08.01.2015 Views

adms aermod calpuff

adms aermod calpuff

adms aermod calpuff

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Comparison of Air Dispersion Models<br />

including ADMS, AERMOD and<br />

CALPUFF<br />

by<br />

Dr David Carruthers<br />

ADMS User Group Meeting<br />

Vilnius 19 January 2010


Well Known Dispersion Models<br />

Short range dispersion model s (upto 50km)<br />

ADMS (ADMS4 Industrial, Roads, Urban, Airports)<br />

AERMOD, ISC, OML, AUSTAL – Industrial releases<br />

CALINE – Road sources<br />

OSPM – Street canyons<br />

AirViro – Urban air quality<br />

Medium range dispersion models<br />

CALPUFF - Regional haze


Comparison of ADMS, AERMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

APPLICATIONS<br />

Applications<br />

Up to 50km from<br />

sources; local and urban<br />

scale.<br />

Up to 50km from<br />

sources.<br />

Local and Regional Pollution<br />

Impacts.<br />

SOURCE TYPES<br />

Source types<br />

Point, line (including<br />

road, rail), area, volume,<br />

grid, jet.<br />

Point, line, volume and<br />

area sources.<br />

Point, line, volume, area<br />

METEOROLOGY<br />

Meteorology<br />

DISPERSION<br />

Boundary layer<br />

structure<br />

ADMS<br />

Pre-processor<br />

AERMET<br />

Pre-processor<br />

CALMET<br />

Pre-processor<br />

h, L MO<br />

scaling h, L MO<br />

scaling h, L MO<br />

scaling<br />

Plume rise Advanced integral model Briggs empirical<br />

expressions<br />

Concentration<br />

distribution<br />

Advanced Gaussian<br />

plume and puff model<br />

Advanced Gaussian<br />

plume model<br />

Briggs empirical expressions<br />

Non-steady Gaussian puff<br />

model


Comparison of ADMS, AERMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

COMPLEX EFFECTS<br />

Buildings<br />

Complex terrain<br />

Deposition (wet and<br />

dry)<br />

Chemistry<br />

Based on flow model with<br />

near and main building<br />

wakes.<br />

Based on calculation of<br />

flow field and turbulence<br />

filed by FLOWSTAR<br />

model.<br />

Uses PRIME buildings<br />

model.<br />

Interpolation between<br />

neutral flow approximate<br />

solution and stable flow<br />

impaction solution.<br />

Based on ISC building<br />

model.<br />

Effects of complex flow<br />

input via meteorological<br />

fields.<br />

YES YES YES<br />

GRS (Generic Reaction<br />

Scheme) 8 reaction<br />

scheme for NO x<br />

chemistry, parameterised<br />

sulphate chemistry.<br />

Ozone limiting model,<br />

assumes maximum<br />

conversion of NO to NO 2<br />

.<br />

NO x<br />

and SO 2<br />

chemistry<br />

for particle generation.


Comparison of ADMS, ARMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

OTHER OPTIONS<br />

Street canyon model YES NO NO<br />

Emissions system EMIT system NO NO<br />

Short term fluctuations<br />

for odours, explosions<br />

etc<br />

Visibility Model<br />

Radioactive decay<br />

model<br />

YES NO YES<br />

Condensed plume<br />

visibility<br />

NO<br />

Visibility Impairment<br />

(haze/smog)<br />

YES; includes γ-dose NO NO<br />

Puff Model YES NO Puff release default<br />

Coastline YES NO YES<br />

Input of vertical<br />

profiles of met data<br />

VALIDATION<br />

YES YES Uses meteorological fields.<br />

Extensive – industrial<br />

point sources, area<br />

sources, road sources,<br />

urban areas, airports.<br />

Extensive – industrial<br />

point sources, area<br />

sources.<br />

Validation of<br />

meteorological f ields,<br />

concentrations and<br />

visibility impacts.


Flat Terrain Validation I<br />

Major study – 24 Field and Wind Tunnel Experiments<br />

Summary Scores for ISC3, ADMS and AERMOD<br />

(Different model input parameters)<br />

Table 1<br />

ISC3 ADMS AERMOD<br />

Best 5 19 6<br />

Middle 2 5 11<br />

Worst 17 0 7<br />

Table 2<br />

ISC3 ADMS AERMOD<br />

Best 4 8 10<br />

Middle 10 15 11<br />

Worst 10 1 3<br />

Table 1 from Hanna et al, 6 th Workshop on Harmonisation, France Oct 1999<br />

Table 2 from Hanna et al, AWMA Meeting, US, June 2000


Flat terrain II Kincaid power plant<br />

• Site – flat farmland with some lakes (z 0 = 10<br />

cm)<br />

• Met – 171 hours, neutral to convective<br />

• Release – 187-m stack, SF 6<br />

• Results – ns/m 3 (normalised by emission rate,<br />

quality 3 data)<br />

Data Mean σ Bias<br />

NMS<br />

E<br />

Corr Fac 2<br />

Observations 54.3 40.3 0.0 0.0 1.00 1.00<br />

ADMS 4 48.5 31.5 5.9 0.6 0.45 0.68<br />

AERMOD ’03 21.8 21.8 32.6 2.1 0.40 0.29


Flat terrain III – Kincaid power plant<br />

• Scatter plots (ns/m 3 )<br />

350<br />

ADMS 4<br />

350<br />

AERMOD<br />

300<br />

300<br />

250<br />

250<br />

modelled<br />

200<br />

150<br />

AERMOD3<br />

200<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300 350<br />

observed<br />

0<br />

0 50 100 150 200 250 300 350<br />

Observed


Flat terrain IV– Kincaid power<br />

plant<br />

• Quantile-quantile plots (ns/m 3 )<br />

350<br />

ADMS 4<br />

350<br />

AERMOD<br />

300<br />

300<br />

250<br />

250<br />

modelled<br />

200<br />

150<br />

AERMOD<br />

200<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300 350<br />

observed<br />

0<br />

0 50 100 150 200 250 300 350<br />

Observed


Flat Terrain V - CALPUFF and ISC: Kincaid<br />

Q-Q plot for CALPUFF and ISCST3 (quality 3 data)


Flat Terrain VI - Prairie Grass<br />

Prairie Grass: scatter plot of concentrations<br />

ADMS 4.1<br />

Prairie Grass: scatter plot of concentrations<br />

AERMOD 02222<br />

Prairie Grass: scatter plot of concentrations<br />

ISCST2 93109<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed


Flat Terrain VII - Prairie Grass<br />

Prairie Grass: q-q plot of concentrations<br />

ADMS 4.1<br />

Prairie Grass: q-q of concentrations<br />

AERMOD 02222<br />

Prairie Grass: q-q of concentrations<br />

ISCST2 93109<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed


Flat Terrain VIII Power Plant Comparison: H = 200 m; Exit velocity = 22 m/s<br />

ADMS<br />

ADMS Met/AERMOD Dispersion<br />

Mean<br />

Conc.<br />

100th<br />

percentile


Flat Terrain IX Comparing ADMS and ADMS/AERMOD (converter 1)<br />

Long term runs: Maximum normalised concentration (µg/m 3 /(g/s))


Building<br />

Effects I<br />

• Two plume<br />

approach


Building Effects II: ADMS,<br />

AERMOD and ISC<br />

• PRIME model used in AERMOD (and ISC) is<br />

similar in approach to the ADMS buildings<br />

model.<br />

• Differences between ADMS buildings module<br />

and PRIME<br />

ADMS<br />

Box model for source in cavity<br />

Main wake velocity field: wake<br />

dimension, velocity and turbulence<br />

fields from wall-wake theory<br />

Main wake has 6 zone dispersion<br />

model<br />

Model applied at all downstream<br />

distances<br />

PRIME<br />

Modified Gaussian for source in cavity<br />

Main wake velocity field: wake<br />

dimension from experiment, velocity<br />

and turbulence fields from free-wake<br />

theory<br />

Main wake as 2 zone dispersion model<br />

Virtual source model applied far<br />

downstream


Building Effects III<br />

Robins & Castro Experiment<br />

K<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Maximum ground-level concentration as a function of source height<br />

θ=0° and Ws/Ue=3.1<br />

Experimental ADMS 4.0 ADMS 4.1 ISC-Prime<br />

0.00<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Zs/l


Building Effects IV<br />

Robins & Castro Statistics


Building Effects V<br />

Snyder Experiment<br />

Scatter plot of normalised concentrations<br />

ADMS 4.1<br />

Scatter plot of normalised concentrations<br />

ISC-Prime<br />

ADMS y=x y=2x y=x/2<br />

ISC-Prime y=x y=2x y=x/2<br />

300<br />

300<br />

250<br />

250<br />

200<br />

200<br />

modelled<br />

150<br />

modelled<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300<br />

observed<br />

0<br />

0 50 100 150 200 250 300<br />

observed


Complex Terrain I<br />

ADMS Complex Flow Model based on FLOWSTAR<br />

Example Askervein: Change in speed over hill<br />

Fractional speedup ratio<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

delta S<br />

0.2<br />

0.0<br />

-1000 -800 -600 -400 -200 0 200 400 600 800 10<br />

-0.2<br />

-0.4<br />

-0.6<br />

Distance from HT (m)<br />

• AERMOD and ISC use idealised approaches<br />

• CALPUFF uses 3D time dependent flow field


Complex Terrain II: ADMS and AERMOD<br />

Comparison in Neutral flow<br />

US EPA Wind Tunnel Data<br />

Lawson, Snyder and<br />

Thompson (1989)<br />

Ratio of complex terrain<br />

to flat terrain maximum<br />

concentrations as<br />

function of stack height<br />

and location<br />

ADMS<br />

AERMOD<br />

750<br />

500<br />

250<br />

0<br />

-1500 -1000 -500 0 500 1000 1500 2000<br />

750<br />

500<br />

250<br />

0<br />

-1500 -1000 -500 0 500 1000 1500 2000<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0


Complex Terain III ADMS and AERMOD Comparison<br />

Maximum<br />

Concentration (ug/m3)<br />

Long Term Average<br />

Concentration (ug/m3)<br />

ADMS (Max=178)<br />

ADMS (Max=4.0)<br />

449000<br />

449000<br />

443000<br />

437000<br />

369000 375000 381000<br />

449000<br />

250<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

443000<br />

437000<br />

369000 375000 381000<br />

449000<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

Stack and surrounding<br />

terrain, Ribblesdale Valley,<br />

North-West England.<br />

443000<br />

75<br />

50<br />

25<br />

443000<br />

1.5<br />

1.0<br />

0.5<br />

Stack height = 100m<br />

Terrain = up to 300m<br />

437000<br />

369000 375000 381000<br />

AERMOD (Max=1162)<br />

437000<br />

369000 375000 381000<br />

AERMOD (Max=10.3)


Complex Terrain IV, CALPUFF: Wyoming study<br />

• Meteorology<br />

– 4 upper air stations<br />

– 22 surface stations<br />

– 44 precipitation stations<br />

– MM5 fields<br />

• Terrain<br />

– 4 km resolution<br />

• Receptors<br />

– in Class 1 Wilderness area


Complex Terrain V: CALPUFF, Wyoming case


Road Traffic Emissions I<br />

US CALTRANS Experiment<br />

• Layout of<br />

roads and<br />

receptors


Road Traffic Emissions II<br />

ADMS-Roads and CALINE-4<br />

Comparison of trendlines calculated using ADMS Roads and CALINE4 concentrations<br />

2.5<br />

2<br />

Calculated SF 6 concentration (ppb)<br />

1.5<br />

1<br />

ADMS Roads<br />

CALINE4<br />

y=x<br />

y=0.5x<br />

y=2x<br />

0.5<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Monitored SF 6 concentration (ppb)<br />

Figure 1 Comparison of trendlines calculated from ADMS-Roads and CALINE4 concentrations


Summary<br />

• Dispersion models in use in Europe include ADMS,<br />

AERMOD, CALPUFF, OML and AUSTAL.<br />

• Key features of the dispersion models ADMS, AERMOD<br />

and CALPUFF been have presented and contrasted.<br />

• Where data are available the models are compared with<br />

each other and with field and wind tunnel data.<br />

• CALPUFF was developed for assessing medium range<br />

impacts of major pollution sources. It requires<br />

meteorological fields as input.


ADMS-Roads<br />

Model Capabilities<br />

ADMS-Roads (Part of ADMS-EIA) is designed to model<br />

dispersion scenarios from single or multiple roads.<br />

• Calculates emissions from traffic flows or accepts<br />

calculated emissions<br />

• Allows many road sources<br />

• Fully integrated street canyon model based on Danish<br />

OSPM model<br />

• Includes impact of traffic induced turbulence on dispersion<br />

• Integrated with Geographical Information Systems (GIS)<br />

and an Emissions Inventory Database


ADMS-Roads<br />

M4 calculated and monitored PM10 concentration<br />

160<br />

140<br />

ADMS Roads<br />

Monitored<br />

120<br />

Concentration (µg/m3)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

20-Jan-97 11-Mar-97 30-Apr-97 19-Jun-97 8-Aug-97


Validation Results ADMS-Urban<br />

140<br />

NOx Annual Average<br />

PM10 Annual Average<br />

120<br />

NOx Standard Deviation<br />

NO2 Annual Average<br />

NO2 Percentile<br />

100<br />

PM10 90.4 Percentile<br />

PM10 98.1 Percentile<br />

PM10 Standard Deviation<br />

NO2 Standard Deviation<br />

100<br />

O3 annual Average<br />

O3 Standard Deviation<br />

80<br />

Predicted Data (ppb)<br />

80<br />

60<br />

800<br />

NOx Percentile<br />

Predicted Data (ug/m3)<br />

60<br />

40<br />

40<br />

600<br />

20<br />

400<br />

20<br />

200<br />

200 400 600 800<br />

0<br />

0<br />

0 20 40 60 80 100 120 140<br />

0 20 40 60 80 100<br />

Monitored Data (ppb)<br />

Monitored Data (ug/m3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!