11.01.2015 Views

Ellipsometry

Ellipsometry

Ellipsometry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(1)<br />

<strong>Ellipsometry</strong><br />

(how to measure the dielectric constant ~<br />

directly and very accurately)<br />

Setup:<br />

ellipt.<br />

pol. light<br />

<br />

E <br />

lin. pol. light<br />

E s<br />

A<br />

nˆ<br />

E p<br />

P<br />

monochromator or<br />

interferometer<br />

analyzer<br />

<br />

detector: measures I ~ E<br />

2<br />

polarizer<br />

light<br />

source<br />

<br />

ip<br />

E E e , E e<br />

p<br />

is<br />

s<br />

<br />

coordinate system defined by plane of incidence of light<br />

2<br />

E <br />

p<br />

tan <br />

2<br />

<br />

i<br />

E <br />

tan e<br />

, : ellipsometric angles<br />

s<br />

<br />

p<br />

<br />

<br />

~<br />

<br />

~<br />

, , <br />

s<br />

1 i 2 <br />

<br />

measure the change of the polarization state of light upon non-normal incidence<br />

reflection on surface of a sample<br />

obtain the complex dielectric function ~<br />

Reflection of polarized light<br />

<br />

ikr i<br />

t<br />

plane wave : E E0e<br />

<br />

k E<br />

B <br />

k<br />

Dispersion relation<br />

n<br />

<br />

k <br />

c<br />

<br />

n<br />

magn. permeability 1 (non-magn. medium)<br />

= dielectric function


z<br />

<br />

k <br />

(2)<br />

'<br />

n,<br />

<br />

n <br />

<br />

''<br />

k <br />

nˆ<br />

<br />

k <br />

boundary condition at z = 0<br />

the same spatial and temporal evolution of the el. field on both sides<br />

equal phase factors<br />

<br />

n <br />

k<br />

r<br />

z<br />

0<br />

k<br />

r<br />

z<br />

0<br />

k<br />

r<br />

z<br />

0<br />

<br />

(projection of k , k and k on x-y plane)<br />

all the wave vectors must lie in the same plane<br />

k sin<br />

ksin<br />

k sin<br />

since k k <br />

and<br />

sin<br />

k<br />

n<br />

<br />

sin<br />

k n<br />

Snell' s law<br />

dynamical aspects from boundary conditions for Maxwell equations<br />

(see previous lectures)<br />

<br />

tang. comp. of E and H are continuous<br />

<br />

normal components of D and B are continuous<br />

<br />

<br />

<br />

<br />

E E<br />

<br />

0 0 <br />

<br />

<br />

E<br />

<br />

0 nˆ<br />

0<br />

<br />

<br />

<br />

<br />

k E0<br />

k E0<br />

k E <br />

0 nˆ<br />

0<br />

<br />

<br />

<br />

<br />

E0<br />

E0<br />

E <br />

0 nˆ<br />

0<br />

<br />

<br />

<br />

<br />

<br />

(1) D<br />

(2) B<br />

k<br />

E0<br />

k E0<br />

<br />

<br />

<br />

<br />

<br />

k E<br />

<br />

0 <br />

nˆ<br />

0 (4) Ht<br />

n<br />

(3) E<br />

t<br />

n<br />

<br />

D E<br />

<br />

B H<br />

n ˆ<br />

<br />

<br />

unit vector,<br />

ˆ1 <br />

nˆ<br />

nˆ<br />

1


(3)<br />

s-component: perpendicular (senkrecht) to plane of incidence<br />

B<br />

<br />

<br />

E<br />

'<br />

n<br />

n<br />

B <br />

<br />

E <br />

<br />

nˆ<br />

’'<br />

<br />

E <br />

<br />

B <br />

<br />

E<br />

s<br />

nˆ<br />

(1),(2) are satisfied<br />

(3) E E <br />

E<br />

<br />

0<br />

s s s<br />

<br />

<br />

(4) n E E <br />

cos<br />

nE<br />

<br />

cos0<br />

s s s<br />

with ncos n cos n n sin n<br />

n<br />

sin<br />

2 2 2 2 2 2 2 2<br />

<br />

Snell's law<br />

<br />

Es<br />

2n<br />

cos<br />

<br />

E<br />

2 2 2<br />

s n cos<br />

n<br />

n<br />

sin <br />

<br />

2 2 2<br />

E n cos<br />

n<br />

n<br />

sin <br />

s<br />

<br />

E<br />

2 2 2<br />

s n cos<br />

n<br />

n<br />

sin <br />

Fresnel equations for s -pol. light


(4)<br />

p-component: parallel to plane of incidence<br />

<br />

E <br />

p<br />

<br />

<br />

B<br />

‘<br />

n<br />

n<br />

E <br />

p<br />

<br />

B <br />

’'<br />

nˆ<br />

<br />

B <br />

<br />

<br />

E p<br />

(1)<br />

(2)<br />

cos<br />

E p E<br />

<br />

p <br />

cos<br />

E<br />

<br />

n E p E p nE<br />

<br />

<br />

<br />

<br />

<br />

p 0<br />

<br />

p<br />

<br />

0<br />

(E<br />

t<br />

)<br />

(B )<br />

t<br />

E<br />

E<br />

<br />

p<br />

p<br />

<br />

n<br />

2<br />

2n<br />

ncos<br />

cos<br />

n<br />

n<br />

2<br />

n<br />

2<br />

sin<br />

E<br />

E<br />

<br />

p<br />

p<br />

n<br />

<br />

n<br />

2<br />

2<br />

cos<br />

n<br />

cos<br />

n<br />

n<br />

n<br />

2<br />

2<br />

n<br />

n<br />

2<br />

2<br />

sin<br />

sin<br />

2<br />

2<br />

<br />

<br />

Fresnel equations for<br />

p -pol. light


(5)<br />

Brewster-angle:<br />

2 2 2<br />

for ncos<br />

<br />

B<br />

n n n<br />

sin B<br />

0<br />

n<br />

Ep<br />

0<br />

at this angle the refl. wave has no p-component<br />

purely s-polarized one can make so - called Brewster -polarizers)<br />

n<br />

<br />

B<br />

arctan <br />

n <br />

n 1.5 (glass) B<br />

56.3<br />

n<br />

the larger n the closer is to 90<br />

B<br />

total internal reflection:<br />

n<br />

sin<br />

for n n<br />

<br />

n sin<br />

<br />

90<br />

if<br />

<br />

<br />

<br />

B<br />

n<br />

<br />

arcsin<br />

<br />

n <br />

refracted wave propagates along the interface<br />

no energy transport across interface; total internal reflection.


(6)<br />

Glas / amb.<br />

r s , r p 1<br />

n 1.5<br />

n<br />

~ r<br />

s,<br />

p<br />

r<br />

s,<br />

p<br />

e<br />

i s,<br />

p<br />

Es<br />

rs<br />

<br />

E<br />

s<br />

r s<br />

r<br />

p<br />

<br />

E<br />

E<br />

p<br />

p<br />

r p<br />

0<br />

45° 90°<br />

B<br />

<br />

s<br />

p<br />

reflected wave<br />

0<br />

Reflectance<br />

1<br />

E <br />

R <br />

2<br />

2<br />

E<br />

R s<br />

R s<br />

R P


define complex reflection coeff.<br />

2 2 2<br />

rp<br />

n sin tan n<br />

n<br />

sin <br />

<br />

<br />

r 2 2 2<br />

s n sin tan n<br />

n<br />

sin <br />

(7)<br />

take<br />

n 1, n<br />

2<br />

2<br />

2 1<br />

<br />

2 2<br />

<br />

sin tan sin<br />

<br />

1<br />

<br />

<br />

It is important to note that <br />

and <br />

are complex quantities<br />

<br />

i<br />

1 2<br />

Rp<br />

e<br />

<br />

1i<br />

2<br />

<br />

R e<br />

Rp<br />

i( ps)<br />

e<br />

<br />

R<br />

s<br />

s<br />

i<br />

p<br />

i<br />

s<br />

relative attenuation<br />

relative phase shift<br />

R<br />

R<br />

<br />

p<br />

s<br />

p<br />

tan <br />

<br />

s<br />

<br />

and <br />

ellipsometric angles<br />

<br />

<br />

1<br />

2<br />

sin<br />

<br />

~<br />

<br />

<br />

2<br />

<br />

<br />

<br />

2cos<br />

<br />

,<br />

<br />

<br />

2<br />

2<br />

2<br />

cos 2<br />

sin 2sin<br />

<br />

1<br />

2<br />

1<br />

sin2cos<br />

2<br />

2 2<br />

2sin<br />

2sin<br />

sin tan <br />

2<br />

1<br />

sin2cos<br />

<br />

, <br />

<br />

tan<br />

2<br />

<br />

<br />

<br />

How do we measure and :<br />

ellipt.<br />

pol. light<br />

<br />

E<br />

E p<br />

E s<br />

P<br />

FTIR<br />

nˆ<br />

A<br />

analyzer<br />

Ee<br />

E <br />

Ee<br />

i<br />

p<br />

p<br />

i<br />

s<br />

s


(8)<br />

We want to know<br />

I<br />

E<br />

2<br />

det<br />

as a function of<br />

A and P<br />

det ~ <br />

Jones matrix formalism :<br />

Polarizer<br />

1 0 <br />

change of coordinate system<br />

cos<br />

P sin P 1 0 cos<br />

P sin P <br />

<br />

<br />

<br />

0 0<br />

sin<br />

P cos P<br />

0 0<br />

sin P cos P<br />

sample<br />

r<br />

~<br />

p 0<br />

<br />

0<br />

~ rs<br />

<br />

cos<br />

A sin A1 0 cos<br />

A sin A<br />

r<br />

~<br />

p 0<br />

cos<br />

P sin P 1 0 cos<br />

P sin P <br />

E <br />

<br />

<br />

det<br />

<br />

<br />

<br />

sin<br />

A cos A<br />

<br />

0 0<br />

<br />

sin<br />

A cos A<br />

<br />

0<br />

r~<br />

s<br />

sin<br />

P cos P<br />

<br />

0 0<br />

<br />

<br />

sin P cos P<br />

<br />

analyzer<br />

sample<br />

polarizer<br />

<br />

E<br />

det<br />

<br />

<br />

~ r<br />

<br />

<br />

p<br />

cos P cos A ~ rs<br />

sin P sin A Ex<br />

<br />

<br />

0<br />

<br />

<br />

<br />

I<br />

det<br />

~<br />

~ 1<br />

E<br />

2<br />

det<br />

~ 2 2 2<br />

cos P sin P<br />

~ 2 2 2<br />

cos P sin P<br />

<br />

<br />

<br />

<br />

cos 2A<br />

<br />

<br />

Re<br />

~ sin2P<br />

~ 2 2 2<br />

cos P sin P<br />

<br />

<br />

<br />

<br />

sin 2A<br />

<br />

I<br />

I 0<br />

modulation of intensity as a function of<br />

Analyzer angle get , as second<br />

Fourier coefficient<br />

<br />

~<br />

tan cos<br />

i sin<br />

~ 2 2<br />

tan ;<br />

Re<br />

tan<br />

<br />

tan<br />

cos<br />

2<br />

2<br />

2<br />

cos<br />

2<br />

2<br />

<br />

<br />

~<br />

<br />

cos P sin P<br />

P<br />

P sin<br />

2<br />

2<br />

tan cos <br />

P<br />

2 2<br />

1tan<br />

sin P1<br />

<br />

<br />

<br />

2·A<br />

<br />

1<br />

tan <br />

1<br />

tan P<br />

analogous :<br />

cos <br />

<br />

1<br />

2


(9)<br />

modulation of I<br />

det<br />

A <br />

, tan<br />

,cos<br />

. Only cos is measured, not .<br />

<br />

<br />

2nd Fourier<br />

coefficients<br />

ambiguity with respect to shift by can be determined with retarder unit, i.e.<br />

introduce in addition to the sample a unit which leads to a known plane shift.<br />

Examples for applications<br />

1. Au + Semiconductors critical points in band structure<br />

2. Oxidation of a semiconductor surface thin film characterization<br />

3. Electrochemistry and biological systems. Radiation damage in solids<br />

4. High-T c -Superconductors

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!