08.01.2015 Views

adms aermod calpuff

adms aermod calpuff

adms aermod calpuff

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Comparison of Air Dispersion Models<br />

including ADMS, AERMOD and<br />

CALPUFF<br />

by<br />

Dr David Carruthers<br />

ADMS User Group Meeting<br />

Vilnius 19 January 2010


Well Known Dispersion Models<br />

Short range dispersion model s (upto 50km)<br />

ADMS (ADMS4 Industrial, Roads, Urban, Airports)<br />

AERMOD, ISC, OML, AUSTAL – Industrial releases<br />

CALINE – Road sources<br />

OSPM – Street canyons<br />

AirViro – Urban air quality<br />

Medium range dispersion models<br />

CALPUFF - Regional haze


Comparison of ADMS, AERMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

APPLICATIONS<br />

Applications<br />

Up to 50km from<br />

sources; local and urban<br />

scale.<br />

Up to 50km from<br />

sources.<br />

Local and Regional Pollution<br />

Impacts.<br />

SOURCE TYPES<br />

Source types<br />

Point, line (including<br />

road, rail), area, volume,<br />

grid, jet.<br />

Point, line, volume and<br />

area sources.<br />

Point, line, volume, area<br />

METEOROLOGY<br />

Meteorology<br />

DISPERSION<br />

Boundary layer<br />

structure<br />

ADMS<br />

Pre-processor<br />

AERMET<br />

Pre-processor<br />

CALMET<br />

Pre-processor<br />

h, L MO<br />

scaling h, L MO<br />

scaling h, L MO<br />

scaling<br />

Plume rise Advanced integral model Briggs empirical<br />

expressions<br />

Concentration<br />

distribution<br />

Advanced Gaussian<br />

plume and puff model<br />

Advanced Gaussian<br />

plume model<br />

Briggs empirical expressions<br />

Non-steady Gaussian puff<br />

model


Comparison of ADMS, AERMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

COMPLEX EFFECTS<br />

Buildings<br />

Complex terrain<br />

Deposition (wet and<br />

dry)<br />

Chemistry<br />

Based on flow model with<br />

near and main building<br />

wakes.<br />

Based on calculation of<br />

flow field and turbulence<br />

filed by FLOWSTAR<br />

model.<br />

Uses PRIME buildings<br />

model.<br />

Interpolation between<br />

neutral flow approximate<br />

solution and stable flow<br />

impaction solution.<br />

Based on ISC building<br />

model.<br />

Effects of complex flow<br />

input via meteorological<br />

fields.<br />

YES YES YES<br />

GRS (Generic Reaction<br />

Scheme) 8 reaction<br />

scheme for NO x<br />

chemistry, parameterised<br />

sulphate chemistry.<br />

Ozone limiting model,<br />

assumes maximum<br />

conversion of NO to NO 2<br />

.<br />

NO x<br />

and SO 2<br />

chemistry<br />

for particle generation.


Comparison of ADMS, ARMOD and CALPUFF Model Features<br />

Modelling Feature ADMS AERMOD CALPUFF<br />

OTHER OPTIONS<br />

Street canyon model YES NO NO<br />

Emissions system EMIT system NO NO<br />

Short term fluctuations<br />

for odours, explosions<br />

etc<br />

Visibility Model<br />

Radioactive decay<br />

model<br />

YES NO YES<br />

Condensed plume<br />

visibility<br />

NO<br />

Visibility Impairment<br />

(haze/smog)<br />

YES; includes γ-dose NO NO<br />

Puff Model YES NO Puff release default<br />

Coastline YES NO YES<br />

Input of vertical<br />

profiles of met data<br />

VALIDATION<br />

YES YES Uses meteorological fields.<br />

Extensive – industrial<br />

point sources, area<br />

sources, road sources,<br />

urban areas, airports.<br />

Extensive – industrial<br />

point sources, area<br />

sources.<br />

Validation of<br />

meteorological f ields,<br />

concentrations and<br />

visibility impacts.


Flat Terrain Validation I<br />

Major study – 24 Field and Wind Tunnel Experiments<br />

Summary Scores for ISC3, ADMS and AERMOD<br />

(Different model input parameters)<br />

Table 1<br />

ISC3 ADMS AERMOD<br />

Best 5 19 6<br />

Middle 2 5 11<br />

Worst 17 0 7<br />

Table 2<br />

ISC3 ADMS AERMOD<br />

Best 4 8 10<br />

Middle 10 15 11<br />

Worst 10 1 3<br />

Table 1 from Hanna et al, 6 th Workshop on Harmonisation, France Oct 1999<br />

Table 2 from Hanna et al, AWMA Meeting, US, June 2000


Flat terrain II Kincaid power plant<br />

• Site – flat farmland with some lakes (z 0 = 10<br />

cm)<br />

• Met – 171 hours, neutral to convective<br />

• Release – 187-m stack, SF 6<br />

• Results – ns/m 3 (normalised by emission rate,<br />

quality 3 data)<br />

Data Mean σ Bias<br />

NMS<br />

E<br />

Corr Fac 2<br />

Observations 54.3 40.3 0.0 0.0 1.00 1.00<br />

ADMS 4 48.5 31.5 5.9 0.6 0.45 0.68<br />

AERMOD ’03 21.8 21.8 32.6 2.1 0.40 0.29


Flat terrain III – Kincaid power plant<br />

• Scatter plots (ns/m 3 )<br />

350<br />

ADMS 4<br />

350<br />

AERMOD<br />

300<br />

300<br />

250<br />

250<br />

modelled<br />

200<br />

150<br />

AERMOD3<br />

200<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300 350<br />

observed<br />

0<br />

0 50 100 150 200 250 300 350<br />

Observed


Flat terrain IV– Kincaid power<br />

plant<br />

• Quantile-quantile plots (ns/m 3 )<br />

350<br />

ADMS 4<br />

350<br />

AERMOD<br />

300<br />

300<br />

250<br />

250<br />

modelled<br />

200<br />

150<br />

AERMOD<br />

200<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300 350<br />

observed<br />

0<br />

0 50 100 150 200 250 300 350<br />

Observed


Flat Terrain V - CALPUFF and ISC: Kincaid<br />

Q-Q plot for CALPUFF and ISCST3 (quality 3 data)


Flat Terrain VI - Prairie Grass<br />

Prairie Grass: scatter plot of concentrations<br />

ADMS 4.1<br />

Prairie Grass: scatter plot of concentrations<br />

AERMOD 02222<br />

Prairie Grass: scatter plot of concentrations<br />

ISCST2 93109<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed


Flat Terrain VII - Prairie Grass<br />

Prairie Grass: q-q plot of concentrations<br />

ADMS 4.1<br />

Prairie Grass: q-q of concentrations<br />

AERMOD 02222<br />

Prairie Grass: q-q of concentrations<br />

ISCST2 93109<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed<br />

modelled<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

observed


Flat Terrain VIII Power Plant Comparison: H = 200 m; Exit velocity = 22 m/s<br />

ADMS<br />

ADMS Met/AERMOD Dispersion<br />

Mean<br />

Conc.<br />

100th<br />

percentile


Flat Terrain IX Comparing ADMS and ADMS/AERMOD (converter 1)<br />

Long term runs: Maximum normalised concentration (µg/m 3 /(g/s))


Building<br />

Effects I<br />

• Two plume<br />

approach


Building Effects II: ADMS,<br />

AERMOD and ISC<br />

• PRIME model used in AERMOD (and ISC) is<br />

similar in approach to the ADMS buildings<br />

model.<br />

• Differences between ADMS buildings module<br />

and PRIME<br />

ADMS<br />

Box model for source in cavity<br />

Main wake velocity field: wake<br />

dimension, velocity and turbulence<br />

fields from wall-wake theory<br />

Main wake has 6 zone dispersion<br />

model<br />

Model applied at all downstream<br />

distances<br />

PRIME<br />

Modified Gaussian for source in cavity<br />

Main wake velocity field: wake<br />

dimension from experiment, velocity<br />

and turbulence fields from free-wake<br />

theory<br />

Main wake as 2 zone dispersion model<br />

Virtual source model applied far<br />

downstream


Building Effects III<br />

Robins & Castro Experiment<br />

K<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Maximum ground-level concentration as a function of source height<br />

θ=0° and Ws/Ue=3.1<br />

Experimental ADMS 4.0 ADMS 4.1 ISC-Prime<br />

0.00<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Zs/l


Building Effects IV<br />

Robins & Castro Statistics


Building Effects V<br />

Snyder Experiment<br />

Scatter plot of normalised concentrations<br />

ADMS 4.1<br />

Scatter plot of normalised concentrations<br />

ISC-Prime<br />

ADMS y=x y=2x y=x/2<br />

ISC-Prime y=x y=2x y=x/2<br />

300<br />

300<br />

250<br />

250<br />

200<br />

200<br />

modelled<br />

150<br />

modelled<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0 50 100 150 200 250 300<br />

observed<br />

0<br />

0 50 100 150 200 250 300<br />

observed


Complex Terrain I<br />

ADMS Complex Flow Model based on FLOWSTAR<br />

Example Askervein: Change in speed over hill<br />

Fractional speedup ratio<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

delta S<br />

0.2<br />

0.0<br />

-1000 -800 -600 -400 -200 0 200 400 600 800 10<br />

-0.2<br />

-0.4<br />

-0.6<br />

Distance from HT (m)<br />

• AERMOD and ISC use idealised approaches<br />

• CALPUFF uses 3D time dependent flow field


Complex Terrain II: ADMS and AERMOD<br />

Comparison in Neutral flow<br />

US EPA Wind Tunnel Data<br />

Lawson, Snyder and<br />

Thompson (1989)<br />

Ratio of complex terrain<br />

to flat terrain maximum<br />

concentrations as<br />

function of stack height<br />

and location<br />

ADMS<br />

AERMOD<br />

750<br />

500<br />

250<br />

0<br />

-1500 -1000 -500 0 500 1000 1500 2000<br />

750<br />

500<br />

250<br />

0<br />

-1500 -1000 -500 0 500 1000 1500 2000<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0


Complex Terain III ADMS and AERMOD Comparison<br />

Maximum<br />

Concentration (ug/m3)<br />

Long Term Average<br />

Concentration (ug/m3)<br />

ADMS (Max=178)<br />

ADMS (Max=4.0)<br />

449000<br />

449000<br />

443000<br />

437000<br />

369000 375000 381000<br />

449000<br />

250<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

443000<br />

437000<br />

369000 375000 381000<br />

449000<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

Stack and surrounding<br />

terrain, Ribblesdale Valley,<br />

North-West England.<br />

443000<br />

75<br />

50<br />

25<br />

443000<br />

1.5<br />

1.0<br />

0.5<br />

Stack height = 100m<br />

Terrain = up to 300m<br />

437000<br />

369000 375000 381000<br />

AERMOD (Max=1162)<br />

437000<br />

369000 375000 381000<br />

AERMOD (Max=10.3)


Complex Terrain IV, CALPUFF: Wyoming study<br />

• Meteorology<br />

– 4 upper air stations<br />

– 22 surface stations<br />

– 44 precipitation stations<br />

– MM5 fields<br />

• Terrain<br />

– 4 km resolution<br />

• Receptors<br />

– in Class 1 Wilderness area


Complex Terrain V: CALPUFF, Wyoming case


Road Traffic Emissions I<br />

US CALTRANS Experiment<br />

• Layout of<br />

roads and<br />

receptors


Road Traffic Emissions II<br />

ADMS-Roads and CALINE-4<br />

Comparison of trendlines calculated using ADMS Roads and CALINE4 concentrations<br />

2.5<br />

2<br />

Calculated SF 6 concentration (ppb)<br />

1.5<br />

1<br />

ADMS Roads<br />

CALINE4<br />

y=x<br />

y=0.5x<br />

y=2x<br />

0.5<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Monitored SF 6 concentration (ppb)<br />

Figure 1 Comparison of trendlines calculated from ADMS-Roads and CALINE4 concentrations


Summary<br />

• Dispersion models in use in Europe include ADMS,<br />

AERMOD, CALPUFF, OML and AUSTAL.<br />

• Key features of the dispersion models ADMS, AERMOD<br />

and CALPUFF been have presented and contrasted.<br />

• Where data are available the models are compared with<br />

each other and with field and wind tunnel data.<br />

• CALPUFF was developed for assessing medium range<br />

impacts of major pollution sources. It requires<br />

meteorological fields as input.


ADMS-Roads<br />

Model Capabilities<br />

ADMS-Roads (Part of ADMS-EIA) is designed to model<br />

dispersion scenarios from single or multiple roads.<br />

• Calculates emissions from traffic flows or accepts<br />

calculated emissions<br />

• Allows many road sources<br />

• Fully integrated street canyon model based on Danish<br />

OSPM model<br />

• Includes impact of traffic induced turbulence on dispersion<br />

• Integrated with Geographical Information Systems (GIS)<br />

and an Emissions Inventory Database


ADMS-Roads<br />

M4 calculated and monitored PM10 concentration<br />

160<br />

140<br />

ADMS Roads<br />

Monitored<br />

120<br />

Concentration (µg/m3)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

20-Jan-97 11-Mar-97 30-Apr-97 19-Jun-97 8-Aug-97


Validation Results ADMS-Urban<br />

140<br />

NOx Annual Average<br />

PM10 Annual Average<br />

120<br />

NOx Standard Deviation<br />

NO2 Annual Average<br />

NO2 Percentile<br />

100<br />

PM10 90.4 Percentile<br />

PM10 98.1 Percentile<br />

PM10 Standard Deviation<br />

NO2 Standard Deviation<br />

100<br />

O3 annual Average<br />

O3 Standard Deviation<br />

80<br />

Predicted Data (ppb)<br />

80<br />

60<br />

800<br />

NOx Percentile<br />

Predicted Data (ug/m3)<br />

60<br />

40<br />

40<br />

600<br />

20<br />

400<br />

20<br />

200<br />

200 400 600 800<br />

0<br />

0<br />

0 20 40 60 80 100 120 140<br />

0 20 40 60 80 100<br />

Monitored Data (ppb)<br />

Monitored Data (ug/m3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!