11.01.2015 Views

The Laplace transform of the psi function - DocServer

The Laplace transform of the psi function - DocServer

The Laplace transform of the psi function - DocServer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION<br />

M. LAWRENCE GLASSER AND DANTE MANNA<br />

Abstract. Guided by numerical experimentation, we have been able to prove that<br />

Z<br />

8 π/2 x 2<br />

π 0 x 2 + ln 2 dx = 1 − γ + ln(2π)<br />

[2cos(x)]<br />

and to establish a connection with <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> ψ(t + 1).<br />

(1)<br />

1. Introduction<br />

Interest in this project began with curiosity about <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> <strong>the</strong> Digamma <strong>function</strong>,<br />

L(a) :=<br />

∫ ∞<br />

0<br />

e −as ψ(s + 1)ds ,<br />

which is conspicuously absent from <strong>the</strong> extensive literature and tabulations <strong>of</strong> Euler’s Gamma <strong>function</strong>.<br />

As will be seen, this can be related to <strong>the</strong> odd logarithmic integral<br />

(2)<br />

M(a) :=<br />

4 π<br />

∫ π/2<br />

0<br />

x 2<br />

x 2 + ln 2 (2e −a cos(x)) dx .<br />

If one plots L(a) + γ/a and M(a) <strong>the</strong> graphs coincide for a ≥ ln(2), that for M(a) exhibits a cusp<br />

at a = ln(2) and decreases to <strong>the</strong> finite value M(0) = 1.13033... , whereas L(0) is divergent (Fig. 1).<br />

<strong>The</strong> first author was quite surprised to receive an e-mail from Olivier Oloa <strong>of</strong> <strong>the</strong> University <strong>of</strong><br />

Versailles asking about a number <strong>of</strong> integrals equivalent in form to (2) and a second note somewhat<br />

later stating that<br />

M(0) = 4 π<br />

∫ π/2<br />

0<br />

x 2<br />

x 2 + ln 2 dx = (1 − γ + ln(2π))/2 .<br />

(2 cos(x))<br />

(3)<br />

4<br />

7<br />

6<br />

5<br />

3<br />

2<br />

1<br />

0<br />

0.0<br />

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6<br />

4.0<br />

Figure 1. graph <strong>of</strong> L(a) + γ/a (upper) versus M(a)<br />

1


2 M. LAWRENCE GLASSER AND DANTE MANNA<br />

Indeed this value had been guessed by making <strong>the</strong> reasonable assumption based on <strong>the</strong> connection<br />

with <strong>the</strong> Gamma <strong>function</strong> that <strong>the</strong> only transcendental numbers involved were Euler’s constant,<br />

ln(2) and ln(π). By examining <strong>the</strong> expression E(a, b, c, d) = a + bγ + c ln(2) + d ln(π) systematically<br />

for small rational values <strong>of</strong> <strong>the</strong> coefficients precisely <strong>the</strong> above value was obtained. At <strong>the</strong> time our<br />

note is written, this identity also appears in [8].<br />

<strong>The</strong> aim <strong>of</strong> this note is to provide <strong>the</strong> details <strong>of</strong> <strong>the</strong> relation between L(a) and M(a) and to derive<br />

<strong>the</strong> value <strong>of</strong> M(0). We present two pro<strong>of</strong>s <strong>of</strong> <strong>the</strong> evaluation M(0), as well as a sum formula for <strong>the</strong><br />

integral. <strong>The</strong> general form <strong>of</strong> (1) for real parameter a appears to be<br />

L(a) = M(a) − γ a − ln(ea − 1)<br />

H(ln 2 − a) ,<br />

1 − e−a where H denotes <strong>the</strong> unit step <strong>function</strong>. Oloa [7] has derived a conjecture for <strong>the</strong> general evaluation<br />

<strong>of</strong> <strong>the</strong> related integral M(a) for all real a > 0 which has been confirmed by numerical experiments.<br />

<strong>The</strong> derivation we present for <strong>the</strong> identity (3) in Section 2 begins by equating <strong>the</strong> integral in (2)<br />

with <strong>the</strong> form<br />

M(a) = πe −a ∫ 1<br />

0<br />

te −at<br />

Γ(1 − t)<br />

∑<br />

k−l≠1<br />

Γ(l − t)Γ(l − k − 1)<br />

(1 − e a ) k dt .<br />

l!Γ(l − k)<br />

When a = 0, <strong>the</strong> hypergeometric sum reduces to a 3 F 2 , and we conclude <strong>the</strong> evaluation by appealing<br />

to known evaluations <strong>of</strong> <strong>the</strong> ψ <strong>function</strong>.<br />

In Section 3, we start by simplifying <strong>the</strong> integrand via a partial fractions decomposition and<br />

change <strong>of</strong> variables. This results in a much simpler-looking integrand:<br />

∫ π<br />

y 2 dy<br />

0 y 2 + 4 ln 2 (2 cos( y 2 )) = i ∫ π<br />

(4) y dy<br />

4 −π log(e iy + 1) .<br />

<strong>The</strong> <strong>transform</strong>ation e iy ↦→ z in <strong>the</strong> right hand integral would be <strong>the</strong> next logical step, because it<br />

<strong>transform</strong>s <strong>the</strong> interval (−π, π) to a simple, closed contour in C that encircles <strong>the</strong> origin. However,<br />

doing so from (4) would introduce complex logarithms in <strong>the</strong> integrand. To compensate for this,<br />

we replace <strong>the</strong> integrand with an analytic integral and reverse order <strong>of</strong> integration. <strong>The</strong> result is to<br />

reduce (3) to <strong>the</strong> evaluations<br />

∫ 1<br />

0<br />

ln Γ(t) dt = ln( √ 2π) and (ln Γ) ′ (2) ≡ ψ(2) = 1 − γ .<br />

Definite integrals on [0, 1] involving ln(Γ(x)) such as this have appeared in earlier research <strong>of</strong> Espinosa<br />

and Moll; see [2], [4], [5] for details. We refer <strong>the</strong> reader to [9] for <strong>the</strong> analysis background concerning<br />

our steps <strong>of</strong> simplification that involve, for example, passing a sum through an integral or analytic<br />

continuation.<br />

From (4) we can also make a series expansion <strong>of</strong> <strong>the</strong> integrand and integrate termwise, yielding<br />

<strong>the</strong> formula<br />

∫ (<br />

)<br />

π<br />

y 2 dy<br />

0 y 2 + 4 log 2 (2 cos( y 2 )) = π ∞∑ (−1) m m+1<br />

∑ S 1 (m + 1, s)<br />

(5)<br />

1 +<br />

.<br />

2 m(m + 1)! s + 1<br />

m=1<br />

s=0<br />

<strong>The</strong> S 1 (m, s) are signed Stirling numbers <strong>of</strong> <strong>the</strong> first kind, which appear when one writes a power<br />

series expansion for 1/ log(1 + x) . We thus have, in view <strong>of</strong> (3), a new series evaluation.


ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION 3<br />

2. Derivation <strong>of</strong> <strong>the</strong> Logarithmic Integral<br />

We begin by proving that <strong>the</strong> integrals L(a) + γ/a and M(a) agree for a > ln(2) . <strong>The</strong> former<br />

diverges for all o<strong>the</strong>r real values <strong>of</strong> a , so that <strong>the</strong> latter is seen as its analytic continuation. To start,<br />

formula (1.6.27) in [3] reads<br />

Hence<br />

(6)<br />

B(y) =<br />

= π 4<br />

∫ π/2<br />

0<br />

cos(xy)cos s (x)dx = 2 −s−1 Γ(s + 1)<br />

π<br />

Γ(1 + 1 2 s + 1 2 y)Γ(1 + 1 2 s − 1 2 y) .<br />

∫ π/2<br />

0<br />

2 −s Γ(s + 1)<br />

[<br />

Γ(1 + 1 2 s + 1 2 y)Γ(1 + 1 2 s − 1 2 y) ψ<br />

xsin(xy)cos s (x)dx = −B ′ (y)<br />

(<br />

1 + s 2 + y ) (<br />

− ψ 1 + s 2 2 − y )]<br />

2<br />

This generalizes Entry 33(i) in [1]. <strong>The</strong>refore, evaluating at y = s , we obtain <strong>the</strong> integral representation<br />

ψ(s + 1) = 2s+2<br />

π<br />

∫ π/2<br />

0<br />

xsin(sx)cos s (x)dx − γ .<br />

Substituting this into <strong>the</strong> previous expression, we obtain <strong>the</strong> double integral<br />

(7)<br />

L(a) + γ a = 4 π<br />

∫ ∞<br />

Writing sin(sx) = − Im(e −isx ) , this becomes<br />

Now <strong>the</strong> integral<br />

L(a) + γ a = − 4 π Im ∫ ∞<br />

∫ ∞<br />

0<br />

0<br />

∫ π/2<br />

e −(a−ln 2)s xsin(sx)cos s (x) dx ds.<br />

0<br />

∫ π/2<br />

0<br />

0<br />

xe s(ln[2e−a cos(x)]−ix) dx ds.<br />

e s(ln[2e−a cos(x)]−ix) ds for 0 < x < π/2<br />

is equal to 1/(ix − ln[2e −a cos(x)]) when a > ln 2 and does not converge for any o<strong>the</strong>r values <strong>of</strong> a .<br />

Thus, with this restriction in place, we may reverse <strong>the</strong> order <strong>of</strong> integration, yielding<br />

L(a) + γ a = − 4 π Im ∫ π/2<br />

0<br />

x<br />

ix − ln[2e −a cos(x)]<br />

dx = M(a) .<br />

<strong>The</strong>n, for 0 < a ≤ ln 2, we have M(a) as an alternative branch value <strong>of</strong> <strong>the</strong> <strong>function</strong> L(a) + γ/a.<br />

Now we retrace <strong>the</strong> our steps slightly differently, starting from (7). For fixed s > 0 , <strong>the</strong> imaginary<br />

part <strong>of</strong> integrand with respect to x is even; we write<br />

M(a) = 2 π Im ∫ ∞<br />

0<br />

∫ π/2<br />

−π/2<br />

xe s ln[2e−a cos(x)] e isx dx ds .<br />

<strong>The</strong>n using <strong>the</strong> <strong>function</strong>al equation e isx e sln[2e−a cos x] = e sln[e−a (1+e 2ix )] and <strong>the</strong> change <strong>of</strong> variables<br />

x ↦→ x/2 yields<br />

M(a) = 1<br />

2π Im ∫ ∞<br />

0<br />

∫ π<br />

As before, we have that <strong>the</strong> s-integral evaluates to<br />

∫ ∞<br />

0<br />

e sln[e−a (1+e ix )] =<br />

−π<br />

xe s ln[e−a (1+e ix )] dx ds .<br />

−1<br />

ln[e −a (1 + e ix )]<br />

when a > ln 2 ,<br />

.


4 M. LAWRENCE GLASSER AND DANTE MANNA<br />

and diverges o<strong>the</strong>rwise. Since <strong>the</strong> parameter a is already restricted to <strong>the</strong> region <strong>of</strong> <strong>the</strong> former<br />

inequality, we have that<br />

Employing <strong>the</strong> general identity<br />

M(a) = − 1<br />

2π Im ∫ π<br />

1<br />

lnf<br />

in <strong>the</strong> case f = e −a (e ix + 1) , leads to <strong>the</strong> form<br />

M(a) = − 1<br />

2π ea Im<br />

∫ 1<br />

0<br />

=<br />

−π<br />

xdx<br />

ln[e −a (1 + e ix )] .<br />

∫ 1<br />

0<br />

e −at ∫ π<br />

−π<br />

f t<br />

f − 1 dt ,<br />

xe −ix (1 + e ix ) t<br />

1 − (e a dx dt.<br />

− 1)e−ix Next we expand in powers <strong>of</strong> e ix and take <strong>the</strong> imaginary part to obtain<br />

M(a) = − 1 ∫ 1 ∑<br />

∞ ( ) ∫ t π<br />

π ea e −at (e a − 1) k xsin(l − k − 1)x dx dt .<br />

l<br />

0<br />

k,l=0<br />

<strong>The</strong> x-integral is easily worked out and vanishes if l − k = 1. <strong>The</strong> binomial coefficient can be<br />

expressed using Gamma <strong>function</strong>s, leading to<br />

∫ 1<br />

M(a) = e a te −at ′∑ Γ(l − t)Γ(l − k − 1)<br />

(8)<br />

(e a − 1) k dt ,<br />

Γ(1 − t) l!Γ(l − k)<br />

0<br />

where <strong>the</strong> prime on <strong>the</strong> sum denotes that terms with l − k = 1 are excluded. <strong>The</strong> sum represents<br />

a hypergeometric <strong>function</strong> <strong>of</strong> two variables, which strongly suggests that for general values <strong>of</strong> a no<br />

fur<strong>the</strong>r progress is possible.<br />

However, for a = 0 only terms with k = 0 contribute. Hence,<br />

∫ [<br />

1<br />

∞<br />

]<br />

t ∑ Γ(l − t)Γ(l − 1)<br />

M(0) =<br />

− Γ(−t)<br />

Γ(1 − t) l!Γ(l)<br />

0<br />

l=2<br />

Finally, <strong>the</strong> sum can be evaluated in terms <strong>of</strong> a generalized hypergeometric <strong>function</strong> leading to<br />

M(0) = 1 2<br />

∫ 1<br />

0<br />

t(1 − t) 3 F 2 (1, 1, 2 − t; 2, 3; 1) dt + 1 .<br />

<strong>The</strong> hypergeometric <strong>function</strong> does not appear to be tabulated, but experimenting with MATHE-<br />

MATICA leads to<br />

3F 2 (1, 1, 2 − t; 2, 3; 1) = 2 [1 − γ − ψ(t + 1)] ,<br />

1 − t<br />

and since [6] ∫ 1<br />

0 xψ(x + 1)dx = 1 − ln √ 2π we have proven that<br />

∫ π/2<br />

0<br />

x 2<br />

x 2 + ln 2 [2 cos(x)] dx = π [1 − γ + ln(2π)] .<br />

8<br />

Evaluations <strong>of</strong> <strong>the</strong> integral M(a) for nonzero values <strong>of</strong> a still appear to be possible. Oloa’s<br />

conjectured representations for M(a) differs from (8) in that <strong>the</strong> only <strong>function</strong>s <strong>of</strong> a involved are<br />

natural logarithms, exponentials and objects <strong>of</strong> <strong>the</strong> form<br />

∫ 1<br />

0<br />

0<br />

e at ln Γ(t) dt .<br />

We refer <strong>the</strong> reader to [7] for details and consequences <strong>of</strong> his remarkable formulae.<br />

dt .


ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION 5<br />

3. O<strong>the</strong>r Evaluations <strong>of</strong> M(0)<br />

This section gives <strong>the</strong> details <strong>of</strong> <strong>the</strong> calculations <strong>of</strong> <strong>the</strong> second derivation as described in <strong>the</strong><br />

introduction, beginning with a pro<strong>of</strong> <strong>of</strong> (4).<br />

Proposition 3.1.<br />

∫ π<br />

0<br />

y 2 dy<br />

y 2 + 4 ln 2 (2 cos( y 2 )) = i ∫ π<br />

y dy<br />

4 −π log(e iy + 1) ,<br />

where <strong>the</strong> logarithm in <strong>the</strong> denominator <strong>of</strong> <strong>the</strong> right-hand integral takes <strong>the</strong> principal value.<br />

Pro<strong>of</strong>. We move from <strong>the</strong> integral on <strong>the</strong> left to <strong>the</strong> integral on <strong>the</strong> right using a change <strong>of</strong> variables.<br />

To begin, we factor <strong>the</strong> ( denominator <strong>of</strong> <strong>the</strong> integrand on <strong>the</strong> left,<br />

( y<br />

[ ( ( y<br />

][ ( ( y<br />

]<br />

y 2 + 4 ln 2 2 cos = 2 ln 2 cos + iy 2 ln 2 cos − iy<br />

2))<br />

2))<br />

2))<br />

and expand <strong>the</strong> integrand into partial fractions. <strong>The</strong>n we split into two integrals, one for each term<br />

<strong>of</strong> <strong>the</strong> decomposition:<br />

(9)<br />

∫ π<br />

0<br />

y 2 ∫<br />

dy<br />

π<br />

y 2 + 4 ln 2 (2 cos( y 2 )) = g(y) dy −<br />

0<br />

∫ π<br />

0<br />

g(−y) d(−y) ,<br />

where<br />

iy<br />

g(y) :=<br />

4 ln(2 cos( y .<br />

2<br />

)) + 2iy<br />

Now we <strong>transform</strong> <strong>the</strong> second integral on <strong>the</strong> right hand side <strong>of</strong> (9) by y ↦→ −y and combine with<br />

<strong>the</strong> first one to get<br />

<strong>The</strong>n write<br />

∫ π<br />

0<br />

y 2 ∫<br />

dy<br />

π<br />

y 2 + 4 ln 2 (2 cos( y 2 )) =<br />

−π<br />

iy dy<br />

4 ln(2 cos( y .<br />

2<br />

)) + 2iy<br />

( ( [ y (<br />

2 ln 2 cos = log e<br />

2))<br />

iy/2 + e −iy/2) ] 2<br />

= 2 log ( e iy + 1 ) − iy<br />

for y ∈ (−π, π), where <strong>the</strong> logarithm <strong>function</strong> in <strong>the</strong> middle and right formulas takes <strong>the</strong> principal<br />

value. This leads directly to <strong>the</strong> desired conclusion.<br />

□<br />

Next, we provide an evaluation <strong>of</strong> <strong>the</strong> integral in terms <strong>of</strong> an infinite sum. This is done by<br />

expanding <strong>the</strong> integrand in a power series and <strong>the</strong>n integrating termwise. We first provide a pro<strong>of</strong><br />

<strong>of</strong> this expansion.<br />

Proposition 3.2. For all z ∈ C \ {0} ,<br />

(10)<br />

1<br />

∞<br />

log(1 + z) = ∑<br />

m=0<br />

z m−1<br />

m!<br />

m∑<br />

s=0<br />

S 1 (m, s)<br />

s + 1<br />

=<br />

∞∑<br />

m=0<br />

b m<br />

z m−1<br />

m!<br />

where <strong>the</strong> S 1 (m, s) are signed Stirling numbers <strong>of</strong> <strong>the</strong> first kind and <strong>the</strong> b m are Bernoulli numbers<br />

<strong>of</strong> <strong>the</strong> second kind.<br />

Pro<strong>of</strong>. Begin by observing that<br />

∫<br />

z 1<br />

log(1 + z) = (z + 1) t dt<br />

m=0<br />

0<br />

for all complex z ≠ 0 . <strong>The</strong> integrand on <strong>the</strong> right can be expanded using <strong>the</strong> binomial <strong>the</strong>orem,<br />

∞∑<br />

(z + 1) t z m<br />

(11)<br />

Γ(t + 1)<br />

=<br />

m! Γ(t − m + 1) ,<br />

,


6 M. LAWRENCE GLASSER AND DANTE MANNA<br />

which converges uniformly in t ∈ [0, 1] for all complex z . <strong>The</strong> coefficients <strong>of</strong> this power series are<br />

polynomials in t:<br />

Γ(t + 1)<br />

m<br />

Γ(t − m + 1) ≡ ∑<br />

S 1 (m, s)t s .<br />

s=0<br />

<strong>The</strong> integers S 1 (m, s) in <strong>the</strong> above formula are Stirling numbers <strong>of</strong> <strong>the</strong> first kind, which are implicitly<br />

defined for 0 ≤ m ≤ s by <strong>the</strong> above relation. <strong>The</strong>refore<br />

z<br />

∞<br />

log(1 + z) = ∑ z m ∫ 1<br />

Γ(t + 1)<br />

∞<br />

m! Γ(t − m + 1) dt = ∑ z m m∑ S 1 (m, s)<br />

(12)<br />

,<br />

m! s + 1<br />

m=0<br />

0<br />

and we finish by dividing everywhere by z . <strong>The</strong> second identity is even more immediate, in view <strong>of</strong><br />

<strong>the</strong> definition <strong>of</strong> Bernoulli numbers <strong>of</strong> <strong>the</strong> second kind:<br />

b n :=<br />

∫ 1<br />

0<br />

m=0<br />

s=0<br />

Γ(t + 1)<br />

dt , for n ∈ {0, 1, 2, ...} .<br />

Γ(t − n + 1)<br />

Combine this with <strong>the</strong> middle expression in (12) and <strong>the</strong>n divide by z.<br />

Now we evaluate <strong>the</strong> original integral as an infinite series.<br />

Proposition 3.3.<br />

(13)<br />

∫ π<br />

0<br />

0<br />

y 2 dy<br />

y 2 + 4 log 2 (2 cos( y 2 )) = π 2<br />

(<br />

1 +<br />

∞∑ (−1) m<br />

m(m + 1)!<br />

(<br />

m=1<br />

= π 2<br />

1 +<br />

m+1<br />

∑<br />

s=0<br />

∞∑<br />

m=1<br />

)<br />

S 1 (m + 1, s)<br />

s + 1<br />

)<br />

(−1) m b m+1<br />

m(m + 1)!<br />

Pro<strong>of</strong>. Using <strong>the</strong> power series (10) with z = e iy for y ∈ [−π, π] and applying this to <strong>the</strong> integral in<br />

(4) gives<br />

∫ π<br />

y 2 dy<br />

y 2 + 4 log 2 (2 cos( y 2 )) = i ∞∑ 1<br />

m∑<br />

∫<br />

S 1 (m, s) π<br />

(14)<br />

ye i(m−1)y dy .<br />

4 m! s + 1<br />

m=0<br />

We are justified in bringing <strong>the</strong> integral within <strong>the</strong> infinite sum, since <strong>the</strong> argument e iy is within <strong>the</strong><br />

radius <strong>of</strong> convergence <strong>of</strong> <strong>the</strong> power series. <strong>The</strong> integrals<br />

evaluate to (−1) m+1 × 2πi<br />

m<br />

way to see this is to verify that<br />

I m :=<br />

∫ π<br />

−π<br />

s=0<br />

ye imy dy , m ∈ Z<br />

for all integers m ≠ 0, and 0 in <strong>the</strong> exceptional case. <strong>The</strong> most direct<br />

d<br />

dy<br />

−π<br />

( 1 − imy<br />

m 2 e imy )<br />

= ye imy for m ≠ 0<br />

and evaluate at <strong>the</strong> endpoints. To complete <strong>the</strong> pro<strong>of</strong>, substitute this value into (14).<br />

Finally we prove <strong>the</strong> numerically-confirmed result (3).<br />

□<br />

□<br />

Proposition 3.4.<br />

∫ π<br />

0<br />

y 2 dy<br />

y 2 + 4 ln 2 (2 cos( y 2 )) = π (1 − γ + ln(2π)) .<br />

4


ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION 7<br />

Pro<strong>of</strong>. Start with (4) and <strong>the</strong> integral<br />

i<br />

4<br />

∫ π<br />

−π<br />

y dy<br />

log(e iy + 1) ,<br />

where we take <strong>the</strong> principle value <strong>of</strong> <strong>the</strong> complex logarithm. We write <strong>the</strong> integrand as<br />

∫<br />

iy<br />

1<br />

(<br />

log(e iy + 1) = − d (e iy + 1) t<br />

(15)<br />

dt .<br />

ds<br />

For fixed t, s ∈ N such that t > s, we integrate<br />

F(s, t) := − 1 4<br />

∫ π<br />

−π<br />

0<br />

(e iy + 1) t<br />

e iys<br />

e iys )s=1<br />

dy = − 1 4i<br />

∫<br />

C<br />

(z + 1) t<br />

z s+1<br />

where C is <strong>the</strong> simple, closed counterclockwise path around <strong>the</strong> unit circle in <strong>the</strong> complex plane.<br />

<strong>The</strong> integrand is clearly analytic in a neighbornood <strong>of</strong> this path, as its only singularity lies at z = 0 .<br />

By <strong>the</strong> residue <strong>the</strong>orem, <strong>the</strong> value <strong>of</strong> this contour integral is 2πi times <strong>the</strong> integrand’s residue at<br />

z = 0. <strong>The</strong> Laurent expansion <strong>of</strong> <strong>the</strong> integrand is<br />

∞∑<br />

(z + 1) t<br />

z s+1 =<br />

m=0<br />

Γ(t + 1)<br />

Γ(m + 1)Γ(t − m + 1) zm−s−1 ,<br />

using a similar binomial expansion to <strong>the</strong> one in (11). In this expansion we use <strong>the</strong> gamma <strong>function</strong>,<br />

<strong>the</strong> extension <strong>of</strong> <strong>the</strong> factorial which is defined for all complex arguments with positive real part by<br />

<strong>the</strong> integral<br />

(16)<br />

Γ(n) :=<br />

∫ ∞<br />

From <strong>the</strong> series above we draw <strong>the</strong> evaluation<br />

0<br />

x n−1 e −x dx , Γ(n + 1) = n! for n ∈ N .<br />

F(s, t) = − π 2<br />

Γ(t + 1)<br />

Γ(s + 1)Γ(t − s + 1) .<br />

In light <strong>of</strong> (16) we see <strong>the</strong> right hand side as an analytic continuation <strong>of</strong> <strong>the</strong> integral for all complex<br />

parameters s and t (excluding negative integer values). Thus it is allowable to differentiate F with<br />

respect to <strong>the</strong> parameter s . This gives us<br />

where<br />

∂F<br />

∂s = −π 2<br />

( )<br />

(ψ(t − s + 1) − ψ(s + 1))Γ(t + 1)<br />

,<br />

Γ(s + 1)Γ(t − s + 1)<br />

ψ(z) := Γ′ (z)<br />

Γ(z) = d log(Γ(z)) for z ∈ C .<br />

dz<br />

Among well-known identities ([2], p. 212) for this classical <strong>function</strong> are<br />

⎛ ⎞<br />

n∑<br />

ψ(2) = 1 − γ , where γ := lim ⎝<br />

1<br />

n→∞ j − ln(n) ⎠ ,<br />

so that we have<br />

∂F<br />

∂s (1, t) = −π 2<br />

( )<br />

(ψ(t) − (1 − γ))Γ(t + 1)<br />

Γ(t)<br />

Finally, we integrate both sides on [0, 1]:<br />

∫ 1<br />

0<br />

∂F<br />

∂s (1, t) dt = −π 2<br />

∫ 1<br />

0<br />

j=0<br />

tψ(t) dt + π 2<br />

dz<br />

= − πt (ψ(t) − (1 − γ)) .<br />

2<br />

∫ 1<br />

0<br />

(1 − γ)t dt .


8 M. LAWRENCE GLASSER AND DANTE MANNA<br />

Using integration by parts to compute <strong>the</strong> right hand side, we get<br />

π<br />

2<br />

∫ 1<br />

0<br />

log Γ(t) dt + π (1 − γ) .<br />

4<br />

<strong>The</strong> remaining integral is famously ([6] and on <strong>the</strong> cover <strong>of</strong> [2]!) known to be ln( √ 2π) .<br />

This gives us<br />

∫ 1<br />

(<br />

d<br />

− − 1 ∫ π<br />

(e iy + 1) t )<br />

0 ds 4 −π e iys dy dt = π (1 − γ + ln(2π)) .<br />

s=1<br />

4<br />

To finish, we notice that <strong>the</strong> integral in <strong>the</strong> variable y that represents F(s, t) is uniformly convergent<br />

in neighborhoods <strong>of</strong> s = 1 and t ∈ [0, 1] . Thus <strong>the</strong> integral can be viewed as a holomorphic <strong>function</strong><br />

<strong>of</strong> <strong>the</strong> parameters in that region. <strong>The</strong>refore, we can change <strong>the</strong> order <strong>of</strong> <strong>the</strong> differentiation by s and<br />

<strong>the</strong> integration over y, and switch <strong>the</strong> order <strong>of</strong> integration in <strong>the</strong> variables t and y. With (15) <strong>the</strong><br />

result is<br />

∫<br />

i π<br />

4 −π<br />

and in view <strong>of</strong> (4) this gives <strong>the</strong> desired identity.<br />

y dy<br />

log(e iy + 1) = π (1 − γ + ln(2π)) ,<br />

4<br />

Finally, we have a sum evaluation as a corollary.<br />

□<br />

Corollary 3.5.<br />

∞∑ (−1) m b m+1<br />

=<br />

m(m + 1)!<br />

m=1<br />

∞∑<br />

m=1<br />

(−1) m m+1<br />

∑ S 1 (m + 1, s)<br />

m(m + 1)! s + 1<br />

s=0<br />

Pro<strong>of</strong>. This follows from combining identities (3) and (5).<br />

= 1 2<br />

( )<br />

ln(2π) − 1 − γ .<br />

□<br />

With <strong>the</strong> aid <strong>of</strong> symbolic and numerical calculators, we have proven a new evaluation for a<br />

logarithmic integral and connected this to <strong>the</strong> <strong>Laplace</strong> <strong>transform</strong> <strong>of</strong> Psi <strong>function</strong> and a Stirling<br />

series. We conclude by mentioning <strong>the</strong> o<strong>the</strong>r role technology has played in <strong>the</strong> formation <strong>of</strong> this<br />

paper. Our collaboration itself is digital, done internationally (and overseas) via email; as <strong>of</strong> <strong>the</strong><br />

date <strong>of</strong> submission <strong>the</strong> authors have not yet met face to face.<br />

Acknowedgements. <strong>The</strong> first author thanks <strong>the</strong> University <strong>of</strong> Valladolid for hospitality while this<br />

work was carried out. <strong>The</strong> second author acknowledges J. Borwein for helpful comments and <strong>the</strong><br />

support <strong>of</strong> <strong>the</strong> AARMS Director’s Postdoctoral Fellowship.<br />

References<br />

[1] B. Berndt. Ramanujan’s Notebooks, Part I. Springer-Verlag, New York, 1985.<br />

[2] G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.<br />

[3] A. Erdélyi. Tables <strong>of</strong> Integral Transforms, volume 1. McGraw-Hill, New York, 1st edition, 1954.<br />

[4] O. Espinosa and V. Moll. On Some Definite Integrals Involving <strong>the</strong> Hurwitz Zeta Function. Part 1. Ramanujan<br />

Journal, 6:159–188, 2002.<br />

[5] O. Espinosa and V. Moll. On Some Definite Integrals Involving <strong>the</strong> Hurwitz Zeta Function. Part 2. Ramanujan<br />

Journal, 6:449–468, 2002.<br />

[6] G. M. Fichtengolz. Course in Differential and Integral Calculus, volume 2. (Moscow 1948).<br />

[7] O. Oloa. Some Euler-Type Integrals and a New Rational Series for Euler’s Constant, volume Proceedings <strong>of</strong> <strong>the</strong><br />

Special Session on Experimental Ma<strong>the</strong>matics in Action <strong>of</strong> Contemporary Ma<strong>the</strong>matics. American Ma<strong>the</strong>matical<br />

Society, 2007.<br />

[8] Eric W. Weisstein. ”Definite Integral,” Mathworld – a Wolfram Web Resource.<br />

http://mathworld.wolfram.com/DefiniteIntegral.html, Last updated: Jan. 25, 2007.<br />

[9] E.T. Whittaker and G.N. Watson. Modern Analysis. Cambridge University Press, 1962.


ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION 9<br />

Department <strong>of</strong> Physics, Clarkson University, Potsdam, NY U. S. A. 13699-5820<br />

E-mail address: laryg@clarkson.edu<br />

Department <strong>of</strong> Ma<strong>the</strong>matics and Statistics, Dalhousie University, Halifax, NS Canada B3H 3J5<br />

E-mail address: dmanna@mathstat.dal.ca

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!