Floods of combined origin - rainfall and snow melt - in Romanian ...

Floods of combined origin - rainfall and snow melt - in Romanian ... Floods of combined origin - rainfall and snow melt - in Romanian ...

gassner.pia59
from gassner.pia59 More from this publisher
08.01.2015 Views

ERB and Northern European FRIEND Project 5 Conference, Demänovská dolina, Slovakia, 2002 Floods of combined origin - rainfall and snow melt - in Romanian small catchments Pompiliu Mita 1 , Marinela Simota 1 , Valentina Ungureanu 1 In Romania the rainfall and snow melt originated floods (mixed floods) frequently occur, in the mountainous rivers. There are years when water content of the snow cover on the river basins is over the 500-600 mm. During the snowmelt periods, usually in the springtime, when high amounts of rain superpose on the snowmelt process, intense floods occur. In the article, based on the analysis of the floods brought about by rainfall, snowmelt and combinative action of these ones, recorded in the Iedut and Fintina Galbena mountainous representative basins located in the western part of Romania, some results concerning the main characteristics of these floods (depth of runoff, runoff coefficient, and peak discharge) are presented. The assessment of the characteristics of the floods of rainfall-snowmelt origin is a more complex operation than that to determining these ones for the rainfall or snowmelt originated floods, separately considered. The cause of it is the combinative and complex action of the snowmelt and rainfall upon the surface runoff (discharges and volumes) at the river outlet. It is very difficult to precise the portion of the rainfall or snowmelt contribution in the surface runoff, especially for short time intervals. The rainfall intensifies the snowmelt process by changing the snow pack metamorphism and by its heat flux. In the same time, the rain suffers a delay and attenuation within the snow layer. However the both sources – rain and snowmelt – contribute to the values of discharges and volumes of runoff. The analysis of the characteristics of the rainfall-snowmelt-originated floods is made by comparing the same elements obtained in the case when only rainfall or only snowmelt produced the flood. The relationships between the characteristics of flood wave – peak discharge, Q max (m 3 /s), depth of runoff, h s (mm) and runoff coefficient, α – and the triggering factors that generate the flood (rainfall amount, water resulted from snowmelt, air temperature, soil moisture index) have been obtained for Iedut representative basin, separately in case of the floods of rainfall and snowmelt origin. Relationships for the floods of rain origin The form of the relationships for rainfall flood origin is (Mita, Corbus, 2000): h s = f(X, API 10 ) α = f(X, API 10 ) Q max = f(i N , T N , x) where: X (mm) is the rainfall amount; API 10 (mm) is the soil moisture index calculated from the rainfall during 10 days previously the flood occurrence; i N (mm/min) and T N (minutes) are intensity and time interval of the rainfall core; x (mm) is the rain amount between the beginning of the rain and the beginning of the rain core, depending on the soil moisture index. 1 National Institute of Meteorology and Hydrology – Bucharest, Romania

ERB <strong>and</strong> Northern European FRIEND Project 5 Conference, Demänovská dol<strong>in</strong>a, Slovakia, 2002<br />

<strong>Floods</strong> <strong>of</strong> <strong>comb<strong>in</strong>ed</strong> <strong>orig<strong>in</strong></strong> - <strong>ra<strong>in</strong>fall</strong> <strong>and</strong> <strong>snow</strong> <strong>melt</strong> - <strong>in</strong> <strong>Romanian</strong><br />

small catchments<br />

Pompiliu Mita 1 , Mar<strong>in</strong>ela Simota 1 , Valent<strong>in</strong>a Ungureanu 1<br />

In Romania the <strong>ra<strong>in</strong>fall</strong> <strong>and</strong> <strong>snow</strong> <strong>melt</strong> <strong>orig<strong>in</strong></strong>ated floods (mixed floods) frequently<br />

occur, <strong>in</strong> the mounta<strong>in</strong>ous rivers. There are years when water content <strong>of</strong> the <strong>snow</strong> cover<br />

on the river bas<strong>in</strong>s is over the 500-600 mm. Dur<strong>in</strong>g the <strong>snow</strong><strong>melt</strong> periods, usually <strong>in</strong> the<br />

spr<strong>in</strong>gtime, when high amounts <strong>of</strong> ra<strong>in</strong> superpose on the <strong>snow</strong><strong>melt</strong> process, <strong>in</strong>tense<br />

floods occur.<br />

In the article, based on the analysis <strong>of</strong> the floods brought about by <strong>ra<strong>in</strong>fall</strong>, <strong>snow</strong><strong>melt</strong><br />

<strong>and</strong> comb<strong>in</strong>ative action <strong>of</strong> these ones, recorded <strong>in</strong> the Iedut <strong>and</strong> F<strong>in</strong>t<strong>in</strong>a Galbena<br />

mounta<strong>in</strong>ous representative bas<strong>in</strong>s located <strong>in</strong> the western part <strong>of</strong> Romania, some results<br />

concern<strong>in</strong>g the ma<strong>in</strong> characteristics <strong>of</strong> these floods (depth <strong>of</strong> run<strong>of</strong>f, run<strong>of</strong>f coefficient,<br />

<strong>and</strong> peak discharge) are presented. The assessment <strong>of</strong> the characteristics <strong>of</strong> the floods <strong>of</strong><br />

<strong>ra<strong>in</strong>fall</strong>-<strong>snow</strong><strong>melt</strong> <strong>orig<strong>in</strong></strong> is a more complex operation than that to determ<strong>in</strong><strong>in</strong>g these<br />

ones for the <strong>ra<strong>in</strong>fall</strong> or <strong>snow</strong><strong>melt</strong> <strong>orig<strong>in</strong></strong>ated floods, separately considered. The cause <strong>of</strong><br />

it is the comb<strong>in</strong>ative <strong>and</strong> complex action <strong>of</strong> the <strong>snow</strong><strong>melt</strong> <strong>and</strong> <strong>ra<strong>in</strong>fall</strong> upon the surface<br />

run<strong>of</strong>f (discharges <strong>and</strong> volumes) at the river outlet. It is very difficult to precise the<br />

portion <strong>of</strong> the <strong>ra<strong>in</strong>fall</strong> or <strong>snow</strong><strong>melt</strong> contribution <strong>in</strong> the surface run<strong>of</strong>f, especially for<br />

short time <strong>in</strong>tervals. The <strong>ra<strong>in</strong>fall</strong> <strong>in</strong>tensifies the <strong>snow</strong><strong>melt</strong> process by chang<strong>in</strong>g the <strong>snow</strong><br />

pack metamorphism <strong>and</strong> by its heat flux. In the same time, the ra<strong>in</strong> suffers a delay <strong>and</strong><br />

attenuation with<strong>in</strong> the <strong>snow</strong> layer. However the both sources – ra<strong>in</strong> <strong>and</strong> <strong>snow</strong><strong>melt</strong> –<br />

contribute to the values <strong>of</strong> discharges <strong>and</strong> volumes <strong>of</strong> run<strong>of</strong>f.<br />

The analysis <strong>of</strong> the characteristics <strong>of</strong> the <strong>ra<strong>in</strong>fall</strong>-<strong>snow</strong><strong>melt</strong>-<strong>orig<strong>in</strong></strong>ated floods is made by<br />

compar<strong>in</strong>g the same elements obta<strong>in</strong>ed <strong>in</strong> the case when only <strong>ra<strong>in</strong>fall</strong> or only <strong>snow</strong><strong>melt</strong><br />

produced the flood.<br />

The relationships between the characteristics <strong>of</strong> flood wave – peak discharge, Q max<br />

(m 3 /s), depth <strong>of</strong> run<strong>of</strong>f, h s (mm) <strong>and</strong> run<strong>of</strong>f coefficient, α – <strong>and</strong> the trigger<strong>in</strong>g factors<br />

that generate the flood (<strong>ra<strong>in</strong>fall</strong> amount, water resulted from <strong>snow</strong><strong>melt</strong>, air temperature,<br />

soil moisture <strong>in</strong>dex) have been obta<strong>in</strong>ed for Iedut representative bas<strong>in</strong>, separately <strong>in</strong><br />

case <strong>of</strong> the floods <strong>of</strong> <strong>ra<strong>in</strong>fall</strong> <strong>and</strong> <strong>snow</strong><strong>melt</strong> <strong>orig<strong>in</strong></strong>.<br />

Relationships for the floods <strong>of</strong> ra<strong>in</strong> <strong>orig<strong>in</strong></strong><br />

The form <strong>of</strong> the relationships for <strong>ra<strong>in</strong>fall</strong> flood <strong>orig<strong>in</strong></strong> is (Mita, Corbus, 2000):<br />

h s = f(X, API 10 )<br />

α = f(X, API 10 )<br />

Q max = f(i N , T N , x)<br />

where: X (mm) is the <strong>ra<strong>in</strong>fall</strong> amount; API 10 (mm) is the soil moisture <strong>in</strong>dex calculated<br />

from the <strong>ra<strong>in</strong>fall</strong> dur<strong>in</strong>g 10 days previously the flood occurrence; i N (mm/m<strong>in</strong>) <strong>and</strong> T N<br />

(m<strong>in</strong>utes) are <strong>in</strong>tensity <strong>and</strong> time <strong>in</strong>terval <strong>of</strong> the <strong>ra<strong>in</strong>fall</strong> core; x (mm) is the ra<strong>in</strong> amount<br />

between the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the ra<strong>in</strong> <strong>and</strong> the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the ra<strong>in</strong> core, depend<strong>in</strong>g on the<br />

soil moisture <strong>in</strong>dex.<br />

1 National Institute <strong>of</strong> Meteorology <strong>and</strong> Hydrology – Bucharest, Romania


ERB <strong>and</strong> Northern European FRIEND Project 5 Conference, Demänovská dol<strong>in</strong>a, Slovakia, 2002<br />

Relationships for the floods <strong>of</strong> <strong>snow</strong><strong>melt</strong> <strong>orig<strong>in</strong></strong><br />

The form <strong>of</strong> the relationships for <strong>snow</strong><strong>melt</strong> flood <strong>orig<strong>in</strong></strong> is (Mita <strong>and</strong> all, 1999):<br />

h sz =f(h z ,h za )<br />

α= f(h z ,h za )<br />

Q max =f(i hz , T max , h za )<br />

where: h sz (mm) is the depth <strong>of</strong> run<strong>of</strong>f from <strong>snow</strong><strong>melt</strong>; h z (mm) – water yield<strong>in</strong>g by<br />

<strong>snow</strong><strong>melt</strong> dur<strong>in</strong>g a certa<strong>in</strong> time <strong>in</strong>terval; h za (mm) - the soil moisture <strong>in</strong>dex calculated<br />

from the water yielded by <strong>snow</strong><strong>melt</strong> dur<strong>in</strong>g 10 days previously the flood occurrence; i hz<br />

(mm/hour) – <strong>in</strong>tensity <strong>of</strong> the water yield<strong>in</strong>g by <strong>snow</strong><strong>melt</strong>, T max ( o C) – daily maximum<br />

air temperature.<br />

The relationships for h sz <strong>and</strong> α are carried out both for the daily variation <strong>and</strong> for the<br />

entire <strong>snow</strong><strong>melt</strong> season.<br />

The estimation <strong>of</strong> the evolution <strong>of</strong> the water equivalent <strong>of</strong> the <strong>snow</strong> pack, E az (cm),<br />

correspond<strong>in</strong>g to entire bas<strong>in</strong> area, was obta<strong>in</strong>ed us<strong>in</strong>g the measurements from the<br />

po<strong>in</strong>ts <strong>of</strong> the <strong>snow</strong> courses (5 days frequency) <strong>and</strong> from <strong>snow</strong> plots (daily frequency).<br />

The daily water yield<strong>in</strong>g by <strong>snow</strong><strong>melt</strong>, h z (mm), was calculated extract<strong>in</strong>g the <strong>snow</strong><br />

water equivalent value for a given day from its correspond<strong>in</strong>g value for the previously<br />

day.<br />

The analysis <strong>of</strong> the ra<strong>in</strong>-<strong>snow</strong><strong>melt</strong> events <strong>in</strong> Iedut representative bas<strong>in</strong><br />

As it is mentioned before, an important amount <strong>of</strong> ra<strong>in</strong> fall<strong>in</strong>g upon an exist<strong>in</strong>g <strong>snow</strong><br />

pack amplifies the surface run<strong>of</strong>f.<br />

The daily discharge variation hav<strong>in</strong>g a form <strong>of</strong> successive waves result<strong>in</strong>g from<br />

<strong>snow</strong><strong>melt</strong> <strong>and</strong> ra<strong>in</strong> dur<strong>in</strong>g the April 1980 at the Iedut representative bas<strong>in</strong> are<br />

represented <strong>in</strong> Figure 1. In this figure can observe that the daily variation <strong>of</strong> the surface<br />

run<strong>of</strong>f from <strong>snow</strong><strong>melt</strong> is slower than that provoked by the comb<strong>in</strong>ative action <strong>of</strong> ra<strong>in</strong><br />

<strong>and</strong> <strong>snow</strong><strong>melt</strong> <strong>and</strong> it follows with a some delay the evolution <strong>of</strong> the air temperature that<br />

is the ma<strong>in</strong> cause <strong>of</strong> the <strong>snow</strong><strong>melt</strong>. The discharges commence to <strong>in</strong>crease daily at 8 or 9<br />

hour with a delay after the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the ris<strong>in</strong>g <strong>of</strong> the air temperature. The maximum<br />

discharge is recorded at 18 or 19 hour <strong>and</strong> after that, the discharges beg<strong>in</strong> to decrease to<br />

the m<strong>in</strong>imum values around 8 or 9 hour <strong>in</strong> the next day.<br />

When an <strong>in</strong>tense <strong>ra<strong>in</strong>fall</strong> occurs, the daily discharge hydrograph <strong>of</strong> the surface run<strong>of</strong>f<br />

from <strong>snow</strong><strong>melt</strong> substantially changes <strong>and</strong> the surface run<strong>of</strong>f is amplified. This can be<br />

observed <strong>in</strong> the Figure 1 between 19 <strong>and</strong> 23 April. For this time <strong>in</strong>terval the<br />

characteristics <strong>of</strong> the surface run<strong>of</strong>f from <strong>snow</strong><strong>melt</strong> have been calculated us<strong>in</strong>g the<br />

above-presented relationships.<br />

The flood wave dur<strong>in</strong>g 19 – 21 April was generated by a <strong>ra<strong>in</strong>fall</strong> <strong>of</strong> 30 mm <strong>and</strong> by<br />

<strong>snow</strong><strong>melt</strong> water yield<strong>in</strong>g <strong>of</strong> 9.9 mm. A flood wave that have been resulted only from a<br />

ra<strong>in</strong> <strong>of</strong> 30 mm <strong>and</strong> under the condition <strong>of</strong> the soil moisture <strong>in</strong>dex (API 10 ) <strong>of</strong> 60 - 70 mm<br />

would have a depth <strong>of</strong> run<strong>of</strong>f (h s ) <strong>of</strong> 9.5 mm <strong>and</strong> a run<strong>of</strong>f coefficient (α) <strong>of</strong> 0.32.<br />

A flood wave that have been resulted only from a <strong>snow</strong><strong>melt</strong> water yield<strong>in</strong>g <strong>of</strong> 9.9 mm<br />

<strong>and</strong> the same condition <strong>of</strong> the soil moisture, h za = 60 - 70 mm, would have a depth <strong>of</strong><br />

run<strong>of</strong>f ( hzs ) <strong>of</strong> 1.7 mm <strong>and</strong> a run<strong>of</strong>f coefficient (α) <strong>of</strong> 0.17. An overall depth <strong>of</strong> run<strong>of</strong>f <strong>of</strong><br />

11.2 mm have result from a simple addition <strong>of</strong> the both depths <strong>of</strong> run<strong>of</strong>f <strong>and</strong> a run<strong>of</strong>f


ERB <strong>and</strong> Northern European FRIEND Project 5 Conference, Demänovská dol<strong>in</strong>a, Slovakia, 2002<br />

coefficient <strong>of</strong> 0.28, that is less than the recorded depth <strong>of</strong> run<strong>of</strong>f <strong>of</strong> 12.8 mm <strong>and</strong> real<br />

run<strong>of</strong>f coefficient <strong>of</strong> 0.32. These comparative values prove the role <strong>of</strong> the ra<strong>in</strong> to<br />

<strong>in</strong>tensify the <strong>snow</strong><strong>melt</strong> processes.<br />

Q (m3/s)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

-70<br />

Temperature ( o C), Ra<strong>in</strong> (mm), Water equivalent (cm)<br />

0<br />

14 Apr 80 15 Apr<br />

80<br />

16 Apr<br />

80<br />

17 Apr<br />

80<br />

18 Apr<br />

80<br />

19 Apr<br />

80<br />

20 Apr<br />

80<br />

21 Apr<br />

80<br />

22 Apr<br />

80<br />

23 Apr<br />

80<br />

-80<br />

ra<strong>in</strong> Q <strong>snow</strong><strong>melt</strong> Q ra<strong>in</strong>+<strong>snow</strong><strong>melt</strong> temperature water equivalent<br />

Fig. 1. The evolution <strong>of</strong> run<strong>of</strong>f, air temperature, precipitation <strong>and</strong> <strong>snow</strong> water equivalent<br />

<strong>in</strong> the Iedut representative bas<strong>in</strong> dur<strong>in</strong>g a <strong>snow</strong><strong>melt</strong> period<br />

(14-23 April 1980).<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

Q (m 3 /s)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0<br />

120<br />

240<br />

360<br />

480<br />

600<br />

720<br />

840<br />

960<br />

1080<br />

1200<br />

1320<br />

1440<br />

1560<br />

1680<br />

1800<br />

1920<br />

2040<br />

2160<br />

time (m<strong>in</strong>untes)<br />

ra<strong>in</strong> ra<strong>in</strong>+<strong>snow</strong><strong>melt</strong> <strong>snow</strong><strong>melt</strong><br />

Fig 2. Flood waves - only from ra<strong>in</strong>, only from <strong>snow</strong><strong>melt</strong> <strong>and</strong> comb<strong>in</strong>ation <strong>of</strong> ra<strong>in</strong> with<br />

<strong>snow</strong><strong>melt</strong> dur<strong>in</strong>g 19 – 21 April 1980.<br />

Analys<strong>in</strong>g comparatively the peak discharge values (figure 2) <strong>of</strong> the three categories <strong>of</strong><br />

flood waves - only from ra<strong>in</strong> (Q max = 1.52 m 3 /s), only from <strong>snow</strong><strong>melt</strong> (Q max = 0.1 m 3 /s)


ERB <strong>and</strong> Northern European FRIEND Project 5 Conference, Demänovská dol<strong>in</strong>a, Slovakia, 2002<br />

<strong>and</strong> comb<strong>in</strong>ation <strong>of</strong> ra<strong>in</strong> with <strong>snow</strong><strong>melt</strong> (Q max = 0.56 m 3 /s) - can observed that contrary<br />

to the depths <strong>of</strong> run<strong>of</strong>f correspond<strong>in</strong>g to the three cases, the peak discharge resulted only<br />

from ra<strong>in</strong> is bigger than that resulted from <strong>ra<strong>in</strong>fall</strong> superposed on the <strong>snow</strong><strong>melt</strong> or only<br />

from the <strong>snow</strong><strong>melt</strong>. The explanation is the delay <strong>and</strong> the attenuation <strong>of</strong> the ra<strong>in</strong> with<strong>in</strong><br />

the <strong>snow</strong> layer.<br />

Based on the analyses <strong>of</strong> recorded surface run<strong>of</strong>f resulted from <strong>comb<strong>in</strong>ed</strong> action <strong>of</strong> ra<strong>in</strong><br />

<strong>and</strong> <strong>snow</strong><strong>melt</strong>, <strong>in</strong> the Iedut representative bas<strong>in</strong>, the relationships between the flood<br />

wave characteristics (Q max , h s <strong>and</strong> α) <strong>and</strong> the generat<strong>in</strong>g factors (ra<strong>in</strong> <strong>and</strong> <strong>snow</strong><strong>melt</strong><br />

<strong>in</strong>tensity, air temperature <strong>and</strong> soil moisture <strong>in</strong>dex) will be achieved. Such relationships<br />

obta<strong>in</strong>ed for small bas<strong>in</strong>s can be used for the maximum discharge <strong>and</strong> run<strong>of</strong>f volume<br />

forecasts <strong>and</strong> the small bas<strong>in</strong>s can be considered the “warn<strong>in</strong>g” bas<strong>in</strong>s for the larger<br />

bas<strong>in</strong>s (Diaconu, Stanescu, 1978).<br />

References<br />

Diaconu, C., Stanescu, V. Al., (1976) A mathematical model for flood wave forecast<strong>in</strong>g<br />

by means <strong>of</strong> warn<strong>in</strong>g bas<strong>in</strong>s. Hydrological Sciences Bullet<strong>in</strong>, XXI, No. 3,<br />

Bucharest, Romania<br />

Mita, P., Simota, M., Stancalie, G., Popovici, F., Catana, S., (1999) Some results<br />

regard<strong>in</strong>g the dim<strong>in</strong>ish<strong>in</strong>g role <strong>of</strong> the forest <strong>in</strong> sediment run<strong>of</strong>f for <strong>snow</strong><strong>melt</strong> –<br />

generate floods, Proceed<strong>in</strong>gs <strong>of</strong> the Symposium: Vegetation, L<strong>and</strong> Use <strong>and</strong> Erosion<br />

Processes, Bucharest, Romania<br />

Mita, P., Corbus. C., 2000 A model for determ<strong>in</strong><strong>in</strong>g flood waves <strong>in</strong> small bas<strong>in</strong>s up to<br />

100 km 2 , Proceed<strong>in</strong>gs <strong>of</strong> the Liblice Conference: Catchment hydrological <strong>and</strong><br />

biochemical processes <strong>in</strong> the chang<strong>in</strong>g environment, sept. 1998, Czech Republic

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!