines. In order to establish <strong>the</strong> ability <strong>of</strong><br />

ephedrine <strong>an</strong>d pseudoephedrine to control not only <strong>the</strong><br />

configuration <strong>of</strong> a new stereogenic centre in <strong>the</strong> ring but<br />

also that <strong>of</strong> <strong>an</strong> adjacent stereogenic axis, we condensed<br />

<strong>the</strong>m with N,N-diisopropyl-2-<strong>for</strong>myl-1-naphthamide<br />

3 11,12 in refluxing toluene under a De<strong>an</strong>–Stark condenser<br />

(Scheme 1). In each c<strong>as</strong>e, we obtained single<br />

di<strong>as</strong>tereoisomers 4 <strong>an</strong>d 5, with no trace (in <strong>the</strong> NMR<br />

spectrum <strong>of</strong> <strong>the</strong> crude reaction mixture) <strong>of</strong> epimers at<br />

ei<strong>the</strong>r <strong>the</strong> new stereogenic centre in <strong>the</strong> oxazolidine ring<br />

or at <strong>the</strong> rotationally restricted ArCO axis. The oxazo-<br />

HO<br />

1<br />

Ph<br />

HO<br />

1<br />

Ph<br />

O<br />

N<br />

4, 74%<br />

H<br />

O<br />

N<br />

Ph<br />

Me<br />

MeHN 2 Me<br />

1<br />

(1R, 2S)-(–)-<br />

ephedrine<br />

toluene,<br />

∆<br />

MeHN 2 Me<br />

N<br />

2<br />

N<br />

(1S, 2S)-(+)-<br />

O<br />

O H<br />

pseudoephedrine<br />

CHO<br />

O<br />

toluene,<br />

N<br />

∆<br />

3 5 , 74%<br />

Scheme 1. Condensation <strong>of</strong> (<strong>−</strong>)-ephedrine <strong>an</strong>d (+)-pseudoephedrine with a 2-<strong>for</strong>myl-1-naphthamide.<br />

Ph<br />

Me<br />

* Corresponding author.<br />

0040-4039/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.<br />

PII: S0040-4039(01)00416-6


3164<br />

J. Clayden, L. W. Lai / Tetrahedron Letters 42 (2001) 3163–3166<br />

Figure 1. X-ray crystal structure <strong>of</strong> 4.<br />

lidines were isolated in 70–80% yield after purification<br />

by recrystallisation, <strong>an</strong>d <strong>the</strong> stereochemistry <strong>of</strong> 4 w<strong>as</strong><br />

determined by X-ray crystallography (Fig. 1).<br />

Similar reactions <strong>of</strong> four fur<strong>the</strong>r aldehydes 6, 8, 10 <strong>an</strong>d<br />

12 (Scheme 2) illuminate <strong>the</strong> mech<strong>an</strong>ism by which<br />

(<strong>−</strong>)-ephedrine gains control <strong>of</strong> <strong>the</strong> stereogenic ArCO<br />

axis <strong>of</strong> 4. Like 3, amides 6 12 <strong>an</strong>d 8 13 reacted with<br />

ephedrine to give single di<strong>as</strong>tereoisomers <strong>of</strong> <strong>the</strong> oxazolidines<br />

7 <strong>an</strong>d 9. Given that <strong>the</strong> aldehydes 3, 6 <strong>an</strong>d 8 are<br />

racemic, atropisomeric compounds, 14 <strong>the</strong> <strong>for</strong>mation <strong>of</strong><br />

4, 7 <strong>an</strong>d 9 <strong>as</strong> single di<strong>as</strong>tereoisomers in >50% yield c<strong>an</strong><br />

be explained only by a dynamic resolution <strong>of</strong> some<br />

kind. Dynamic resolution implies interconversion <strong>of</strong><br />

stereoisomers, <strong>an</strong>d <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> reaction<br />

(110°C) provides e<strong>as</strong>ily enough <strong>the</strong>rmal energy to<br />

racemise 3, 6 <strong>an</strong>d 8, 11 so dynamic kinetic resolution<br />

during <strong>the</strong> oxazolidine <strong>for</strong>mation (one atropisomeric<br />

en<strong>an</strong>tiomer reacting f<strong>as</strong>ter th<strong>an</strong> <strong>the</strong> o<strong>the</strong>r) is certainly<br />

fe<strong>as</strong>ible. However, several features <strong>of</strong> <strong>the</strong> reactions <strong>of</strong> 3,<br />

6, 8, <strong>an</strong>d also 10, 12 <strong>an</strong>d 13 lead us to believe that <strong>the</strong><br />

stereoselective <strong>for</strong>mation <strong>of</strong> 4, 7 <strong>an</strong>d 9 is under <strong>the</strong>rmodynamic<br />

control, <strong>as</strong> illustrated in Scheme 3. Firstly,<br />

typical barriers to epimerisation <strong>of</strong> N,N-dialkyl-1-naphthamides<br />

bearing chiral, br<strong>an</strong>ched 2-substituents lie<br />

between 105 <strong>an</strong>d 115 kJ mol <strong>−</strong>1 . 11,15 At 110°C, a kinetically-determined<br />

ratio <strong>of</strong> such products will be irrelev<strong>an</strong>t<br />

to <strong>the</strong> outcome <strong>of</strong> a reaction l<strong>as</strong>ting more th<strong>an</strong> 10<br />

min; <strong>the</strong> stereoselectivity will be determined by equilibration<br />

to <strong>the</strong> most stable epimer. Secondly, <strong>the</strong> amide<br />

10, which should also racemise rapidly at 110°C, gives<br />

a 1:1 mixture <strong>of</strong> stereoisomeric oxazolidines 11a <strong>an</strong>d<br />

11b under <strong>the</strong>se conditions. 16,17 8-Heterosubstituted<br />

naphthamides epimerise much more slowly th<strong>an</strong> 8-<br />

unsubstituted naphthamides, 18 <strong>an</strong>d presumably <strong>the</strong><br />

epimers 11a <strong>an</strong>d 11b do not interconvert under <strong>the</strong><br />

conditions <strong>of</strong> <strong>the</strong> reaction. Thirdly, while <strong>the</strong> amides 12<br />

<strong>an</strong>d 13 <strong>for</strong>m oxazolidines 14 <strong>an</strong>d 15 which, without a<br />

second aromatic ortho substituent, c<strong>an</strong>not exist <strong>as</strong> two<br />

atropisomers, 11,15 14 <strong>an</strong>d 15 appear (by 1 H NMR) to<br />

exist <strong>as</strong> single con<strong>for</strong>mers about <strong>the</strong> ArCO bond. 19<br />

Their con<strong>for</strong>mations must be under <strong>the</strong>rmodynamic<br />

control, <strong>an</strong>d if one ArCO con<strong>for</strong>mer <strong>of</strong> 14 or 15 is<br />

signific<strong>an</strong>tly more stable th<strong>an</strong> <strong>the</strong> o<strong>the</strong>r, it seems re<strong>as</strong>onable<br />

to propose <strong>the</strong> same <strong>for</strong> one atropisomer <strong>of</strong> 4,<br />

7 or 9.<br />

Scheme 3 illustrates <strong>the</strong> way this dynamic resolution<br />

under <strong>the</strong>rmodynamic control (or ‘dynamic <strong>the</strong>rmodynamic<br />

resolution’ 20,5 ) is achieved with aldehyde 3. Condensation<br />

<strong>of</strong> 3 with (<strong>−</strong>)-ephedrine 1 gives <strong>an</strong> initial,<br />

kinetically controlled mixture <strong>of</strong> di<strong>as</strong>tereoisomers 4 <strong>an</strong>d<br />

epi-4 which rapidly equilibrate (within minutes) at <strong>the</strong><br />

temperature <strong>of</strong> <strong>the</strong> reaction. epi-4 Is signific<strong>an</strong>tly less<br />

stable th<strong>an</strong> 4, which is <strong>the</strong> only isolable product <strong>of</strong> <strong>the</strong><br />

reaction. The crystal structure <strong>of</strong> 4 (Fig. 1) gives <strong>an</strong><br />

indication <strong>of</strong> <strong>the</strong> origin <strong>of</strong> its relative stability: <strong>as</strong><br />

usual, 6,21,22 <strong>the</strong> stereogenic centre at <strong>the</strong> ortho-position<br />

prefers its smallest substituent (H) more or less to<br />

eclipse <strong>the</strong> ArCO bond, so that <strong>the</strong> pl<strong>an</strong>e <strong>of</strong> <strong>the</strong><br />

naphthamide ring bisects <strong>the</strong> oxazolidine ring. Steric<br />

crowding is signific<strong>an</strong>tly lessened if <strong>the</strong> Ni-Pr 2 group<br />

lies <strong>an</strong>ti across <strong>the</strong> ring to <strong>the</strong> N–Me group, <strong>an</strong>d this is<br />

<strong>the</strong> arr<strong>an</strong>gement observed in 4.<br />

In order to complete <strong>the</strong> resolution <strong>of</strong> 3 <strong>an</strong>d 6, <strong>the</strong><br />

ephedrine <strong>auxiliary</strong> must be removed from 4 <strong>an</strong>d 7. In<br />

each c<strong>as</strong>e, acid-catalysed hydrolysis returned <strong>the</strong> en<strong>an</strong>tiomerically-enriched<br />

aldehyde, but given <strong>the</strong> low barriers<br />

to racemisation <strong>of</strong> 1-naphthamides bearing carbonyl<br />

groups in <strong>the</strong>ir 2-positions 11,5,23 we found it necessary<br />

to reduce <strong>the</strong> product aldehydes rapidly to alcohols 16<br />

<strong>an</strong>d 17 to prevent rapid racemisation <strong>of</strong> <strong>the</strong> products. 24<br />

Loss <strong>of</strong> en<strong>an</strong>tiomeric purity, particularly from 17, is<br />

presumably due to <strong>the</strong> e<strong>as</strong>e <strong>of</strong> racemisation <strong>of</strong> <strong>the</strong><br />

N<br />

N<br />

N<br />

N<br />

O<br />

O H<br />

O<br />

O H<br />

1<br />

1<br />

CHO<br />

O Ph<br />

CHO<br />

O<br />

toluene,<br />

N<br />

Me<br />

toluene,<br />

N<br />

∆<br />

∆<br />

6 7, 87% 8 9 , 41%<br />

Ph<br />

Me<br />

R R<br />

N<br />

N<br />

N<br />

MeO O<br />

MeO O H<br />

O<br />

1<br />

CHO<br />

O Ph<br />

CHO<br />

toluene,<br />

N<br />

Me<br />

∆<br />

10 11a + 11b, 82% a<br />

12 (R = Et)<br />

1:1 mixture <strong>of</strong> di<strong>as</strong>tereoisomers a 13 (R = i-Pr)<br />

1<br />

toluene,<br />

∆<br />

R R<br />

N<br />

O H<br />

O<br />

N<br />

Ph<br />

Me<br />

14 (R = Et); 34%<br />

15 (R = i-Pr); 94%<br />

one Ar–CO con<strong>for</strong>mer by 1 H NMR<br />

Scheme 2. Condensation <strong>of</strong> (<strong>−</strong>)-ephedrine with amidoaldehydes. a Taken from Refs. 8 <strong>an</strong>d 9.


J. Clayden, L. W. Lai / Tetrahedron Letters 42 (2001) 3163–3166 3165<br />

3<br />

1<br />

O<br />

N<br />

H<br />

4<br />

O<br />

N<br />

110 °C<br />

Ph<br />

Me<br />

view O<br />

from<br />

here: H<br />

Me<br />

N<br />

favoured<br />

Me<br />

N<br />

O<br />

Ph<br />

(i)<br />

N<br />

O<br />

CHO<br />

(S)-3<br />

not isolated<br />

(ii), (iii)<br />

O<br />

N<br />

(S)-16<br />

89%; 94% ee<br />

OH<br />

O<br />

N<br />

H<br />

O<br />

N<br />

epi-4<br />

Ph<br />

Me<br />

view N<br />

from<br />

here: H<br />

Me<br />

N<br />

disfavoured<br />

Me<br />

O<br />

O<br />

Ph<br />

7<br />

(i)-(iii)<br />

O<br />

N<br />

(S)-17<br />

85%; 74% ee<br />

OH<br />

Scheme 3. Dynamic <strong>the</strong>rmodynamic resolution <strong>of</strong> atropisomeric 2-<strong>for</strong>mylnaphthamides. (i) CF 3 CO 2 H (20 equiv.), THF, H 2 O; (ii)<br />

NaOMe (25 equiv.); (iii) NaBH 4 (10 equiv.).<br />

aldehyde intermediate. We are currently developing<br />

new applications <strong>for</strong> en<strong>an</strong>tiomerically pure non-biaryl<br />

atropisomers, particularly <strong>as</strong> chiral lig<strong>an</strong>ds <strong>for</strong> metals,<br />

<strong>an</strong>d <strong>the</strong>se will be reported in due course.<br />

Acknowledgements<br />

We are grateful to <strong>the</strong> EPSRC <strong>an</strong>d to GlaxoWellcome<br />

<strong>for</strong> a CASE award (to L.W.L.), to Dr. Andrew Craven<br />

<strong>for</strong> m<strong>an</strong>y helpful discussions, <strong>an</strong>d to Dr. Madeleine<br />

Helliwell <strong>for</strong> determining <strong>the</strong> X-ray crystal structure <strong>of</strong><br />

4.<br />

References<br />

1. Clayden, J. Synlett 1998, 810.<br />

2. For leading references, see: (a) Curr<strong>an</strong>, D. P.; Geib, S.;<br />

DeMello, N. Tetrahedron 1999, 55, 5681; (b) Curr<strong>an</strong>, D.<br />

P.; Hale, G. R.; Geib, S. J.; Balog, A.; C<strong>as</strong>s, Q. B.; Deg<strong>an</strong>i,<br />

A. L. G.; Hern<strong>an</strong>des, M. Z.; Freit<strong>as</strong>, L. C. G. Tetrahedron:<br />

Asymmetry 1997, 8, 3955; (c) Curr<strong>an</strong>, D. P.; Qi, H.; Geib,<br />

S. J.; DeMello, N. C. J. Am. Chem. Soc. 1994, 116, 3131;<br />

(d) Hughes, A. D.; Price, D. A.; Simpkins, N. S. J. Chem.<br />

Soc., Perkin Tr<strong>an</strong>s. 1 1999, 1295; (e) Hughes, A. D.; Price,<br />

D. A.; Shishkin, O.; Simpkins, N. S. Tetrahedron Lett.<br />

1996, 37, 7607; (f) Fujita, M.; Kitagawa, O.; Yamada, Y.;<br />

Izawa, H.; H<strong>as</strong>egawa, H.; Taguchi, T. J. Org. Chem. 2000,<br />

65, 1108; (g) Kitagawa, O.; Momose, S.-i.; Fushimi, Y.;<br />

Taguchi, T. Tetrahedron Lett. 1999, 40, 8827; (h) Fujita,<br />

M.; Kitagawa, O.; Izawa, H.; Dob<strong>as</strong>hi, A.; Fukaya, H.;<br />

Taguchi, T. Tetrahedron Lett. 1999, 40, 1949; (i) Kitagawa,<br />

O.; Izawa, H.; Taguchi, T.; Shiro, M. Tetrahedron Lett.<br />

1997, 38, 4447; (j) Bach, T.; Schröder, J.; Harms, K.<br />

Tetrahedron Lett. 1999, 40, 9003.<br />

3. Thayum<strong>an</strong>av<strong>an</strong>, S.; Beak, P.; Curr<strong>an</strong>, D. P. Tetrahedron<br />

Lett. 1996, 37, 2899.<br />

4. Koide, H.; Uemura, M. J. Chem. Soc., Chem. Commun.<br />

1998, 2483.<br />

5. Clayden, J.; Lai, L. W. Angew. Chem., Int. Ed. 1999, 38,<br />

2556.<br />

6. Clayden, J.; Johnson, P.; Pink, J. H.; Helliwell, M. J. Org.<br />

Chem. 2000, 65, 7033.<br />

7. Clayden, J.; Johnson, P.; Pink, J. H. J. Chem. Soc., Perkin<br />

Tr<strong>an</strong>s. 1 2001, 371.<br />

8. This ephedrine-b<strong>as</strong>ed method h<strong>as</strong> a number <strong>of</strong> adv<strong>an</strong>tages<br />

over our previously-described method b<strong>as</strong>ed on diaminederived<br />

aminals (Ref. 5). (<strong>−</strong>)-<strong>Ephedrine</strong>, unlike <strong>the</strong><br />

diamine, is cheap <strong>an</strong>d commercially available <strong>as</strong> both<br />

en<strong>an</strong>tiomers, <strong>an</strong>d <strong>the</strong> oxazolidines are more stable to<br />

purification th<strong>an</strong> <strong>an</strong>imals.<br />

9. (a) Neelak<strong>an</strong>t<strong>an</strong>, L. J. Org. Chem. 1971, 36, 2256; (b)<br />

Agami, C.; Rizk, T. J. Chem. Soc., Chem. Commun. 1983,<br />

1485; (c) Agami, C.; Rizk, T. Tetrahedron 1985, 41, 537.<br />

10. S<strong>an</strong>tiesteb<strong>an</strong>, F.; Grimaldo, C.; Contrer<strong>as</strong>, R.; Wrackmeyer,<br />

B. J. Chem. Soc., Chem. Commun. 1983, 1486.<br />

11. Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.;<br />

McCarthy, C.; Pink, J. H.; Westlund, N.; Y<strong>as</strong>in, S. A.<br />

Tetrahedron 1998, 54, 13277.<br />

12. Clayden, J.; McCarthy, C.; Westlund, N.; Frampton, C. S.<br />

J. Chem. Soc., Perkin Tr<strong>an</strong>s. 1 2000, 1363.<br />

13. The syn<strong>the</strong>sis <strong>of</strong> 2-<strong>for</strong>myl-6-alkyl benzamides such <strong>as</strong> 8 by<br />

ortholithiation is complicated by <strong>the</strong> need ei<strong>the</strong>r to protect<br />

<strong>the</strong> aldehyde from nucleophilic attack during <strong>the</strong> introduction<br />

<strong>of</strong> <strong>the</strong> alkyl group, or to protect <strong>the</strong> alkyl group from<br />

lateral lithiation (Court, J. J.; Hl<strong>as</strong>ta, D. J. Tetrahedron<br />

Lett. 1996, 37, 1335) during introduction <strong>of</strong> <strong>the</strong> <strong>for</strong>myl<br />

group. Our route to 8 (below) employed silyl-protection <strong>of</strong><br />

O<br />

N<br />

1. s-BuLi<br />

2. EtI<br />

O<br />

N<br />

1. s-BuLi<br />

2. Me 3 SiCl<br />

Me 3 Si<br />

O<br />

N<br />

1. s-BuLi<br />

2. Me 2 NCHO<br />

O<br />

N<br />

CHO<br />

46%<br />

54%<br />

3. TBAF<br />

24% 8


3166<br />

J. Clayden, L. W. Lai / Tetrahedron Letters 42 (2001) 3163–3166<br />

<strong>the</strong> ethyl group (Mills, R. J.; Taylor, N. J.; Snieckus, V.<br />

J. Org. Chem. 1989, 54, 4372) during <strong>the</strong> <strong>for</strong>mylation<br />

step.<br />

14. In general, 2,6-disubstituted tertiary benzamides <strong>an</strong>d 2-<br />

substituted tertiary naphthamides may exist <strong>as</strong> two<br />

atropisomeric en<strong>an</strong>tiomers which interconvert only<br />

slowly, see Ref. 15.<br />

15. Bowles, P.; Clayden, J.; Helliwell, M.; McCarthy, C.;<br />

Tomkinson, M.; Westlund, N. J. Chem. Soc., Perkin<br />

Tr<strong>an</strong>s. 1 1997, 2607.<br />

16. Clayden, J.; McCarthy, C.; Cumming, J. G. Tetrahedron<br />

Lett. 2000, 41, 3279.<br />

17. Clayden, J.; Helliwell, M.; McCarthy, C.; Westlund, N. J.<br />

Chem. Soc., Perkin Tr<strong>an</strong>s. 1 2000, 3232.<br />

18. Clayden, J.; McCarthy, C.; Helliwell, M. J. Chem. Soc.,<br />

Chem. Commun. 1999, 2059.<br />

19. The ArCO axis <strong>of</strong> a benzamide bearing only one ortho<br />

substituent is not usually stereogenic, but may appear so<br />

on <strong>the</strong> NMR timescale: <strong>for</strong> example, 2-substituted benzamides<br />

containing a stereogenic centre typically display<br />

two sets <strong>of</strong> signals in <strong>the</strong> NMR spectrum at ambient<br />

temperature due to <strong>the</strong> two slowly-interconverting<br />

ArCO con<strong>for</strong>mers. For fur<strong>the</strong>r discussion, see Refs. 22<br />

<strong>an</strong>d 6.<br />

20. Beak, P.; B<strong>as</strong>u, A.; Gallagher, D. J.; Park, Y. S.; Thayum<strong>an</strong>av<strong>an</strong>,<br />

S. Acc. Chem. Res. 1996, 29, 552.<br />

21. Clayden, J.; Westlund, N.; Wilson, F. X. Tetrahedron<br />

Lett. 1999, 40, 3331.<br />

22. Clayden, J.; Pink, J. H.; Y<strong>as</strong>in, S. A. Tetrahedron Lett.<br />

1998, 39, 105.<br />

23. Clayden, J.; Darbyshire, M.; Pink, J. H.; Westlund, N.;<br />

Wilson, F. X. Tetrahedron Lett. 1997, 38, 8587.<br />

24. En<strong>an</strong>tiomeric excesses were determined by HPLC on<br />

chiral stationary ph<strong>as</strong>e (Whelk-O1 from Regis).<br />

.<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!