Fundamentals of Fundamentals of Real-Time RT-PCR

Fundamentals of Fundamentals of Real-Time RT-PCR Fundamentals of Fundamentals of Real-Time RT-PCR

biology200.gsu.edu
from biology200.gsu.edu More from this publisher
11.01.2015 Views

Fundamentals of Real-Time RT-PCR David Chappell, PhD Field Applications Scientist

<strong>Fundamentals</strong> <strong>of</strong><br />

<strong>Real</strong>-<strong>Time</strong> <strong>RT</strong>-<strong>PCR</strong><br />

David Chappell, PhD<br />

Field Applications Scientist


<strong>Real</strong>-time <strong>PCR</strong><br />

2 © 2007 Applied Biosystems


Workflow<br />

Sample<br />

prep<br />

<strong>Real</strong>-time<br />

<strong>PCR</strong><br />

Analysis<br />

4 1 2<br />

Assay<br />

3<br />

design<br />

3 © 2007 Applied Biosystems


<strong>PCR</strong><br />

4 © 2007 Applied Biosystems


<strong>PCR</strong> – Geometric amplification <strong>of</strong> target<br />

95 C<br />

15 s<br />

58 C<br />

30 s<br />

72 C<br />

60 s<br />

5 © 2007 Applied Biosystems


<strong>Real</strong>-time <strong>PCR</strong><br />

6 © 2007 Applied Biosystems


World’s First <strong>Real</strong>-<strong>Time</strong> <strong>PCR</strong> Instrument<br />

t<br />

Introduced both<br />

- mechanical innovation<br />

and<br />

- conceptual innovation<br />

1995: ABI PRISM ® 7700<br />

Sequence Detection System<br />

7 © 2007 Applied Biosystems


World’s First <strong>Real</strong>-<strong>Time</strong> <strong>PCR</strong> Instrument<br />

t<br />

Introduced both<br />

- mechanical innovation<br />

and<br />

- conceptual innovation<br />

1995: ABI PRISM ® 7700<br />

Sequence Detection System<br />

8 © 2007 Applied Biosystems


Detection fluorescence in real-time<br />

Optics<br />

Detection<br />

Device<br />

excitation<br />

emission<br />

96 well plate<br />

Detection <strong>of</strong><br />

fluorescence<br />

Optics to excite and<br />

Quantitation<br />

through caps read the plate <strong>of</strong> fluorescence<br />

9 © 2007 Applied Biosystems


<strong>PCR</strong> doubles template each cycle<br />

Fluorescence<br />

(Copy #)<br />

Cycle #<br />

10 © 2007 Applied Biosystems


Finite reagents cause deviation from doubling curve<br />

Fluorescence<br />

(Copy #)<br />

Cycle #<br />

11 © 2007 Applied Biosystems


Finite reagents cause deviation from doubling curve<br />

Exponential phase<br />

(Good)<br />

Non-Exponential phase<br />

(Bad)<br />

Fluorescence<br />

(Copy #)<br />

Cycle #<br />

12 © 2007 Applied Biosystems


Exponential phase easier to see in log view<br />

Copy #<br />

Log<br />

Copy #<br />

Cycle #<br />

13 © 2007 Applied Biosystems


Lower limit <strong>of</strong> detection also easier to see in log phase<br />

Copy #<br />

Bad<br />

Good<br />

Bad<br />

Log<br />

Copy #<br />

Cycle #<br />

14 © 2007 Applied Biosystems


World’s First <strong>Real</strong>-<strong>Time</strong> <strong>PCR</strong> Instrument<br />

t<br />

Introduced both<br />

- mechanical innovation<br />

and<br />

- conceptual innovation<br />

1995: ABI PRISM ® 7700<br />

Sequence Detection System<br />

15 © 2007 Applied Biosystems


Concept <strong>of</strong> Ct<br />

Instead <strong>of</strong> measuring change in fluorescence<br />

at a set cycle number,<br />

escence<br />

og Fluore Lo<br />

0 5 10 15 18 20 22 25 30 35 40<br />

Cycle #<br />

16 © 2007 Applied Biosystems


Concept <strong>of</strong> Ct<br />

Instead <strong>of</strong> measuring change in fluorescence<br />

at a set cycle number,<br />

escence<br />

og Fluore Lo<br />

0 5 10 15 18 20 22 25 30 35 40<br />

Cycle #<br />

17 © 2007 Applied Biosystems


Concept <strong>of</strong> Ct<br />

We measure the number <strong>of</strong> cycles<br />

it takes to reach a set fluorescence threshold (Ct)<br />

escence<br />

og Fluore Lo<br />

0 5 10 15 18 20 22 25 30 35 40<br />

Cycle #<br />

18 © 2007 Applied Biosystems


Thus, real-time <strong>PCR</strong> is superior to regular <strong>PCR</strong> because:<br />

1) The threshold is always set in the exponential phase,<br />

Giving greater accuracy<br />

19 © 2007 Applied Biosystems


Thus, real-time <strong>PCR</strong> is superior to regular <strong>PCR</strong> because:<br />

2)<br />

We are measuring cycle number,<br />

therefore very large dynamic range<br />

20 © 2007 Applied Biosystems


Results are usually given in table form<br />

indicating Ct value<br />

the higher the Ct, the lower the target copy number<br />

21 © 2007 Applied Biosystems


Raw Ct indicates APPROXIMATE copy number<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10,000<br />

1000<br />

100<br />

10<br />

1<br />

0 10 20 30 40<br />

22 © 2007 Applied Biosystems


Because the exact Ct values may change between<br />

users, reagents and labs and therefore only<br />

indicates an approximate copy number,<br />

Ct values are not normally published<br />

However, if we compare Cts from the SAME RUN or<br />

EXPERIMENT, then we can be extremely accurate.<br />

23 © 2007 Applied Biosystems


Quantitative real-time <strong>PCR</strong> analysis measures the<br />

DIFFERENCE in the Cts<br />

Either the difference between Sample Cts and Std Cve Cts (Absolute)<br />

Or, the difference between sample Cts directly (Relative)<br />

Log Fluorescence<br />

0 5 10 15 18 20 22 25 30 35 40<br />

Cycle #<br />

24 © 2007 Applied Biosystems


SYBR ® Green<br />

25 © 2007 Applied Biosystems


Visualization – Fluorescent dyes<br />

Intercalating<br />

agents<br />

Minor<br />

Groove<br />

Binder<br />

Ethidium<br />

Bromide<br />

SYBR<br />

® Green<br />

(10-20 x<br />

more signal)<br />

26 © 2007 Applied Biosystems


Problem with DNA-binding Dyes<br />

Bind non-specifically to any double-stranded DNA<br />

Therefore specificity <strong>of</strong> the amplifications must be checked<br />

27 © 2007 Applied Biosystems


Can detect non-specific amplification i by<br />

performing dissociation curves<br />

scence<br />

Fluores<br />

Cycle number Increasing temperature<br />

28 © 2007 Applied Biosystems


<strong>PCR</strong> reactions with non-specific peaks<br />

should not be used for quantification<br />

Specific amplification Non-specific amplification<br />

(1 peak) (>1 peak)<br />

29 © 2007 Applied Biosystems


Exact position <strong>of</strong> peak affected by:<br />

size <strong>of</strong> fragment<br />

nucleotide composition<br />

ionic environment (ie: [Mg 2+ ])<br />

30 © 2007 Applied Biosystems


Non-specific amplification promoted by high primer<br />

concentration<br />

Optimal primer concentration<br />

Primer concentration too high<br />

31 © 2007 Applied Biosystems


Primer-dimer formation reduced d by minimizing<br />

i i i<br />

primer concentration<br />

Forward Primer<br />

Primer Matrix 25nM 50nM 100nM<br />

rse Prim mer<br />

Reve<br />

25nM<br />

50nM<br />

100nM<br />

25/25 25/50<br />

25/100<br />

50/25<br />

50/50<br />

50/100<br />

100/25 100/50 100/100<br />

32 © 2007 Applied Biosystems


TaqMan ®<br />

33 © 2007 Applied Biosystems


TaqMan ® assays were developed<br />

to address the problem <strong>of</strong> specificity<br />

These assays are also fluorescence-based<br />

34 © 2007 Applied Biosystems


Fluorescence molecules absorb light and emit<br />

light at a longer wavelength (ie lower energy)<br />

Excitation<br />

Emission<br />

FAM<br />

TM<br />

TET TM<br />

JOE TM<br />

VIC ®<br />

HEX TM<br />

CY3 TM<br />

NED TM<br />

TAMRA TM<br />

ROX TM<br />

TEX.R ®<br />

CY5 TM<br />

Note: these are approximations only<br />

35 © 2007 Applied Biosystems


Behavior <strong>of</strong> 1 fluorescent molecule<br />

Molecule 1<br />

1<br />

Molecule 1 absorbs blue and emits green<br />

36 © 2007 Applied Biosystems


Behavior <strong>of</strong> 2 fluorescent molecules<br />

Molecule 1 Molecule 2<br />

1<br />

2<br />

Molecule 1 absorbs blue and emits green<br />

Molecule 2 absorbs yellow and emits red<br />

37 © 2007 Applied Biosystems


Behavior <strong>of</strong> 2 fluorescent molecules l may produce:<br />

FRET (Fluorescent Resonant Energy Transfer)<br />

Molecule 1 Molecule 2<br />

1<br />

2<br />

Quenching<br />

IF:<br />

1) Em <strong>of</strong> molecule 1 = Abs <strong>of</strong> molecule 2<br />

2) The molecules are adjacent<br />

38 © 2007 Applied Biosystems


FRET effect is determined by proximity <strong>of</strong> molecules<br />

1 2<br />

1 2<br />

Quenching<br />

39 © 2007 Applied Biosystems


TaqMan® Assay Uses FRET by attaching fluorescent<br />

molecules to a probe<br />

Reporter dye<br />

Quencher dye<br />

40 © 2007 Applied Biosystems


5’ -Nuclease Activity Digests Probe<br />

Reporter<br />

Fluoresces<br />

41 © 2007 Applied Biosystems


Fluorescent signal is directly proportional to<br />

template amplification<br />

42 © 2007 Applied Biosystems


Advantages <strong>of</strong> TaqMan ® Assays:<br />

1) Fluorescence is specific to target gene<br />

43 © 2007 Applied Biosystems


Advantages <strong>of</strong> TaqMan® Assays:<br />

2) Allows use <strong>of</strong> more than one probe in the same tube<br />

(multiplex)<br />

44 © 2007 Applied Biosystems


Why Multiplex<br />

Increase throughput<br />

Reduce reagent and sample usage<br />

Endo<br />

Endo/Target<br />

Target<br />

45 © 2007 Applied Biosystems


Why Multiplex<br />

Increase throughput<br />

Reduce reagent and sample usage<br />

Endo<br />

Endo/Target<br />

Target<br />

These advantages decrease with increasing number <strong>of</strong> genes in the experiment.<br />

46 © 2007 Applied Biosystems


Why Multiplex<br />

Increase throughput<br />

Reduce reagent and sample usage<br />

Endo<br />

Target<br />

Increase in number<br />

<strong>of</strong> samples = 100%<br />

Endo/Target<br />

These advantages decrease with increasing number <strong>of</strong> genes in the experiment.<br />

Endo<br />

Endo/<br />

/T Target 1<br />

Target 1<br />

Endo/ Target 2<br />

Target 2<br />

Increase in number<br />

Endo/ Target 3<br />

Target 3<br />

Endo/ Target 4<br />

Target 4<br />

<strong>of</strong> samples = 12.5%<br />

Endo/ Target 5<br />

Target 5<br />

Endo/ Target 6<br />

Target 6 Endo/ Target 7<br />

Target 7<br />

Endo/ Target 8<br />

47 © 2007 Applied Biosystems


Why Multiplex<br />

Increase throughput<br />

Reduce reagent and sample usage<br />

Endo<br />

Target<br />

Increase in number<br />

<strong>of</strong> samples = 100%<br />

Endo/Target<br />

Increased precision<br />

Multiplexing with the normalizer should<br />

eliminate sample pipet error in theory.<br />

48 © 2007 Applied Biosystems


Problems with multiplex:<br />

Multiplexing is usually limited by the chemistry<br />

not by the instrument<br />

The extent <strong>of</strong> useful multiplexing is limited by:<br />

• Primer/primer or primer/probe interaction<br />

• Competition for reagents<br />

• Reduced dynamic Range<br />

49 © 2007 Applied Biosystems


FAM TM<br />

Common AB TaqMan ® dyes<br />

Emission wavelength<br />

approximations<br />

only<br />

VIC ®<br />

TAMRA TM<br />

NFQ<br />

Non Fluorescent Quencher<br />

ROX TM 1 2 3 4<br />

Filter<br />

50 © 2007 Applied Biosystems


MGB<br />

51 © 2007 Applied Biosystems


Probing for specific sequence in a pool <strong>of</strong><br />

completely random sequences<br />

52 © 2007 Applied Biosystems


Probing for specific sequence in a pool <strong>of</strong><br />

completely random sequences<br />

Longer probes increase specificity<br />

it<br />

53 © 2007 Applied Biosystems


Probing for specific sequence in a pool <strong>of</strong><br />

similar sequence families<br />

54 © 2007 Applied Biosystems


Probing for specific sequence in a pool <strong>of</strong><br />

similar sequence families<br />

Shorter probes increase selectivity<br />

55 © 2007 Applied Biosystems


“State <strong>of</strong> the Art” MGB Probe<br />

FAM<br />

TM<br />

NFQ<br />

Minor<br />

Groove<br />

Binder<br />

Increases binding affinity for target<br />

Allows for a shorter probe<br />

Primers ~ 20-30bp<br />

regular probes ~30-40bp<br />

MGB probes ~13-22bp<br />

56 © 2007 Applied Biosystems


Short MGB probes allow<br />

robust single nucleotide specificity<br />

ie: SNP assays<br />

A<br />

T<br />

57 © 2007 Applied Biosystems


ROX TM Dye<br />

58 © 2007 Applied Biosystems


Resolution <strong>of</strong> the assay is determined by precision<br />

– how reproducible is the data<br />

This precision is obviously better….<br />

59 © 2007 Applied Biosystems


Resolution <strong>of</strong> the assay is determined by precision<br />

– how reproducible is the data<br />

….than this precision<br />

60 © 2007 Applied Biosystems


Common sources <strong>of</strong> variation <strong>of</strong> light signal<br />

excitation<br />

optics<br />

condensation<br />

cover<br />

bubble<br />

volume<br />

61 © 2007 Applied Biosystems


Variation negated by normalizing to a<br />

Passive Reference dye<br />

62 © 2007 Applied Biosystems


ROX TM is a Passive Reference dye<br />

Greatly improves precision i <strong>of</strong> replicates.<br />

Rn = Normalization = Reporter / Reference<br />

Targ get<br />

X TM<br />

ROX<br />

Targ get<br />

X TM<br />

ROX<br />

Well 1 Well 2<br />

Rn<br />

R n<br />

Well 1 Well 2<br />

63 © 2007 Applied Biosystems


ROXTM<br />

TM Passive Reference increases precision<br />

36 Replicates analyzed without ROXTM<br />

dye<br />

64 © 2007 Applied Biosystems<br />

36 Replicates analyzed with ROXTM<br />

dye


Multicomponenting<br />

65 © 2007 Applied Biosystems


Filters are assigned to particular dyes<br />

1 Filter<br />

2 Filter<br />

Dye<br />

VIC<br />

Dye<br />

FAM<br />

3<br />

ROX<br />

TM<br />

Filter<br />

Dye<br />

66 © 2007 Applied Biosystems


However, if more than one dye is present, there<br />

is spectral overlap<br />

1 2 3<br />

Filter<br />

Dye<br />

FAM VIC ROX TM Total FL<br />

If not addressed, this would introduce large<br />

inaccuracies<br />

67 © 2007 Applied Biosystems


Quantitative multicomponenting<br />

During installation, a plate <strong>of</strong> pure dyes is read and the spectra recorded<br />

1) During the run, the fluorescence is read through ALL filters<br />

This produces a data file with ALL spectral data<br />

2) When the data file is analyzed, the appropriate dyes are chosen<br />

Multicomponenting algorithm determines<br />

individual dye fluorescence<br />

68 © 2007 Applied Biosystems


Multicomponent View<br />

This is not the fluorescence through each filter, but the<br />

calculated specific fluorescence <strong>of</strong> each dye<br />

69 © 2007 Applied Biosystems


Advantages <strong>of</strong> Multicomponenting<br />

1) Accurate determination <strong>of</strong> individual dye fluorescence<br />

2) If an error is made in dye designation, the data is still<br />

stored and error may be corrected<br />

3) Not reliant on dye-specific filters sets - If using a new<br />

dye, measure pure dye spectrum<br />

70 © 2007 Applied Biosystems


Applied Biosystems<br />

<strong>Real</strong>-time <strong>PCR</strong><br />

Instruments<br />

71 © 2007 Applied Biosystems


Applied Biosystems <strong>Real</strong>-<strong>Time</strong> <strong>PCR</strong> Instruments<br />

Filters<br />

Step<br />

HP<br />

Em 2 100 !l tubes<br />

10-30!l<br />

One TM LED 1 3<br />

48 fast 10-30!l<br />

Hal. Filters<br />

200 !l tubes<br />

Lamp Ex 3<br />

7300 1 2Em<br />

4<br />

1<br />

96 well<br />

25-100!l<br />

Step<br />

One<br />

Filters 100 !l tubes<br />

10-30!l<br />

3<br />

HP<br />

2Em<br />

4<br />

Plus TM LED 1 96 fast 10-30!l<br />

Hal.<br />

Lamp<br />

2 3 4<br />

Filters<br />

2 3 4<br />

7500 1 Ex Em<br />

5 1 5<br />

200 !l tubes<br />

96 well<br />

25-100!l<br />

96 fast 10-30!l<br />

Argon laser<br />

96 well 25-100!l<br />

7900 96 fast<br />

Scan Head<br />

10-30!l<br />

384 well 5-20!l<br />

Interchangeable TaqMan® TM Low<br />

72 © 20071-2!l<br />

blocks<br />

Density Arrays<br />

Applied Biosystems


Trademarks<br />

For Research Use Only. Not for use in diagnostic procedures.<br />

The patented t 5’ Nuclease Process and the dsDNA Binding-dye d Process are<br />

covered by patents owned by or licensed to Applera Corporation. For further<br />

information, contact the Director <strong>of</strong> Licensing, Applied Biosystems, 850 Lincoln<br />

Centre Drive, Foster City, California 94404, USA.<br />

Applera,Applied Biosystems, AB (Design), ABI PRISM, GeneAmp, and VIC are<br />

registered trademarks and FAM, HEX, JOE, NED, ROX, StepOne, TAMRA, TET,<br />

VeriFlex, and Veriti are trademarks <strong>of</strong> Applera Corporation or its subsidiaries in the<br />

US and/or certain other countries.<br />

TaqMan® is a registered trademark <strong>of</strong> Roche Molecular Systems, Inc.<br />

SYBR® (R) and Texas Red are registered trademarks <strong>of</strong> Molecular Probes, Inc.<br />

CY is a trademark <strong>of</strong> GE Healthcare<br />

©2007 Applied Biosystems. All rights reserved.<br />

73 © 2007 Applied Biosystems


Ct – measured where curve crosses threshold<br />

Rn<br />

Rn<br />

Noise<br />

Baseline<br />

Ct<br />

Threshold<br />

Rn<br />

Rn<br />

Threshold<br />

Noise<br />

Baseline<br />

Ct<br />

74 © 2007 Applied Biosystems


Applied Biosystems StepOne TM Optics<br />

HP LED<br />

mirror<br />

2<br />

excitation<br />

lens<br />

emission<br />

1<br />

3<br />

Emission<br />

filters<br />

CCD<br />

48 well plate<br />

75 © 2007 Applied Biosystems


Applied Biosystems StepOnePlus TM Optics<br />

HP LED<br />

mirror<br />

2 3<br />

excitation<br />

lens<br />

emission<br />

1<br />

4<br />

Emission<br />

filters<br />

CCD<br />

96 well plate<br />

76 © 2007 Applied Biosystems


Applied Biosystems 7300 Optics<br />

tungsten lamp<br />

Excitation<br />

filter<br />

mirror<br />

excitation<br />

lens<br />

emission<br />

2 3<br />

1<br />

4<br />

Emission<br />

filter wheel<br />

CCD<br />

96 well plate<br />

77 © 2007 Applied Biosystems


Applied Biosystems 7500 Optics<br />

tungsten lamp<br />

2 3 4<br />

1 5<br />

Excitation<br />

filter wheel<br />

mirror<br />

2 3 4<br />

lens 1 5<br />

excitation<br />

emission<br />

Emission<br />

filter wheel<br />

CCD<br />

96 well plate<br />

78 © 2007 Applied Biosystems


excitation<br />

emission<br />

Applied Biosystems 7900 Optics<br />

Argon<br />

laser<br />

Scan<br />

Head<br />

Spectro<br />

graph<br />

CCD<br />

79 © 2007 Applied Biosystems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!