10.01.2015 Views

The Virgo Cluster as a Node in Larger Structure Brent Tully

The Virgo Cluster as a Node in Larger Structure Brent Tully

The Virgo Cluster as a Node in Larger Structure Brent Tully

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outl<strong>in</strong>e<br />

• Observational methods<br />

• Magnetic fields <strong>in</strong> spirals<br />

• Connection of magnetic fields and SF activity<br />

• Magnetism of dwarfs and irregular galaxies<br />

• Magnetic field evolution <strong>in</strong> merg<strong>in</strong>g galaxies<br />

• Conclusions and outlook<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

In collaboration with Ra<strong>in</strong>er Beck, Dom<strong>in</strong>ik Bomans, Robert Drzazga, George<br />

Heald, Wojciech Jurusik, LOFAR MKSP team


Magnetic field components<br />

Before (Beck 1996):<br />

B 2 total = B 2 regular + B 2 random<br />

(uniform)<br />

(turbulent)<br />

Now (Beck 2012):<br />

compression, shear (anisotr. turb.)<br />

B 2 total = B 2 coherent + B 2 anisotropic + B 2 random<br />

(regular)<br />

RM ∫ n e B coh║ dl<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

B 2 total = B 2 ordered + B 2 random<br />

I synchr<br />

PI B ord ┴<br />

Mean: 9μG 2 –5μG (Beck 2005)


New posibility – RM Synthesis<br />

More – George Heald’s talk<br />

Presents polarized <strong>in</strong>tensity <strong>as</strong> a function of Faraday depth<br />

Faraday depth:<br />

Only for Faraday screen =RM<br />

Multichannel radio observations of polarized signal are required<br />

– spectro-polarimetry<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Burn 1966, <strong>Brent</strong>jens & de Bruyn 2005, Heald et al. 2009<br />

(application for SINGS galaxies), etc.


Other methods - examples<br />

SMC - optical starlight polarization<br />

M82 – <strong>in</strong>frared polarized emission<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

to LMC<br />

Starlight pol. B ┴ =1.6 G<br />

RM Bc ║ =-0.16 G<br />

Pan-Magellanic field()<br />

Mao et al. 2008, 2012<br />

Central radial field (superw<strong>in</strong>d)<br />

and superbubbles<br />

Greaves et al. 2000<br />

More from ALMA!


B structure <strong>in</strong> spirals<br />

• Regular (coherent) field - “mean-field” dynamo<br />

review: Beck 1996, 2012, Widrow 2002; MHD simul.: Gressel et al.<br />

2008, Han<strong>as</strong>z et al. 2009, Moss et al. 2012<br />

• Random field – small-scale (turbul.) dynamo e.g. Brandenburg and<br />

Ferrière 2006<br />

• Large-scale dynamo modes:<br />

Disk (top view)<br />

Halo (weaker) (side view)<br />

ASS<br />

BSS<br />

even (sym)<br />

(quadrupolar )<br />

odd (antisym)<br />

(dipolar)<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

• Dynamo modes of regular fields can be identified from the pattern of<br />

polarization angles and of RMs


B structure <strong>in</strong> spirals – M 51<br />

Spiral fields more or less parallel to<br />

the optical spiral arms<br />

PI VLA+Eff 6cm<br />

B-vectors+HST<br />

Fletcher et al. 2010<br />

RM 3-6cm<br />

B tot =20μG<br />

B ord =10μG<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

A large part (around 75%) of the strong polarised signal comes from<br />

anisotropic random magnetic fields! (compression <strong>in</strong> spiral density waves)


M51 model of regular field topology<br />

Fletcher et al. 2010<br />

axisymmetric<br />

bisymmetric<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

• Different dynamo modes <strong>in</strong> disk (ASS) and halo (BSS)<br />

• Field reversal between northern disk and <strong>in</strong>ner halo


NGC 253<br />

Nearly edge-on galaxy (78deg)<br />

Vertical field - an X-shaped pattern<br />

(common among edge-ons)<br />

Halo field compressed by expand<strong>in</strong>g g<strong>as</strong><br />

PI 6cm VLA+EFF + X, disk subtracted, Heesen et al. 2009<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012


NGC 4254<br />

B and ISM<br />

<strong>Virgo</strong> cluster<br />

spiral, weakly<br />

disturbed<br />

VLA+EFF<br />

4.86 GHz<br />

(6.3cm)<br />

B tot =16μG<br />

B ord =7μG<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Chyży, Ehle & Beck 2007, A&A, 474, 415


Vir A<br />

1.2 Mpc<br />

NGC 4254<br />

PI 4.86 GHz


Magnetic field<br />

components - SFR<br />

B tot ΣSFR 0.180.01<br />

<strong>The</strong> radio-IR correlation is due to the<br />

turbulent field<br />

B ord<br />

B ran ΣSFR 0.260.01


Similar relations NGC 6946<br />

Tabatabaei et al. (2012 subm.)<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

<strong>The</strong> orig<strong>in</strong> of the ordered magnetic field can be<br />

l<strong>in</strong>ked to the dynamo effect on galactic scales (e.g.<br />

Beck et al. 1990, 1996) and is not correlated with<br />

SFR (e.g. Chyży 2008; Krause 2009; Fletcher et al.<br />

2011).<br />

More: Marita Krause talk


Are dwarf galaxies different<br />

IC10, m<strong>as</strong>sive<br />

starburst, local equivalent of BCG<br />

Unlike spirals small dwarf<br />

irregulars have no spiral fields<br />

Weak fields: mean B≤4μG<br />

IC10 – B tot ~10μG<br />

exceptionally strong<br />

IC10 - only small-scale<br />

dynamo<br />

Dwarfs follow radio-FIR<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

0.2 kpc<br />

________<br />

VLA 4.6 GHz + Halpha, Chyzy et al. 2005<br />

Can they magnetize IGM<br />

How far out do the magnetic<br />

fields extend <br />

(Kronberg et al. 1999, 2001,<br />

2006, Bertone et al. 2006,<br />

Donnert et al. 2009, Samui et<br />

al. 2009)


Synchrotron envelopes<br />

IC10 – VLA observations<br />

VLA 21cm, Chyzy <strong>in</strong> prep<br />

6cm, EVLA, Heesen et al. 2012<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Can LOFAR or WSRT detect larger<br />

synchrotron envelope at lower frequencies<br />

Soon: RM Synthesis at 330 MHz WSRT


NGC 2976<br />

● Dynamically simple, bulgeless<br />

● Pure-disk object (Simon et al. 2003)<br />

● Disk - 6kpc<br />

● low HI m<strong>as</strong>s (1.5 10^8 Ms)<br />

● In the periphery of M81/M82 group<br />

Large-scale dynamo<br />

Optical<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Chynoweth 2008<br />

HI


PI + B-vectors<br />

RM Synthesis WSRT 1.5 GHz<br />

VLA 1.43 GHz<br />

Drzazga et al. reanalysis of WSRT data (Heald et al. 2009)<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

●<br />

●<br />

Both methods give similar results<br />

magnetic fields escap<strong>in</strong>g <strong>in</strong>to <strong>in</strong>tergalactic space,<br />

far away from the group centre<br />

Drzazga et al. <strong>in</strong> prep.


NGC 2976<br />

Faraday depth<br />

(RM)<br />

<strong>The</strong> same <strong>as</strong> for the Milky<br />

Way (Faraday screen)<br />

RM = -36 rad/m 2<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

• No thermal electrons<br />

• No regular (large-scale dynamo) field <strong>in</strong> the halo<br />

(no large-scale dynamo – below dynamo threhshold, strong anisotropic<br />

fields!)


Contrary c<strong>as</strong>e M81<br />

First (prelim<strong>in</strong>ary)<br />

RM Synthesis at 330 MHz WSRT<br />

rms close to confusion limit <strong>in</strong> TP<br />

Drzazga et al. <strong>in</strong> prep.<br />

M81<br />

• Only the Milky Way is visible<br />

• No polarised emission from M81<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

• Can we observe polarized emission<br />

from external galaxies at such long<br />

wavelengths


How magnetic fields evolve <strong>in</strong> merg<strong>in</strong>g galaxies<br />

<strong>The</strong> Toomre sequence + Br<strong>as</strong>s<strong>in</strong>gton et al. 2007<br />

+ object available from VLA archive<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

In total 24 galaxies (16 <strong>in</strong>teract<strong>in</strong>g systems)<br />

Drzazga, Chyży, Jurusik , Wiórkiewicz 2011


<strong>The</strong> Taffy and <strong>The</strong> Taffy2<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Radio bridges discovered by Condon et al. 2002<br />

In the bridge: Btot = 16μG, Breg = 10μG<br />

Nearly head-on collision<br />

occurred about 10^7 years<br />

ago <strong>in</strong> the Taffy and 5x10^7<br />

years ago <strong>in</strong> the Taffy2


<strong>The</strong> radio (6cm) – FIR(60μm) correlation<br />

<strong>The</strong> slope for the normal<br />

galaxy sample is 0.98<br />

+/- 0.04.<br />

Tidal <strong>in</strong>teraction does<br />

not alter the correlation<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012


Evolution of magnetic fields <strong>in</strong> <strong>in</strong>teract<strong>in</strong>g<br />

galaxies<br />

• Major enhancement of<br />

SF and magnetic energy<br />

occurs at the stage of<br />

nuclear coalescence.<br />

• After that the process of<br />

generation of magnetic<br />

fields is term<strong>in</strong>ated.<br />

• Agreement with the<br />

evolution of the SFE<br />

(Georgakakis et al. 2000)<br />

• <strong>The</strong> strongest evolution<br />

is observed for nuclear<br />

regions<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

How magnetic fields evolve across the Hubble time


Conclusions and outlook<br />

M51 – well def<strong>in</strong>ed spiral fields but a large part is anisotropic. Different structures<br />

of the toroidal field <strong>in</strong> the disk and <strong>in</strong>ner halo.<br />

How important are anisotropic fields <strong>in</strong> galaxies<br />

Edge-on galaxy NGC253 shows X-shaped structure <strong>in</strong> halo.<br />

What is the orig<strong>in</strong> of X-shaped fields<br />

Dwarf galaxies show weak magnetic fields (≤4μG), without spiral patterns, show<br />

similar B-ΣSFR correlation <strong>as</strong> observed across NGC4254 and NGC6946.<br />

IC10 - dwarf with a large radio envelope.<br />

What is the full extent of synchrotron halo of galaxies<br />

NGC2976 - magnetized outflows at the periphery of M81/M82 group.<br />

At 330 MHz Milky Way is very bright.<br />

Are galaxies completely depolarized at long wavelengths<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Magnetic fields evolve <strong>in</strong> merg<strong>in</strong>g galaxies: 3x stronger fields at the coalescence.<br />

How magnetic fields evolve across the Hubble time


Waller et al. 2001<br />

R<strong>in</strong>ged<br />

galaxy<br />

NGC 4736<br />

Early type Sab<br />

opt<br />

R<strong>in</strong>ged morphology – <strong>in</strong>ner<br />

L<strong>in</strong>dblad resonance of the<br />

galactic oval (accumulation of<br />

g<strong>as</strong> trigger star formation)<br />

No dist<strong>in</strong>ct spiral arms<br />

Magnetic fields<br />

UV


NGC 4736<br />

radio contours at 8.5 GHz (VLA+EFF)<br />

<strong>in</strong>frared 24 m – colors (SPITZER)<br />

8”x8” (200pc x 200pc)


Polarized <strong>in</strong>tensity 8.5 GHz<br />

+ B (of PP) + Hα image<br />

NGC 4736<br />

B tot 30 G<br />

B reg 13 G<br />

rms=6μJy<br />

MF are<br />

cross<strong>in</strong>g the<br />

r<strong>in</strong>g!<br />

Srong action<br />

of the largescale<br />

dynamo<br />

Pitch angle<br />

35 o<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Chyży and Buta 2008, ApJLetters, 677, 17


<strong>The</strong> radio (11cm)<br />

– FIR(60μm)<br />

correlation<br />

(dwarfs<br />

and spiral galaxies)<br />

Low-m<strong>as</strong>s dwarf<br />

galaxies follow a<br />

trend determ<strong>in</strong>ed<br />

for high surface<br />

brightness spirals<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012


Dwarfs of the Local Group<br />

• Weak fields: mean B≤4μG<br />

IC10 – 10μG exceptionally strong<br />

• B correlates ma<strong>in</strong>ly with ΣSFR or Σρ<br />

B ΣSFR 0.280.04<br />

K. Chyży<br />

GA IAU<br />

Beij<strong>in</strong>g<br />

22.08.2012<br />

Effelsberg 2.6, 4.8 GHz, Chyży et al. 2011<br />

4,0<br />

Low-m<strong>as</strong>s dwarf<br />

galaxies follow a<br />

trend determ<strong>in</strong>ed for<br />

high surface<br />

brightness spirals:<br />

similar physical<br />

conditions for star<br />

formation,<br />

magnetic field, and<br />

cosmic-ray generation<br />

processes <strong>as</strong><br />

the m<strong>as</strong>sive spirals


What LOFAR can see<br />

NGC4631, WSRT 327 MHz map by<br />

Hummel & Dettmar 1990<br />

NGC 4631 LOFAR 131-162MHz -77SBs,<br />

51’’ x 37’’, levs 3.3mJy x (3,6,9,15,20, 30)<br />

Wojciech Jurusik, LOFAR MKSP team<br />

Very soon sufficient sensitivity!<br />

1.4 GHz, VLA, Krause & Beck 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!