11.01.2015 Views

Disformal Couplings and Cosmology

Disformal Couplings and Cosmology

Disformal Couplings and Cosmology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Disformal</strong> <strong>Couplings</strong> <strong>and</strong><br />

<strong>Cosmology</strong><br />

Carsten van de Bruck<br />

University of Sheffield<br />

Lancaster-Manchester-Sheffield Consortium for Fundamental Physics<br />

Based on work with Jack Morrice<br />

<strong>and</strong> Susan Vu; arXiv: 1303. 1773 (v3)<br />

Thursday, 5 September 13


Scalar-Tensor Theories:<br />

Simple extensions of GR<br />

Describe corners of other extensions of<br />

GR (e.g. extra dimensions (incl. brane<br />

worlds), massive gravity, ...,see Danielle<br />

Wills talk!)<br />

Useful for phenomenological<br />

approaches to modified gravity<br />

Thursday, 5 September 13


Form considered here is:<br />

S =<br />

Z p gd 4 x<br />

apple M<br />

2<br />

Pl<br />

2 R(g) 1<br />

2 gµ⌫ (@ µ )(@ ⌫ ) V ( )<br />

with<br />

+ X S i [˜g i µ⌫, i],<br />

˜g (i)<br />

µ⌫ = C (i) ( )g µ⌫ + D (i) ( ) ,µ ,⌫<br />

C is called conformal factor, D is the disformal<br />

factor. D is not well constrainted by local experiments<br />

(Brax (2012), Noller (2012), Brax et al (2012)).<br />

Thursday, 5 September 13


Field equations for only a single coupled field:<br />

Koivisto et al (2012); CvdB & G. Sculthorpe (2012)<br />

G µ⌫ = apple<br />

⇣<br />

⌘<br />

T µ⌫ ( ) + Tµ⌫<br />

matter<br />

⇤<br />

dV<br />

d<br />

+ Q =0<br />

r µ T µ⌫ = Qr ⌫<br />

with<br />

Q = C ,<br />

2C gµ⌫ T µ⌫ + D ,<br />

2C ,µ ,⌫ T µ⌫ r ⌫<br />

apple D<br />

C ,µ T µ⌫<br />

Thursday, 5 September 13


FRW , conformal time:<br />

¨ +2H ˙ + a<br />

2 dV<br />

d<br />

= a 2 ¯Q<br />

a 2 ¯Q =<br />

⇢<br />

2(C + D(⇢ ˙/a2 ))<br />

apple<br />

a 2 dC<br />

✓<br />

d (1 3w) 2D 3H ˙(1 + w)+a 2 dV<br />

d<br />

+ C ,<br />

C<br />

◆<br />

˙2<br />

+ D ,<br />

˙2<br />

Goal: extend this to multiple<br />

couplings (radiation + matter)<br />

Thursday, 5 September 13


Extension:<br />

¨ +3H ˙ +<br />

dV<br />

d<br />

= X Q i ,<br />

˙⇢ i +3H(⇢ i + p i )= Q i ˙ ,<br />

with<br />

Q i = C0 i<br />

T i + D0 i<br />

, µ , ⌫ T µ⌫<br />

2C i 2C<br />

i<br />

✓ i<br />

◆<br />

Di<br />

r µ ⌫T µ⌫ .<br />

C<br />

i i<br />

Thursday, 5 September 13


FRW spacetime, 2 coupled species:<br />

Q 1 =<br />

A 1 A 2<br />

Q 2 =<br />

A 1 A 2<br />

A 1<br />

A 2<br />

D 1 D 2 ⇢ 1 ⇢ 2<br />

✓<br />

D 1 D 2 ⇢ 1 ⇢ 2<br />

✓<br />

B 1<br />

B 2 D 1 ⇢ 1<br />

A 2<br />

B 2<br />

B 1 D 2 ⇢ 2<br />

A 1<br />

◆<br />

◆<br />

.<br />

B i =<br />

2<br />

⇢3H<br />

✓<br />

+D i 1+ p ◆<br />

i<br />

⇢ i<br />

A i = C i + D i (⇢ ˙2 i ) ,<br />

apple ✓ C<br />

0<br />

i<br />

1+3 p ◆<br />

i D<br />

0<br />

i ˙2<br />

⇢ i 2<br />

˙ + V 0 + C0 i<br />

C i<br />

˙2<br />

⇢ i .<br />

Thursday, 5 September 13


Consider radiation <strong>and</strong> matter coupled.<br />

Goal: study consequences of disformal<br />

couplings on radiation<br />

Relation between energy momentum tensor in different frames:<br />

T µ⌫ =<br />

s<br />

1<br />

˙2<br />

M 4 ˜T µ⌫ ,<br />

p<br />

⇢ = ˜p˜⇢<br />

✓<br />

1<br />

(D i = M 4<br />

i )<br />

leads to<br />

◆<br />

˙2<br />

M 4<br />

.<br />

Equation of state frame dependent!<br />

Thursday, 5 September 13


Another consequence: distribution function is<br />

frame-dependent!<br />

dN = dx 1 dx 2 dx 3 dP 1 dP 2 dP 3 f.<br />

Lower case momenta frame independent for<br />

conformal transformations, but not for disformal<br />

transformations.<br />

Thursday, 5 September 13


The following holds:<br />

✓ ◆<br />

d d˜<br />

dt d f =0.<br />

d˜/d =(1 ˙2 /M 4 ) 1/2<br />

For photons:<br />

˜P µ ˜rµ ˜P ⌫ =0 ⌫ , ˜g µ⌫ ˜P<br />

µ ˜P ⌫ =0,<br />

Liouville operator:<br />

ˆLf = P 0 @f<br />

@t<br />

H ij P i P j M 4 @f<br />

M 4 ˙2 @P 0<br />

=<br />

˙ ¨<br />

M 4 ˙2 P 0 f.<br />

Thursday, 5 September 13


We found the same equation for energy density<br />

as from the action. Consistent kinetic picture!<br />

Can derive equation for photon number density:<br />

ṅ +3Hn =<br />

F˙<br />

2F n, F =(d˜/d ) 2<br />

Specific entropy not constant (Lima et al (2000)):<br />

nT d<br />

= d⇢<br />

⇢ + p<br />

C x = Q ˙ =<br />

n dn ˙ =<br />

F˙<br />

2F n<br />

nT<br />

⇣<br />

@⇢<br />

@T<br />

⌘<br />

n<br />

apple<br />

⇢ + p<br />

nC x<br />

Thursday, 5 September 13


Going back to two species coupled:<br />

Measured speed of light (natural units):<br />

c 2 obs =1<br />

✓ 1<br />

M 4 1<br />

M 4 m<br />

◆✓ d<br />

d⌧ m<br />

◆ 2<br />

written in Einstein frame quantities:<br />

c 2 obs =<br />

1<br />

1<br />

˙ 2<br />

M 4<br />

˙ 2<br />

M 4 m<br />

Thursday, 5 September 13


Distribution function obeys:<br />

✓ ◆<br />

d d˜<br />

dt d f =0.<br />

" #<br />

d˜<br />

Therefore<br />

d f<br />

initial<br />

=<br />

"<br />

#<br />

d˜<br />

d f<br />

final<br />

In our work we assume scalar field is dark energy<br />

(exponential potential), so field rolls only very late.<br />

"<br />

d˜<br />

) f final =<br />

d<br />

# 1<br />

f initial<br />

final<br />

Thursday, 5 September 13


Write final distribution function in the form<br />

1<br />

f final =<br />

(exp(⌫/T + µ) 1)<br />

For small<br />

µ , we find<br />

(see also Brax et al 1306.4168) for similar work)<br />

µ =(c obs 1) (1 e ⌫/T )<br />

Also, define an effective temperature<br />

⇢ J / T 4<br />

(Jordan frame)<br />

Temperature does not obey T / (1 + z)<br />

Thursday, 5 September 13


T(K) / 2.725 K<br />

Temperature evolution:<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0 0.5 1 1.5 2 2.5 3<br />

z<br />

V ( )=V 0 e<br />

Thursday, 5 September 13


Exclusion region:<br />

2<br />

1.5<br />

1<br />

0.5<br />

/ meV)<br />

0<br />

log<br />

10<br />

(M<br />

γ<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

-0.5 0 0.5 1 1.5 2<br />

log (M / meV)<br />

10<br />

m<br />

V ( )=V 0 e<br />

Thursday, 5 September 13


Summary: <strong>Disformal</strong> couplings introduce new<br />

phenomenological signatures, in particular on<br />

radiation. If<br />

M 6= M m<br />

Measured equation of state is not 1/3, speed<br />

of light not constant <strong>and</strong>/or 1.<br />

1+z<br />

CMB temperature is not linear in<br />

in<br />

general.<br />

Spectrum does not stay Planckian if scalar<br />

evolves.<br />

Effects vanish if M<br />

= M m<br />

Thursday, 5 September 13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!