Projections

Projections Projections

rcg.gvc.gu.se
from rcg.gvc.gu.se More from this publisher
10.01.2015 Views

Map Projections • Geodesy - the shape of the earth and definition of earth datums • Map Projection - the transformation of a curved earth to a flat map • Coordinate systems - (x,y) coordinate systems for map data Geodesy

Map <strong>Projections</strong><br />

• Geodesy - the shape of the earth and definition<br />

of earth datums<br />

• Map Projection - the transformation of a curved<br />

earth to a flat map<br />

• Coordinate systems - (x,y) coordinate systems<br />

for map data<br />

Geodesy


Geodesy<br />

• Determination the Earth’s size (geometry), shape<br />

(gravity) and figure (surface).<br />

• Determination of the Earth’s motions (in space: polar<br />

motion, variations in rotation rate), its deformations (e.g.,<br />

plate tectonic motion, plate boundary deformation,<br />

volcanoes, land subsidence), and gravity variations.<br />

• Definition and maintenance of terrestrial reference<br />

frames (datums) for precise 3D positioning, thus<br />

providing the backbone for mapping, surveying, and GIS.<br />

Geodesy


Triangulation from Dunkirk to Barcelona<br />

Jean Baptiste Delambre measured<br />

the stations between Dunkirk and<br />

Rodez, France. The southern segment,<br />

from Rodez to Barcelona, was measured<br />

by Pierre Méchain. They began the<br />

project in 1792.<br />

Geodesy


Spherical Earth<br />

• Authalic Sphere<br />

• Basic figure for mapping<br />

• Radius = 6371 km<br />

• Meridians from pole to<br />

pole<br />

• Equator and small circles<br />

perpendicular to the<br />

meridians<br />

• Geographic grid of<br />

meridians and small<br />

circles<br />

Geodesy


Prime meridian – Greenwich from 1884<br />

Geodesy


Latitude and Longitude on a Sphere<br />

Greenwich<br />

meridian<br />

λ=0°<br />

Z<br />

N<br />

Meridian of longitude<br />

Parallel of latitude<br />

X<br />

W<br />

λ=0-180°W<br />

O ϕ<br />

•<br />

λ<br />

•<br />

Equator =0°<br />

ϕ<br />

R<br />

P<br />

•<br />

λ=0-180°E<br />

ϕ=0-90°S<br />

ϕ=0-90°N<br />

E<br />

•<br />

λ - Geographic longitude<br />

ϕ - Geographic latitude<br />

Y<br />

R - Mean earth radius<br />

O - Geocenter<br />

Geodesy


Spherical Earth Approximation<br />

Z = Pole of Rotation<br />

Y: Right-handed<br />

X = Greenwich Meridian<br />

Geodesy


What kind of ellipsoid<br />

• Cassini's report to the Academy, that the length of a degree seemed to<br />

get shorter towards the pole, generated an intense controversy<br />

between French and English scientists and resulting in arc<br />

measurement expeditions to Lapland (1736/37, average latitude 66°<br />

20’) and Peru/Ecuador (1739-1743, (average latitude 1° 31' S).<br />

Oblate<br />

Prolate<br />

Geodesy


French triangulation<br />

in Lapland<br />

1736<br />

Geodesy


Ellipsoid or Spheroid<br />

Rotate an ellipse around an axis<br />

The earth is flattened slightly<br />

at the poles and bulges<br />

somewhat at the equator<br />

a<br />

Z<br />

b<br />

O<br />

a<br />

Y<br />

X<br />

Rotational axis<br />

Geodesy


Definition of Latitude, φ<br />

m<br />

S<br />

p<br />

O<br />

q<br />

φ<br />

r<br />

n<br />

(1) Take a point S on the surface of the ellipsoid and define<br />

there the tangent plane, mn<br />

(2) Define the line pq through S and normal to the<br />

tangent plane<br />

(3) Angle pqr which this line makes with the equatorial<br />

plane is the latitude φ, of point S<br />

Geodesy


Geoid – Figure of the Earth<br />

CM<br />

CE<br />

By the early 19th century,<br />

scientists like Laplace (1802),<br />

Gauss (1828), Bessel (1837)<br />

recognized that the assumption of<br />

an ellipsoidal earth model was<br />

untenable under sufficiently high<br />

observational accuracy. One<br />

could no longer ignore the<br />

deviation of the physical plumb<br />

line, to which measurements refer,<br />

from the ellipsoidal normal.<br />

Geodesy


Different ellipsoids for different areas<br />

on the globe<br />

Geodesy


Standard Ellipsoids<br />

Ellipsoid<br />

Airy<br />

(1830)<br />

Clarke<br />

(1866)<br />

WGS 84<br />

(1984)<br />

Major Minor Flattening<br />

axis, a (m) axis, b (m) ratio, f<br />

6377,563 6356,257 1/299,32<br />

6,378,206 6,356,584 1/294.98<br />

6,378,137 6,356,752 1/298.57<br />

Ref: Snyder, Map <strong>Projections</strong>, A working manual, USGS<br />

Professional Paper 1395, p.12<br />

Geodesy


Position shifts from datum differences<br />

Geodesy


What is a Projection<br />

• If you could project light from a source through the<br />

earth's surface onto a two-dimensional surface, you<br />

could then trace the shapes of the surface features<br />

onto the two-dimensional surface.<br />

• This two-dimensional surface would be the basis for<br />

your map.<br />

Geodesy


<strong>Projections</strong> always distort the map<br />

Sides of different lenght<br />

Rectangular<br />

form<br />

Geodesy


Map projections<br />

• The characteristics normally considered in choosing a<br />

map projection are as follows:<br />

1. Area - equal-area<br />

area 2. Shape – conformal<br />

3. Scale – one or more lines on the map along which the<br />

scale remains true<br />

4. Direction – conformal, azimuthal<br />

5. Special – gnomonic 6. Method of construction<br />

Geodesy


Earth to Globe to Map<br />

Map Scale:<br />

Representative Fraction<br />

=<br />

Globe distance<br />

Earth distance<br />

(e.g. 1:50,000)<br />

Geodesy<br />

=<br />

Map Projection:<br />

Scale Factor<br />

Map distance<br />

Globe distance<br />

(e.g. 0.9996)


Types of <strong>Projections</strong><br />

• Conic (Albers Equal Area, Lambert<br />

Conformal Conic) - good for East-West<br />

land areas<br />

• Cylindrical (Transverse Mercator) - good<br />

for North-South land areas<br />

• Azimuthal (Lambert Azimuthal Equal Area)<br />

- good for global views<br />

Geodesy


Conic <strong>Projections</strong><br />

(Albers, Lambert)<br />

Geodesy


Cylindrical <strong>Projections</strong><br />

(Mercator)<br />

Normal<br />

Transverse<br />

Oblique<br />

Geodesy


Azimuthal<br />

(Lambert)<br />

Geodesy


Projection onto a Flat Surface<br />

Geodesy


Lambert equal-area projection<br />

Geodesy


Conic equal-area projection<br />

Geodesy


Mercator (Normal cylindric)<br />

Conformal<br />

Geodesy


Great circle navigation<br />

Geodesy


Mollweide<br />

Equal-area<br />

Geodesy


Geodesy


South America<br />

Geodesy


Types of Coordinate Systems<br />

• (1) Global Cartesian coordinates (X,Y,Z)<br />

for the whole earth<br />

• (2) Geographic coordinates (φ,(<br />

λ, z)<br />

• (3) Projected coordinates (x, y, z) on a<br />

local area of the earth’s s surface<br />

• The z-coordinate z<br />

in (1) and (3) is<br />

defined geometrically; ; in (2) the z-z<br />

coordinate is defined gravitationally<br />

Geodesy


Global Cartesian Coordinates<br />

Greenwich<br />

Meridian<br />

(X,Y,Z)<br />

Z<br />

O<br />

•<br />

Y<br />

X<br />

Equator<br />

Geodesy


Geographic Coordinates (φ, λ, z)<br />

• Latitude (φ)(<br />

) and Longitude (λ)(<br />

) defined<br />

using an ellipsoid, , an ellipse rotated about<br />

an axis<br />

• Elevation (z) defined using geoid, , a<br />

surface of constant gravitational potential<br />

• Earth datums define standard values of<br />

the ellipsoid and geoid<br />

Geodesy


Coordinate System<br />

A planar coordinate system is defined by a pair<br />

of orthogonal (x,y) axes drawn through an origin<br />

Y<br />

Origin<br />

X<br />

(φ o ,λ o )<br />

(x o ,y o )<br />

Geodesy


Cartesian Coordinate System<br />

Planar coordinate systems are based on<br />

Cartesian coordinates.<br />

Geodesy


Any projected data that you add to ArcMap, , or that<br />

you project within ArcMap, , is associated with a<br />

projected coordinate system (PCS) in addition to its<br />

underlying Geographic Coordinate System (GCS).<br />

Geodesy


Universal Transverse Mercator<br />

(UTM)<br />

A comprehensive system for identifying locations and making<br />

measurements over most of the earth's surface.<br />

• Divide the world into sixty vertical strips, each spanning<br />

six degrees of longitude. Apply a custom Transverse<br />

Mercator projection to each strip and use false eastings<br />

and northings to make all projected coordinates positive.<br />

• Data that crosses zones is subject to distortion.<br />

Geodesy


UTM-zones<br />

Geodesy


UTM-zones<br />

Sweden lies in 6<br />

zones<br />

Geodesy


Geodesy


Geodesy


UPS – (Universal Polar Stereographic grid)<br />

Geodesy


ArcGIS Reference Frames<br />

• Defined for a feature<br />

dataset in<br />

ArcCatalog<br />

• Coordinate System<br />

• Projected<br />

• Geographic<br />

• X/Y Domain<br />

• Z Domain<br />

Geodesy


Coordinate Systems<br />

• Geographic<br />

coordinates (decimal<br />

degrees)<br />

• Projected coordinates<br />

(length units, ft or<br />

meters)<br />

Geodesy


Geodesy


Datum Transformations<br />

7-parameter transformation<br />

NAD27 to NAD 83<br />

Geodetic tools available at:<br />

http://www.ngs.noaa.gov/TOOLS/<br />

Geodesy


Summary Concepts<br />

• Two basic locational systems: geometric<br />

or Cartesian (x, y, z) and geographic or<br />

gravitational (φ,(<br />

λ, z)<br />

• Mean sea level surface or geoid is<br />

approximated by an ellipsoid to define an<br />

earth datum which gives (φ,(<br />

λ) and<br />

distance above geoid gives (z)<br />

Geodesy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!