nitric oxide as a reagent gas in ion mobility spectrometry

nitric oxide as a reagent gas in ion mobility spectrometry nitric oxide as a reagent gas in ion mobility spectrometry

bs.analytik.de
from bs.analytik.de More from this publisher
07.01.2015 Views

NITRIC OXIDE AS A REAGENT GAS IN ION MOBILITY SPECTROMETRY G. A. Eiceman, K. Kelly, and E.G. Nazarov Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA ABSTRACT Nitric oxide was introduced into the ion source of an ion mobility spectrometer in air at ambient pressure so conventional hydrated proton (H 3O + (H 2O) n) ion chemistry could be replaced with ionization reactions based on charge exchange, hydride abstraction, and adduct formation. The addition of NO(g) from 1 to 60 mg/m 3 at temperatures from 125 to 250°C resulted in progressive replacement of H 3O + (H 2O) n with NO + (H 2O) n reaching a plateau of ~0.9 for [NO + (H 2O) n]/[NO + (H 2O) n + H 3O + (H 2O) n]. Mobility spectra for three chemical substances were obtained through a range of temperatures from 100 to 250°C at 50°C increments with 5 to 10 values for [NO] at each temperature. Ions were mass-identified using a mobility spectrometer/mass spectrometer. The chemicals were 2,4-lutidine, di-tert-butyl-pyridine (DTBP), and dimethylmethylphosphonate (DMMP). The core product ion for 2,4-lutidine with a reagent ion of H 3O + (H 2O) n was mass identified as MH + while the product ion with NO(H 2O) + was an adduct ion M*NO + . The adduct ion of 2,4-lutidine was thermally unstable above 150°C and underwent dissociation to M and NO + . The mobility spectrum for DMMP was MH + with hydrated proton reactant ions and chemistry was unaltered with the addition of NO(g) as reagent gas. The product ion for DTBP was MH + with H 3O + (H 2O) n and addition of NO(g) resulted in formation of fragment ions (M-CH 3) + , (M-(t-butyl)) + and (M-(t-butyl))H + (NO). These results demonstrate that NO(g) can serve as a reagent gas for the formation of product ions through reactions other than proton transfer using a conventional beta-source. At temperatures below 125 o C, the hydrated proton could not be replaced even partially with NO(H 2O) + though the level of NO(g) reached 140 mg/m 3 . INTRODUCTION In ion mobility spectrometry (IMS), hydrated protons H 3O + (H 2O) n have been used commonly as the reservoir of charge for atmospheric pressure chemical ionization (APCI) reactions (1). The reactions between analyte and the hydrated protons or reactant ions leads to product ions at ambient pressure through what might be described best as a displacement reaction as shown in Equation 1: In addition to the hydrated proton, other reactant ions can be observed at minor intensities in a clean IMS drift tube and these include NH 4+ (H 2O) n, and NO + (H 2O). The level of hydration, i.e. value for n, is dependent upon temperature and moisture. The ratios of intensities for these reactant ions in scrubbed air or nitrogen at temperatures of 150+ o C are roughly 1:1:10 for NH 4+ (H 2O) n, and NO + (H 2O), M + H 3O + (H 2O) n MH + (H 2O) n-1 + H 2O (1) sample neutral reactant ion product ion water neutral M + MH + (H 2O) n-1 M 2H + (H 2O) n-1) + H 2O (2) sample neutral protonated monomer proton bound dimer water neutral Received for review April 30, 2002, Accepted July 15, 2002 Copyright © 2002 by International Society for Ion Mobility Spectrometry

NITRIC OXIDE AS A REAGENT GAS IN<br />

ION MOBILITY SPECTROMETRY<br />

G. A. Eiceman, K. Kelly, and E.G. Nazarov<br />

Chemistry and Biochemistry, New Mexico State University, L<strong>as</strong> Cruces, New Mexico 88003, USA<br />

ABSTRACT<br />

Nitric <strong>oxide</strong> w<strong>as</strong> <strong>in</strong>troduced <strong>in</strong>to the <strong>ion</strong> source<br />

of an <strong>ion</strong> <strong>mobility</strong> spectrometer <strong>in</strong> air at ambient<br />

pressure so convent<strong>ion</strong>al hydrated proton<br />

(H 3O + (H 2O) n) <strong>ion</strong> chemistry could be replaced<br />

with <strong>ion</strong>izat<strong>ion</strong> react<strong>ion</strong>s b<strong>as</strong>ed on charge<br />

exchange, hydride abstract<strong>ion</strong>, and adduct<br />

format<strong>ion</strong>. The addit<strong>ion</strong> of NO(g) from 1 to 60<br />

mg/m 3 at temperatures from 125 to 250°C<br />

resulted <strong>in</strong> progressive replacement of<br />

H 3O + (H 2O) n with NO + (H 2O) n reach<strong>in</strong>g a plateau<br />

of ~0.9 for [NO + (H 2O) n]/[NO + (H 2O) n +<br />

H 3O + (H 2O) n]. Mobility spectra for three<br />

chemical substances were obta<strong>in</strong>ed through a<br />

range of temperatures from 100 to 250°C at<br />

50°C <strong>in</strong>crements with 5 to 10 values for [NO] at<br />

each temperature. Ions were m<strong>as</strong>s-identified<br />

us<strong>in</strong>g a <strong>mobility</strong> spectrometer/m<strong>as</strong>s<br />

spectrometer. The chemicals were 2,4-lutid<strong>in</strong>e,<br />

di-tert-butyl-pyrid<strong>in</strong>e (DTBP), and<br />

dimethylmethylphosphonate (DMMP). The<br />

core product <strong>ion</strong> for 2,4-lutid<strong>in</strong>e with a <strong>reagent</strong><br />

<strong>ion</strong> of H 3O + (H 2O) n w<strong>as</strong> m<strong>as</strong>s identified <strong>as</strong> MH +<br />

while the product <strong>ion</strong> with NO(H 2O) + w<strong>as</strong> an<br />

adduct <strong>ion</strong> M*NO + . The adduct <strong>ion</strong> of<br />

2,4-lutid<strong>in</strong>e w<strong>as</strong> thermally unstable above<br />

150°C and underwent dissociat<strong>ion</strong> to M and<br />

NO + . The <strong>mobility</strong> spectrum for DMMP w<strong>as</strong><br />

MH + with hydrated proton reactant <strong>ion</strong>s and<br />

chemistry w<strong>as</strong> unaltered with the addit<strong>ion</strong> of<br />

NO(g) <strong>as</strong> <strong>reagent</strong> g<strong>as</strong>. The product <strong>ion</strong> for<br />

DTBP w<strong>as</strong> MH + with H 3O + (H 2O) n and addit<strong>ion</strong> of<br />

NO(g) resulted <strong>in</strong> format<strong>ion</strong> of fragment <strong>ion</strong>s<br />

(M-CH 3) + , (M-(t-butyl)) + and (M-(t-butyl))H + (NO).<br />

These results demonstrate that NO(g) can<br />

serve <strong>as</strong> a <strong>reagent</strong> g<strong>as</strong> for the format<strong>ion</strong> of<br />

product <strong>ion</strong>s through react<strong>ion</strong>s other than<br />

proton transfer us<strong>in</strong>g a convent<strong>ion</strong>al<br />

beta-source. At temperatures below 125 o C, the<br />

hydrated proton could not be replaced even<br />

partially with NO(H 2O) + though the level of<br />

NO(g) reached 140 mg/m 3 .<br />

INTRODUCTION<br />

In <strong>ion</strong> <strong>mobility</strong> <strong>spectrometry</strong> (IMS), hydrated<br />

protons H 3O + (H 2O) n have been used commonly<br />

<strong>as</strong> the reservoir of charge for atmospheric<br />

pressure chemical <strong>ion</strong>izat<strong>ion</strong> (APCI) react<strong>ion</strong>s<br />

(1). The react<strong>ion</strong>s between analyte and the<br />

hydrated protons or reactant <strong>ion</strong>s leads to<br />

product <strong>ion</strong>s at ambient pressure through what<br />

might be described best <strong>as</strong> a displacement<br />

react<strong>ion</strong> <strong>as</strong> shown <strong>in</strong> Equat<strong>ion</strong> 1:<br />

In addit<strong>ion</strong> to the hydrated proton, other<br />

reactant <strong>ion</strong>s can be observed at m<strong>in</strong>or<br />

<strong>in</strong>tensities <strong>in</strong> a clean IMS drift tube and these<br />

<strong>in</strong>clude NH 4+ (H 2O) n, and NO + (H 2O). The level<br />

of hydrat<strong>ion</strong>, i.e. value for n, is dependent upon<br />

temperature and moisture. The ratios of<br />

<strong>in</strong>tensities for these reactant <strong>ion</strong>s <strong>in</strong> scrubbed<br />

air or nitrogen at temperatures of 150+ o C are<br />

roughly 1:1:10 for NH 4+ (H 2O) n, and NO + (H 2O),<br />

M<br />

+<br />

H 3O + (H 2O) n<br />

MH + (H 2O) n-1<br />

+<br />

H 2O<br />

(1)<br />

sample<br />

neutral<br />

reactant <strong>ion</strong><br />

product <strong>ion</strong><br />

water<br />

neutral<br />

M<br />

+<br />

MH + (H 2O) n-1<br />

M 2H + (H 2O) n-1)<br />

+<br />

H 2O<br />

(2)<br />

sample<br />

neutral<br />

protonated<br />

monomer<br />

proton bound dimer<br />

water<br />

neutral<br />

Received for review April 30, 2002, Accepted July 15, 2002<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 23<br />

and H 3O + (H 2O) n, respectively (2). The<br />

advantages of APCI react<strong>ion</strong>s <strong>in</strong>clude both high<br />

selectivity and detect<strong>ion</strong> limits of µg/m 3 or<br />

lower. Also, <strong>ion</strong>s are near-thermal energies <strong>in</strong><br />

APCI react<strong>ion</strong>s so <strong>mobility</strong> spectra are<br />

comparatively simple and are comprised largely<br />

of the <strong>in</strong>tact protonated sample. In <strong>in</strong>stances<br />

when the sample vapor levels are large, proton<br />

bound dimers (M 2H + (H 2O) n-1) can form <strong>as</strong><br />

shown <strong>in</strong> Equat<strong>ion</strong> 2.<br />

However, the simplicity of APCI react<strong>ion</strong>s and<br />

the pr<strong>in</strong>ciples that underlie selectivity can<br />

present disadvantages for chemical<br />

me<strong>as</strong>urements. For example, protonated<br />

monomers or proton bound dimers provide little<br />

structural <strong>in</strong>format<strong>ion</strong> about a sample. Also,<br />

substances that exhibit low proton aff<strong>in</strong>ities<br />

may not be <strong>ion</strong>ized or detected <strong>in</strong> the presence<br />

of matrices or <strong>in</strong>terferences that have elevated<br />

proton aff<strong>in</strong>ities. In short, react<strong>ion</strong>s through<br />

proton transfers <strong>in</strong> APCI can be considered<br />

somewhat <strong>in</strong>flexible for user-tailored response<br />

<strong>in</strong> analytical me<strong>as</strong>urements. One means to<br />

impart some control over the selectivity of APCI<br />

react<strong>ion</strong>s is to use alternate <strong>reagent</strong> g<strong>as</strong>es (3).<br />

This is generally accomplished by add<strong>in</strong>g a<br />

<strong>reagent</strong> g<strong>as</strong> <strong>in</strong>to the <strong>ion</strong> source so the<br />

convent<strong>ion</strong>al reactant <strong>ion</strong>s can be replaced by<br />

alternate reactant <strong>ion</strong>s. The most common<br />

approach h<strong>as</strong> been to employ <strong>reagent</strong> g<strong>as</strong>es<br />

that have relatively high proton aff<strong>in</strong>ities and<br />

these g<strong>as</strong>es are added to the <strong>ion</strong>izat<strong>ion</strong> reg<strong>ion</strong><br />

at concentrat<strong>ion</strong> of ~500 µg/m 3 . Alternate<br />

reactant <strong>ion</strong>s may exclude from <strong>ion</strong> format<strong>ion</strong><br />

those molecules with proton aff<strong>in</strong>ities below<br />

that of the <strong>reagent</strong> g<strong>as</strong> for comparable<br />

concentrat<strong>ion</strong>s. Thus, substances that are not<br />

<strong>ion</strong>ized should not appear <strong>as</strong> <strong>in</strong>terferences (4).<br />

Apart from the hydrated protons, the next most<br />

<strong>in</strong>tense reactant <strong>ion</strong>, NH 4+ (H 2O) n, can serve <strong>as</strong><br />

an alternate reactant <strong>ion</strong> with elevated proton<br />

aff<strong>in</strong>ities but unfortunately <strong>in</strong>troduces<br />

complicat<strong>ion</strong>s largely through the format<strong>ion</strong> of<br />

cluster <strong>ion</strong>s.<br />

Another reactant <strong>ion</strong> available for <strong>ion</strong> format<strong>ion</strong><br />

<strong>in</strong> IMS is NO + (H 2O) n and the b<strong>as</strong>is for <strong>ion</strong>izat<strong>ion</strong><br />

with NO + (H 2O) n would be pr<strong>in</strong>cipally charge<br />

exchange. Thus, patterns of relative response<br />

to a sample us<strong>in</strong>g source chemistry with<br />

NO + (H 2O) n might be changed from that<br />

observed with hydrated proton <strong>reagent</strong> <strong>ion</strong>s.<br />

Studies <strong>in</strong> chemical <strong>ion</strong>izat<strong>ion</strong> m<strong>as</strong>s<br />

<strong>spectrometry</strong> (CI-MS) have shown that small<br />

amounts of NO(g) <strong>in</strong> the <strong>ion</strong> source can result<br />

<strong>in</strong> the nitryl <strong>ion</strong> [NO + ] <strong>as</strong> the predom<strong>in</strong>ant<br />

reactant <strong>ion</strong> and that the chemistry of the nitryl<br />

<strong>ion</strong> w<strong>as</strong> substantially different from the<br />

hydrated proton clusters. Though such<br />

react<strong>ion</strong>s were studied at pressures of 1-10<br />

torr, the f<strong>in</strong>d<strong>in</strong>gs have relevance for IMS<br />

studies at ambient pressure. The three react<strong>ion</strong><br />

paths identified through CI-MS studies <strong>in</strong>cluded<br />

hydride abstract<strong>ion</strong>, charge exchange, and<br />

adduct format<strong>ion</strong> <strong>as</strong> shown <strong>in</strong> Equat<strong>ion</strong>s 3 to 5,<br />

respectively:<br />

These react<strong>ion</strong>s are dependent upon the<br />

properties of the sample (M) and some patterns<br />

<strong>in</strong> select<strong>ion</strong> of pathway for <strong>ion</strong>izat<strong>ion</strong> can be<br />

discerned. For example, substances with high<br />

<strong>ion</strong>izat<strong>ion</strong> energies (>9.3 eV) will not undergo<br />

charge exchange (Equat<strong>ion</strong> 4) and <strong>in</strong>stead may<br />

react via Equat<strong>ion</strong>s 3 and 5. Hydride<br />

abstract<strong>ion</strong> is seen with alkanes and with<br />

molecules conta<strong>in</strong><strong>in</strong>g heteroatoms or<br />

aromaticity. Molecules with high electron<br />

density can be expected to form adduct <strong>ion</strong>s.<br />

Little if any fragmentat<strong>ion</strong> h<strong>as</strong> been observed <strong>in</strong><br />

CI-MS studies when NO w<strong>as</strong> used <strong>as</strong> a <strong>reagent</strong><br />

g<strong>as</strong> (5-10) except <strong>in</strong> isolated <strong>in</strong>stances such <strong>as</strong><br />

with highly branched molecules (11). Because<br />

of the variety of react<strong>ion</strong>s possible, it w<strong>as</strong> even<br />

suggested that <strong>nitric</strong> <strong>oxide</strong> will <strong>ion</strong>ize most<br />

compounds regardless of the <strong>ion</strong>izat<strong>ion</strong><br />

potential (12). Thus, possibilities exist for<br />

M +<br />

NO +<br />

(M-H) +<br />

+<br />

HNO<br />

(3)<br />

sample neutral<br />

reactant <strong>ion</strong><br />

hydride abstracted<br />

product <strong>ion</strong><br />

neutral<br />

M +<br />

NO +<br />

M +<br />

+<br />

NO<br />

(4)<br />

sample neutral<br />

reactant <strong>ion</strong><br />

product <strong>ion</strong><br />

M<br />

+<br />

NO +<br />

(M*NO) +<br />

(5)<br />

sample neutral<br />

reactant <strong>ion</strong><br />

adduct <strong>ion</strong><br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 24<br />

addit<strong>ion</strong> control <strong>in</strong> selectivity of response and<br />

this motivated a study of NO + <strong>as</strong> a reactant <strong>ion</strong><br />

for IMS. A potential complicat<strong>ion</strong> to this<br />

concept (not seen at low pressure) is the<br />

format<strong>ion</strong> of <strong>ion</strong> clusters with water or other<br />

small neutrals at ambient pressure <strong>in</strong> IMS and<br />

APCI-m<strong>as</strong>s <strong>spectrometry</strong>.<br />

The chemistry of NO + (H 2O) n h<strong>as</strong> been<br />

described previously <strong>in</strong> IMS me<strong>as</strong>urements for<br />

only a s<strong>in</strong>gle chemical (13) and the ma<strong>in</strong><br />

product <strong>ion</strong> w<strong>as</strong> an adduct per Equat<strong>ion</strong> 5.<br />

Nonetheless, several environmentally important<br />

chemicals might be detected preferentially<br />

through charge exchange rather than proton<br />

transfer react<strong>ion</strong>s. Such chemicals <strong>in</strong>clude<br />

benzene and substituted benzenes. If NO(g) is<br />

a suitable <strong>reagent</strong> g<strong>as</strong>, drift tubes conta<strong>in</strong><strong>in</strong>g<br />

convent<strong>ion</strong>al <strong>ion</strong> sources (i.e., 10 mCi of 63-Ni)<br />

might be e<strong>as</strong>ily adapted to selective detect<strong>ion</strong><br />

of benzene, toluene and xylenes. A second<br />

<strong>in</strong>terest is to determ<strong>in</strong>e if NO-b<strong>as</strong>ed <strong>ion</strong>izat<strong>ion</strong><br />

chemistry can be used to resolve or clarify<br />

response to mixtures when the components<br />

may under <strong>ion</strong>izat<strong>ion</strong> through different and<br />

dist<strong>in</strong>ctive paths. For example, the product<br />

<strong>ion</strong>s for two substances with the same drift time<br />

from a tradit<strong>ion</strong>al proton-b<strong>as</strong>ed <strong>ion</strong>izat<strong>ion</strong><br />

sources, may differentiated by format<strong>ion</strong> of<br />

cluster <strong>ion</strong>s, proton abstracted <strong>ion</strong>s or M + <strong>ion</strong>s<br />

simultaneously.<br />

In this present study, the <strong>mobility</strong> spectra for<br />

several well-known chemicals <strong>in</strong> IMS were<br />

studied us<strong>in</strong>g hydrated proton and NO + with<br />

m<strong>as</strong>s-identificat<strong>ion</strong> of <strong>ion</strong>s us<strong>in</strong>g IMS/MS.<br />

Mobility spectra were obta<strong>in</strong>ed through a range<br />

of concentrat<strong>ion</strong>s of NO(g) and concentrat<strong>ion</strong>s<br />

of samples. Also, the temperatures needed to<br />

obta<strong>in</strong> <strong>reagent</strong> <strong>ion</strong>s from NO(g) were<br />

determ<strong>in</strong>ed.<br />

Table 1. The drift tube temperature w<strong>as</strong> set<br />

us<strong>in</strong>g an model 6100 controller (Omega<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Inc., Stamford, CT) and a model<br />

MIS-2 meter (Panametric, Inc., Waltham, MA)<br />

w<strong>as</strong> used to monitor both temperature (via an<br />

Omega series CCT-23 0/400C transducer) and<br />

moisture (Panametric probe). Moisture w<strong>as</strong><br />

kept between 5-10 µg/m 3 throughout the<br />

experiments through the use of <strong>in</strong>-house<br />

supplied air treated us<strong>in</strong>g an Addco model 737<br />

Pure Air Generator (Clearwater, FL), several<br />

scrubb<strong>in</strong>g towers conta<strong>in</strong><strong>in</strong>g 5Å molecular<br />

sieve, and a commercial drier (R&D<br />

Separat<strong>ion</strong>s GC-2 Disposable Moisture Getter,<br />

Alltech Associates, IL) and monitored us<strong>in</strong>g a<br />

Panametric (Waltham, MA) “Moisture Image<br />

Series 2” hygrometer probe.<br />

The m<strong>as</strong>s spectrometer w<strong>as</strong> a model API-III<br />

tandem m<strong>as</strong>s spectrometer (PE-SCIEX,<br />

Toronto, Canada) and the drift tube w<strong>as</strong> a<br />

convent<strong>ion</strong>al discrete r<strong>in</strong>g design with the<br />

follow<strong>in</strong>g specific features: <strong>in</strong>sulat<strong>in</strong>g r<strong>in</strong>gs of<br />

high-temperature stable Teflon (PTFE);<br />

press-fit seals on the Teflon r<strong>in</strong>gs to provide a<br />

first level of pneumatic isolat<strong>ion</strong>; an alum<strong>in</strong>um<br />

shell (drift tube c<strong>as</strong><strong>in</strong>g) with Teflon seals to<br />

provide a second level of pneumatic isolat<strong>ion</strong>;<br />

access to electric utilities at an end cap; and<br />

preheated drift g<strong>as</strong>. The drift tube w<strong>as</strong><br />

equipped with a dual shutter design though<br />

generally the shutters were full open to ga<strong>in</strong><br />

maximum <strong>ion</strong> <strong>in</strong>tensity <strong>in</strong> the MS. Ions<br />

reach<strong>in</strong>g the end of the drift tube were p<strong>as</strong>sed<br />

through an addit<strong>ion</strong>al distance of 3cm equipped<br />

with a radiator surface and allowed the body of<br />

the IMS to be cooled. The end of this length<br />

w<strong>as</strong> fitted <strong>in</strong>to a Teflon socket placed <strong>in</strong>to the<br />

high voltage flange of the API-III.<br />

EXPERIMENTAL SECTION<br />

Instrumentat<strong>ion</strong><br />

The GC-IMS w<strong>as</strong> a<br />

Hewlett-Packard (Avondale, PA)<br />

model 5880A g<strong>as</strong> chromatograph<br />

equipped with a 30 m long, ID 0.25<br />

mm, df 0.25 µm RTX-50 capillary<br />

column (Restek Corporat<strong>ion</strong>,<br />

Bellefonte, PA), split/ splitless<br />

<strong>in</strong>jector, flame <strong>ion</strong>izat<strong>ion</strong> detector<br />

(FID) and <strong>ion</strong> <strong>mobility</strong> detector.<br />

The <strong>ion</strong> <strong>mobility</strong> spectrometer w<strong>as</strong><br />

designed and built at New Mexico<br />

State University <strong>in</strong> L<strong>as</strong> Cruces, NM<br />

and specificat<strong>ion</strong>s are listed <strong>in</strong><br />

2,4-Lutid<strong>in</strong>e<br />

C 7H 9N<br />

MM 107.15<br />

CAS Registry<br />

Number: 108-47-4<br />

DMMP<br />

C 3H 9O 3P<br />

MM 124.08<br />

CAS Registry<br />

Number: 756-79-6<br />

DTBP<br />

C 13H 21N<br />

MM 191.31<br />

CAS Registry<br />

Number: 585-48-8<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 25<br />

Chemical and Reagents<br />

All chemicals were react<strong>ion</strong> or analytical grade<br />

and were used <strong>as</strong> received. The solvent for<br />

samples w<strong>as</strong> methylene chloride (Fisher<br />

Scientific, Houston, TX). Standards were<br />

prepared from three chemicals <strong>in</strong>clud<strong>in</strong>g<br />

2,4-lutid<strong>in</strong>e (Sigma Chemical Company, St.<br />

Louis, MO), 2,6-di-tert-butylpyrid<strong>in</strong>e or DTBP<br />

(Aldrich Chemical Co.), and<br />

dimethylmethylphosphonate or DMMP (Aldrich<br />

Chemical Co.).<br />

Two stock solut<strong>ion</strong>s were made for chemicals<br />

at concentrat<strong>ion</strong>s of 130 mg/m 3 <strong>in</strong> methylene<br />

chloride. These were a mixture of 2,4-lutid<strong>in</strong>e<br />

and DTBP and a second mixture of DMMP and<br />

DTBP. These were necessary ow<strong>in</strong>g to the<br />

poor chromatographic resolut<strong>ion</strong> between<br />

2,4-lutid<strong>in</strong>e and DMMP. A 5% mixture of <strong>nitric</strong><br />

<strong>oxide</strong> <strong>in</strong> nitrogen (Matheson G<strong>as</strong>,<br />

Montgomeryville, PA) w<strong>as</strong> scrubbed over 5A<br />

molecular sieves to remove water and w<strong>as</strong><br />

<strong>in</strong>troduced directly <strong>in</strong>to the source reg<strong>ion</strong> of the<br />

IMS via a 10 cm length of uncoated fused silica<br />

capillary column. The flow rate of the <strong>nitric</strong><br />

<strong>oxide</strong> w<strong>as</strong> me<strong>as</strong>ured us<strong>in</strong>g a microliter scale<br />

bubblemeter <strong>as</strong> 5 to 400 µl/m<strong>in</strong> provid<strong>in</strong>g a f<strong>in</strong>al<br />

concentrat<strong>ion</strong> <strong>in</strong> the drift tube of 1-60 mg/m 3<br />

with a drift g<strong>as</strong> flow rate of 300 ml/m<strong>in</strong>.<br />

Procedures<br />

Retent<strong>ion</strong> times and purity of solut<strong>ion</strong>s were<br />

first determ<strong>in</strong>ed us<strong>in</strong>g the GC-FID. With the <strong>ion</strong><br />

<strong>mobility</strong> spectrometer <strong>as</strong> the detector, flow<br />

rates of <strong>nitric</strong> <strong>oxide</strong> were selected on the b<strong>as</strong>is<br />

of the relative <strong>in</strong>tensity of the NO + peak <strong>in</strong> the<br />

<strong>mobility</strong> spectrum. The <strong>in</strong>itial value for NO +<br />

w<strong>as</strong> determ<strong>in</strong>ed and NO(g) w<strong>as</strong> gradually<br />

<strong>in</strong>cre<strong>as</strong>ed until the hydrated proton peak w<strong>as</strong><br />

barely visible. Under these condit<strong>ion</strong>s, the<br />

system w<strong>as</strong> kept from excessive levels of<br />

NO(g). The <strong>in</strong>strument w<strong>as</strong> allowed to stabilize<br />

between each <strong>in</strong>crement of <strong>nitric</strong> <strong>oxide</strong> and all<br />

TABLE 1:<br />

Parameters for g<strong>as</strong> chromatograph-<strong>mobility</strong> spectrometer<br />

G<strong>as</strong> Chromatograph<br />

Initial Temperature (/C)<br />

Initial Time (m<strong>in</strong>)<br />

Program Rate (/C/m<strong>in</strong>)<br />

F<strong>in</strong>al Temperature (/C)<br />

F<strong>in</strong>al Time (m<strong>in</strong>)<br />

Splitless time (m<strong>in</strong>)<br />

Split time (m<strong>in</strong>)<br />

60<br />

0<br />

20<br />

200<br />

5<br />

0<br />

.75<br />

Mobility Spectrometer<br />

Length of Drift Reg<strong>ion</strong> (cm)<br />

5.2<br />

Length of Ion Source Reg<strong>ion</strong> (cm)<br />

1.0<br />

Insulator R<strong>in</strong>g Inner Diameter (cm)<br />

Insulator R<strong>in</strong>g Outer Diameter (cm)<br />

Insulator R<strong>in</strong>g Thickness (cm)<br />

Conduct<strong>in</strong>g R<strong>in</strong>g Inner Diameter (cm)<br />

Conduct<strong>in</strong>g R<strong>in</strong>g Outer Diameter (cm)<br />

Conduct<strong>in</strong>g R<strong>in</strong>g Thickness (cm)<br />

Shutter Diameter (mm)<br />

Collector Diameter (mm)<br />

Aperture Diameter (mm)<br />

Detector Aperture Distance (mm)<br />

1.9<br />

5.1<br />

1<br />

1.9<br />

4<br />

0.2<br />

13<br />

9.5<br />

10.3<br />

~1<br />

Amount of 63 Ni <strong>in</strong> Source (mCi)<br />

Electric Field <strong>in</strong> Drift Reg<strong>ion</strong> (V/cm)<br />

Frequency of shutter pulse (Hz)<br />

Drift G<strong>as</strong> (air) Flow Rate (ml/m<strong>in</strong>)<br />

Temperature of Drift G<strong>as</strong> (°C)<br />

(preheated)<br />

Delay <strong>in</strong> spectra (ms)<br />

Shutter Pulse width(µs)<br />

No. of po<strong>in</strong>ts digitized per spectrum<br />

Collector-Aperture Voltage (V)<br />

No. of averages per spectrum<br />

10<br />

*<br />

216<br />

34<br />

200<br />

150-250<br />

2<br />

208<br />

640<br />

60<br />

64<br />

* = The electric field changes slightly with temperature due to thermal expans<strong>ion</strong> of the Teflon. V/cm<br />

at 250/C = 216, V/cm at 200/C = 217.6, V/cm at 150/C = 219<br />

Insulat<strong>in</strong>g R<strong>in</strong>gs: High Temperature Teflon - Conduct<strong>in</strong>g R<strong>in</strong>gs: 303 Sta<strong>in</strong>less Steel<br />

Shutters and detector were obta<strong>in</strong>ed from Gr<strong>as</strong>eby Dynamics and used without modificat<strong>ion</strong>.<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 26<br />

Intensity<br />

0 2 4 6 8 10<br />

Figure 1:<br />

Mobility spectra for reactant <strong>ion</strong>s with different flows of<br />

NO(g) <strong>in</strong>to the <strong>ion</strong> source at 250°C.<br />

other flows and moisture rema<strong>in</strong>ed constant<br />

throughout the study. One-microliter <strong>in</strong>ject<strong>ion</strong>s<br />

of solut<strong>ion</strong>s were made <strong>in</strong>to the chromatograph<br />

<strong>in</strong>jector by splitless methods. Spectra were<br />

taken from the time of <strong>in</strong>ject<strong>ion</strong> until the l<strong>as</strong>t<br />

chemical eluted. Background spectra were<br />

taken from the time prior to the first chemical<br />

elut<strong>ion</strong>. The maximum spectra for each eluted<br />

chemical w<strong>as</strong> found us<strong>in</strong>g WASP software and<br />

<strong>in</strong>terface card (Gr<strong>as</strong>eby Dynamics, Watford,<br />

UK) and spectra w<strong>as</strong> deconvoluted us<strong>in</strong>g Peak<br />

Fit ver 5.0 (SPSS Science, Chicago, IL)<br />

software to determ<strong>in</strong>e peak are<strong>as</strong> and<br />

posit<strong>ion</strong>s. This procedure w<strong>as</strong> used with<br />

temperatures of 250°C, 200°C, 150°C, 125°C,<br />

and 100°C for all chemicals <strong>in</strong> both solut<strong>ion</strong>s.<br />

M<strong>as</strong>s spectra for the <strong>ion</strong>s were obta<strong>in</strong>ed us<strong>in</strong>g<br />

a diffus<strong>ion</strong> vapor generator and a steady level<br />

of vapor flow <strong>in</strong>to the source reg<strong>ion</strong> of the drift<br />

tube. The l<strong>as</strong>t r<strong>in</strong>g w<strong>as</strong> floated at 400V DC and<br />

the <strong>in</strong>terface plate for the MS w<strong>as</strong> 200V DC<br />

enabl<strong>in</strong>g the facile transfer of <strong>ion</strong>s to the m<strong>as</strong>s<br />

spectrometer. The temperature of the drift tube<br />

and <strong>ion</strong>izat<strong>ion</strong> reg<strong>ion</strong> w<strong>as</strong> 180°C. Air obta<strong>in</strong>ed<br />

from a zero air generator (Whatman) w<strong>as</strong> used<br />

<strong>as</strong> drift g<strong>as</strong> and carrier g<strong>as</strong>. The m<strong>as</strong>s spectra<br />

were all obta<strong>in</strong>ed with 500 accumulat<strong>ion</strong>s due<br />

to the low <strong>ion</strong> concentrat<strong>ion</strong>s and a m<strong>as</strong>s range<br />

NO(g)<br />

NO(g)<br />

NO(g)<br />

NO + (H 2 O) n<br />

+<br />

+<br />

+<br />

of 10 and 250 amu.<br />

H + (H 2 O) n<br />

NH + 4 (H 2 O) n 10 mg/m 3<br />

Drift Time (ms)<br />

H 2O +<br />

+<br />

N 4<br />

e -<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry<br />

8.3 mg/m 3<br />

5.8 mg/m 3<br />

4.0 mg/m 3<br />

3.0 mg/m 3<br />

0 mg/m 3<br />

RESULTS AND DISCUSSION<br />

Reactant Ion Peaks and NO Reagent<br />

G<strong>as</strong><br />

The <strong>mobility</strong> spectra for positive polarity<br />

with clean air, without any NO <strong>reagent</strong><br />

g<strong>as</strong>, at 250°C showed the expected<br />

patterns of reactant <strong>ion</strong>s <strong>as</strong> identified by<br />

Kar<strong>as</strong>ek et al <strong>as</strong> NH 4+ (H 2O) n, NO + (H 2O) n,<br />

and H 3O + (H 2O) n where n w<strong>as</strong> calculated<br />

here to be 2-3 b<strong>as</strong>ed upon comparisons<br />

of reduced mobilities <strong>as</strong> shown <strong>in</strong> Figure<br />

1 (bottom spectrum). The <strong>in</strong>tensities of<br />

NH 4+ (H 2O) n, NO + (H 2O) n, were low here<br />

compared to those of others and had<br />

reached these low levels after months of<br />

flow under only cleaned g<strong>as</strong> and<br />

temperatures of 250°C. An addit<strong>ion</strong> of<br />

NO(g) from 1 to 60 mg/m 3 <strong>in</strong> the<br />

<strong>ion</strong>izat<strong>ion</strong> reg<strong>ion</strong> of the drift tube caused<br />

and <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> <strong>in</strong>tensity for the peak for<br />

NO + (H 2O) n <strong>as</strong> shown (and labelled) <strong>in</strong><br />

spectra <strong>in</strong> Figure 1. This response toward<br />

NO(g) w<strong>as</strong> proport<strong>ion</strong>al (bottom to top spectra<br />

<strong>in</strong> Figure 1) and the <strong>in</strong>cre<strong>as</strong>e <strong>in</strong> peak height for<br />

NO + (H 2O) n w<strong>as</strong> accompanied by decre<strong>as</strong>es <strong>in</strong><br />

the peak area for H 3O + (H 2O) n. This can be<br />

understood <strong>as</strong> conservat<strong>ion</strong> of charge with<br />

charge transferred or relocated <strong>in</strong> the<br />

NO + (H 2O) n peak; however, these results do not<br />

disclose the pathway(s) for this change.<br />

Presumably, the <strong>in</strong>itial steps to form NO + (H 2O) n,<br />

could arise by one of several react<strong>ion</strong>s <strong>as</strong><br />

shown <strong>in</strong> Equat<strong>ion</strong>s 6-8:<br />

Though the exact pathway is not known for the<br />

format<strong>ion</strong> of NO + (H 2O) n <strong>in</strong> these studies, the<br />

practical importance is that the NO(g) could be<br />

controlled and an alternate reactant <strong>ion</strong>,<br />

NO + (H 2O) n, could replace up to 90% of the<br />

standard reactant <strong>ion</strong> H 3O + (H 2O) n.<br />

The yield or efficiency of convert<strong>in</strong>g NO(g) <strong>in</strong>to<br />

NO + w<strong>as</strong> found to be temperature dependent<br />

<strong>as</strong> shown <strong>in</strong> Figure 2 <strong>in</strong> plots of peak <strong>in</strong>tensity<br />

for NO + versus NO(g) <strong>in</strong> the <strong>ion</strong> source<br />

atmosphere. At 250°C, the response curve for<br />

NO + w<strong>as</strong> sharp suggest<strong>in</strong>g a high yield with the<br />

react<strong>ion</strong>(s) responsible for <strong>ion</strong>izat<strong>ion</strong> of NO(g).<br />

As the temperature w<strong>as</strong> decre<strong>as</strong>ed, the slope<br />

for plots of peak <strong>in</strong>tensity versus NO(g) also<br />

NO +<br />

NO +<br />

NO +<br />

+<br />

+<br />

+<br />

H 2O<br />

2 N 2<br />

2 e -<br />

(6)<br />

(7)<br />

(8)<br />

decre<strong>as</strong>ed. Initially, this change w<strong>as</strong> gradual;


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 27<br />

Intensity of NO +<br />

T=250°C<br />

T=225°C<br />

T=200°C<br />

T=150°C<br />

T=175°C<br />

T=100°C<br />

0 33 66 100 132 166<br />

NO(g) (mg/m 3 )<br />

T=125°C<br />

Figure 2:<br />

Peak <strong>in</strong>tensity for NO + versus NO(g) at temperatures<br />

between 100 to 250°C.<br />

however, a dramatic change occurred <strong>in</strong> the<br />

reg<strong>ion</strong> between 125 and 100°C where the<br />

response curve became nearly flat. In all these<br />

experiments, total charge <strong>in</strong> the reactant <strong>ion</strong>s<br />

w<strong>as</strong> conserved and the peak <strong>in</strong>tensity for<br />

H 3O + (H 2O) n decl<strong>in</strong>ed <strong>as</strong> the peak <strong>in</strong>tensity<br />

<strong>in</strong>cre<strong>as</strong>ed for NO + (H 2O) n. At temperatures<br />

below 125°C, attempts to form NO + (H 2O) n <strong>as</strong> a<br />

<strong>reagent</strong> <strong>ion</strong>, even with excessive levels of<br />

<strong>reagent</strong> g<strong>as</strong> (140 mg/m 3 ), were unsuccessful<br />

<strong>as</strong> shown <strong>in</strong> Figure 3. This lack of format<strong>ion</strong> of<br />

NO + (H 2O) n at low temperature may be<br />

expla<strong>in</strong>ed us<strong>in</strong>g these possibilities:<br />

1. The precursor <strong>ion</strong>s needed to form NO +<br />

were not available at low temperature. That<br />

is, the precursor <strong>ion</strong>s were not formed <strong>in</strong><br />

the source reg<strong>ion</strong> of the drift tube.<br />

2. The NO + (H 2O) n may have been formed <strong>in</strong><br />

the source reg<strong>ion</strong> but underwent<br />

decomposit<strong>ion</strong> <strong>in</strong> the drift reg<strong>ion</strong>. At low<br />

temperatures, residence times <strong>in</strong> the drift<br />

reg<strong>ion</strong> <strong>in</strong>cre<strong>as</strong>ed so such losses might be<br />

pronounced at low temperatures.<br />

The first possibility w<strong>as</strong> explored by add<strong>in</strong>g<br />

2,4-lutid<strong>in</strong>e (which forms adduct <strong>ion</strong>s) at 100°C<br />

to the drift tube even though <strong>nitric</strong> <strong>oxide</strong><br />

reactant <strong>ion</strong>s were not evident. The<br />

expectat<strong>ion</strong> w<strong>as</strong> that even short lived reactant<br />

<strong>ion</strong>s would have opportunity to react with<br />

sample vapors. No adduct <strong>ion</strong>s were found<br />

and this suggested that the <strong>ion</strong>s needed for<br />

react<strong>ion</strong>s were not be<strong>in</strong>g formed. The second<br />

possibility w<strong>as</strong> explored by extend<strong>in</strong>g residence<br />

times for <strong>ion</strong>s at 125°C (where NO + (H 2O) n w<strong>as</strong><br />

observable) by lower<strong>in</strong>g the electric field<br />

strength on the drift reg<strong>ion</strong>. Ions of NO + (H 2O) n<br />

were observed even with comparatively long<br />

residence times <strong>in</strong> the drift reg<strong>ion</strong> discount<strong>in</strong>g<br />

the second possibility, namely, <strong>ion</strong> <strong>in</strong>stability<br />

with <strong>in</strong>cre<strong>as</strong>ed residence times, w<strong>as</strong> not too<br />

much of a considerat<strong>ion</strong>. S<strong>in</strong>ce NO + h<strong>as</strong> been<br />

formed under a range of temperatures <strong>in</strong> m<strong>as</strong>s<br />

<strong>spectrometry</strong> studies, the absence of NO+ <strong>in</strong><br />

air at ambient pressure below 125°C likely<br />

occurred through the g<strong>as</strong> ph<strong>as</strong>e <strong>ion</strong> molecule<br />

react<strong>ion</strong>s that precede or compete with<br />

format<strong>ion</strong> of NO + (H 2O) n <strong>in</strong> the <strong>ion</strong> source<br />

reg<strong>ion</strong>. For example, <strong>ion</strong>-cluster format<strong>ion</strong> is<br />

promoted at low temperatures and necessary<br />

precursors to form NO + <strong>in</strong> a beta source, i.e.,<br />

+<br />

N 4+ , N 2 or H 2O + may have been removed<br />

through react<strong>ion</strong>s with water at 100°C at a rate<br />

f<strong>as</strong>ter than product<strong>ion</strong> of NO + w<strong>as</strong> possible.<br />

Regardless of the causes for this <strong>ion</strong> behavior,<br />

these results offer practical guidel<strong>in</strong>es for<br />

operat<strong>in</strong>g IMS drift tubes with NO <strong>reagent</strong> g<strong>as</strong>:<br />

<strong>nitric</strong> <strong>oxide</strong> is not a viable <strong>reagent</strong> g<strong>as</strong> at<br />

temperatures below 125°C. Thus, further<br />

studies to <strong>as</strong>certa<strong>in</strong> the usefulness of<br />

NO + (H 2O) n <strong>as</strong> an alternate reactant <strong>ion</strong> were<br />

made with drift tube temperatures ≥125°C.<br />

Mobility Spectra for Prospective Chemical<br />

Standards <strong>in</strong> IMS Us<strong>in</strong>g NO Reagent G<strong>as</strong><br />

Reduced mobilities today are generally<br />

calculated from formul<strong>as</strong> for electric field<br />

strength, drift tube dimens<strong>ion</strong>s, ambient<br />

pressure, drift tube temperature and others.<br />

S<strong>in</strong>ce some of these terms may have<br />

significant uncerta<strong>in</strong>ty, chemical standards<br />

have been proposed <strong>as</strong> a means of calibrat<strong>in</strong>g<br />

drift scales worldwide (14). In the discuss<strong>ion</strong><br />

below, f<strong>in</strong>d<strong>in</strong>gs are described for three<br />

prospective chemical standards (15) and the<br />

effects of NO + (H 2O) n on <strong>mobility</strong> spectra and<br />

g<strong>as</strong> ph<strong>as</strong>e <strong>ion</strong> chemistry are shown.<br />

2,4-Lutid<strong>in</strong>e (2,4-Dimethyl pyrid<strong>in</strong>e)<br />

The react<strong>ion</strong> chemistry of 2,4-lutid<strong>in</strong>e proceeds<br />

via proton transfer to form a protonated<br />

monomer MH + (H 2O) n (another product <strong>ion</strong>, a<br />

proton bound dimer, is thermally stable only at<br />

temperatures below 100°C and when vapor<br />

levels of 2,4-lutid<strong>in</strong>e are <strong>in</strong>cre<strong>as</strong>ed). Thus, the<br />

product <strong>ion</strong> peak at 200°C <strong>as</strong> seen <strong>in</strong> Figure 4<br />

(bottom trace) w<strong>as</strong> m<strong>as</strong>s-identified <strong>as</strong><br />

MH + (H 2O) n with a drift time of 6.58 ms (Table<br />

2). The calculated value for K o w<strong>as</strong> 2.06<br />

cm 2 /Vsec and this comparable to accepted<br />

values of 1.95 cm 2 /Vsec; this demonstrates the<br />

magnitude of uncerta<strong>in</strong>ty <strong>in</strong> calculat<strong>ion</strong>s of K o<br />

values and the value of chemical standards for<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 28<br />

calibrat<strong>ion</strong> of <strong>mobility</strong> axes (15). Addit<strong>ion</strong> of<br />

NO(g) <strong>in</strong> the <strong>ion</strong> source resulted <strong>in</strong> the<br />

format<strong>ion</strong> of <strong>in</strong>cre<strong>as</strong>ed <strong>in</strong>tensity of NO + (H 2O) n<br />

<strong>as</strong> shown <strong>in</strong> the second trace of Figure 4 and <strong>in</strong><br />

a new product <strong>ion</strong> peak that is partially resolved<br />

~6.93 ms. As the amount of NO(g) w<strong>as</strong><br />

<strong>in</strong>cre<strong>as</strong>ed, both the NO + (H 2O) n and this<br />

addit<strong>ion</strong>al product <strong>ion</strong> <strong>in</strong>cre<strong>as</strong>ed <strong>in</strong> <strong>in</strong>tensity. At<br />

the highest level of NO(g) used <strong>in</strong> this<br />

experiment, the new product <strong>ion</strong> w<strong>as</strong> more<br />

<strong>in</strong>tense than the protonated monomer <strong>as</strong> seen<br />

<strong>in</strong> Figure 4 (top plot). The <strong>mobility</strong> for this <strong>ion</strong><br />

(1.85 cm 2 /Vsec) w<strong>as</strong> smaller than that for the<br />

protonated monomer suggest<strong>in</strong>g a <strong>ion</strong> size<br />

larger than that for MH + (H 2O) n. S<strong>in</strong>ce NO h<strong>as</strong> a<br />

strong b<strong>in</strong>d<strong>in</strong>g energy with pyrid<strong>in</strong>es, an adduct<br />

<strong>ion</strong> of M*NO + w<strong>as</strong> considered plausible <strong>as</strong><br />

shown <strong>in</strong> Equat<strong>ion</strong> 5 and w<strong>as</strong> m<strong>as</strong>s identified<br />

along with(M-H) + NO <strong>as</strong> shown <strong>in</strong> Table 2. This<br />

l<strong>as</strong>t <strong>ion</strong> may have formed <strong>in</strong> the supersonic<br />

expans<strong>ion</strong> reg<strong>ion</strong> where collis<strong>ion</strong> <strong>in</strong>duced<br />

dissociat<strong>ion</strong> is known to occur and may have<br />

arisen via Equat<strong>ion</strong> 9:<br />

Attempts to isolate the MH + from MNO + us<strong>in</strong>g<br />

the second shutter of the drift tube w<strong>as</strong><br />

unsuccessful <strong>in</strong> <strong>in</strong>ject<strong>ion</strong> specific <strong>ion</strong>s <strong>in</strong>to the<br />

MS ow<strong>in</strong>g to close drift times for these two <strong>ion</strong>s.<br />

had a drift time of 9.19 ms or K o value of 1.40<br />

cm 2 /Vsec (referenced to 2,4-lutid<strong>in</strong>e). This w<strong>as</strong><br />

m<strong>as</strong>s-identified <strong>as</strong> MH + <strong>as</strong> shown <strong>in</strong> Table 2.<br />

When NO(g) w<strong>as</strong> used <strong>as</strong> the <strong>reagent</strong> g<strong>as</strong>,<br />

addit<strong>ion</strong>al peaks appeared at 8.08 and 8.87 ms<br />

or K o values of 1.59 and 1.45 cm 2 /Vsec,<br />

respectively (referenced to 2,4-lutid<strong>in</strong>e). These<br />

peaks <strong>in</strong>cre<strong>as</strong>ed <strong>in</strong> <strong>in</strong>tensity with <strong>in</strong>cre<strong>as</strong>ed<br />

levels of <strong>nitric</strong> <strong>oxide</strong> and correspond<strong>in</strong>gly, the<br />

<strong>in</strong>tensity of the protonated monomer decl<strong>in</strong>ed.<br />

The identities of these peaks were<br />

m<strong>as</strong>s-identified <strong>as</strong> fragment <strong>ion</strong>s of the<br />

compound and <strong>in</strong>cluded (M-CH 3) + , M-t(butyl) + ,<br />

and M-t(butyl) + HNO (see Table 2). There w<strong>as</strong><br />

no peaks with drift times >10 ms, thus, there is<br />

no evidence for an adduct <strong>ion</strong> <strong>as</strong> seen with<br />

2,4-lutid<strong>in</strong>e or rather no adduct <strong>ion</strong> had a<br />

lifetime sufficiently long to survive the drift or<br />

<strong>ion</strong> source reg<strong>ion</strong>s. Tertiary butyl groups have<br />

been found to undergo fragmentat<strong>ion</strong> with<br />

NO(g) <strong>in</strong> chemical <strong>ion</strong>izat<strong>ion</strong> MS studies and so<br />

agree with these f<strong>in</strong>d<strong>in</strong>gs.<br />

In summary, DTBP undergoes fragmentat<strong>ion</strong><br />

through hydrocarbon cha<strong>in</strong> losses and this<br />

apparently occurs <strong>in</strong> the react<strong>ion</strong> reg<strong>ion</strong> (i.e.,<br />

k<strong>in</strong>etically f<strong>as</strong>t compared to <strong>ion</strong> drift). This is<br />

notably more complex than 2,4-lutid<strong>in</strong>e and<br />

NO M NO +<br />

(M-H)*NO +<br />

+<br />

HNO<br />

(9)<br />

cluster <strong>ion</strong><br />

adduct <strong>ion</strong><br />

Di-t-Butyl Pyrid<strong>in</strong>e<br />

The <strong>mobility</strong> spectrum for DTBP with hydrate<br />

proton reactant <strong>ion</strong>s is shown <strong>in</strong> Figure 6<br />

(bottom trace) for 200°C where the product <strong>ion</strong><br />

creates possibilities of a temperature<br />

TABLE 2:<br />

M<strong>as</strong>s-Identified product <strong>ion</strong>s from IMS and IMS/MS of test chemicals with <strong>reagent</strong> <strong>ion</strong>s of hydrated<br />

proton, H 3O + (H 2O) n, and of NO + (H 2O) n.<br />

Chemical<br />

2,4-Lutid<strong>in</strong>e<br />

DTBP<br />

H 3O + (H 2O) n<br />

m/z (amu)<br />

108<br />

192<br />

Ion<br />

MH +<br />

MH +<br />

m/z (amu)<br />

106<br />

107<br />

136<br />

137<br />

136<br />

164<br />

177<br />

192<br />

223<br />

NO + (H 2O) n<br />

Ion<br />

M-H +<br />

M +<br />

M-H + (NO)<br />

MH + (NO)<br />

(M-t-butyl) +<br />

(M-t-butyl) + NO<br />

+<br />

M-CH 3<br />

MH +<br />

MH + (NO) (trace)<br />

DMMP<br />

125<br />

249<br />

MH +<br />

M 2H +<br />

125<br />

249<br />

MH +<br />

M 2H +<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 29<br />

Intensity<br />

Intensity<br />

H + (H NO + 2 O) n (H 2 O) n<br />

35.7 mg/m 3<br />

2 4 6 8 10 12 14 16 18<br />

H + (H 2 O) n<br />

NO + (H 2 O) n<br />

Drift Time (ms)<br />

2 4 6 8 10 12 14 16 18<br />

Drift Time (ms)<br />

15.0 mg/m 3<br />

4.9 mg/m 3<br />

0 mg/m 3<br />

Figure 3: Mobility spectra for 2,4-Lutid<strong>in</strong>e at 200°C with<br />

vary<strong>in</strong>g concentrat<strong>ion</strong>s of <strong>nitric</strong> <strong>oxide</strong>.<br />

35.7 mg/m 3<br />

15.0 mg/m 3<br />

4.9 mg/m 3<br />

0 mg/m 3<br />

Figure 4:<br />

Mobility spectra for DTBP at 200°C with vary<strong>in</strong>g<br />

concentrat<strong>ion</strong>s of <strong>nitric</strong> <strong>oxide</strong>.<br />

dependence. The <strong>mobility</strong> spectra were<br />

explored up to 250°C without substantial<br />

changes <strong>in</strong> profiles.<br />

the product <strong>ion</strong> w<strong>as</strong> unchanged suggest<strong>in</strong>g<br />

that neither cluster <strong>ion</strong>s nor fragment <strong>ion</strong>s<br />

were formed. S<strong>in</strong>ce b<strong>in</strong>d<strong>in</strong>g energies are<br />

not available for NO + with DMMP or related<br />

compounds, there is no precedents or<br />

support<strong>in</strong>g observat<strong>ion</strong>s for these results.<br />

However, the <strong>ion</strong>izat<strong>ion</strong> potential of this<br />

molecule is well above the recomb<strong>in</strong>at<strong>ion</strong><br />

potential of <strong>nitric</strong> <strong>oxide</strong> and this makes<br />

charge exchange impossible. Molecules with<br />

ether groups have been seen to react by<br />

hydride abstract<strong>ion</strong>, but the proximity of the<br />

phosphorous makes these predict<strong>ion</strong>s<br />

unreliable. When analyzed, DMMP showed<br />

no change <strong>in</strong> either <strong>in</strong>tensity or drift time of<br />

the product peak when <strong>nitric</strong> <strong>oxide</strong> w<strong>as</strong><br />

<strong>in</strong>troduced. Studies with m<strong>as</strong>s-identificat<strong>ion</strong><br />

of the <strong>ion</strong>s by IMS/MS (Table 2) confirmed<br />

that no product <strong>ion</strong>s with DMMP were<br />

formed or were sufficiently stable to survive<br />

p<strong>as</strong>sage through the <strong>ion</strong> source and drift<br />

reg<strong>ion</strong>s. Indeed, peak shape suggests that<br />

the any <strong>ion</strong> formed between DMMP and NO +<br />

such <strong>as</strong> M*NO + would have decomposed<br />

before <strong>in</strong>ject<strong>ion</strong> <strong>in</strong>to the drift reg<strong>ion</strong>.<br />

CONCLUSIONS<br />

The <strong>reagent</strong> <strong>ion</strong> chemistry of a <strong>mobility</strong><br />

spectrometer w<strong>as</strong> changed from ord<strong>in</strong>ary<br />

proton b<strong>as</strong>ed <strong>ion</strong> chemistry to react<strong>ion</strong>s<br />

b<strong>as</strong>ed upon charge exchange, adduct<br />

format<strong>ion</strong> and hydride abstract<strong>ion</strong>.<br />

Consequently, tradit<strong>ion</strong>al drift tube might be<br />

configured for the <strong>ion</strong>izat<strong>ion</strong> of chemicals<br />

best accomplished by these react<strong>ion</strong>s rather<br />

than proton b<strong>as</strong>ed react<strong>ion</strong>s while still<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the common beta emitt<strong>in</strong>g<br />

NO + (H 2 O) n<br />

H + (H 2 O) n 35.7 mg/m 3<br />

Dimethylmethylphosphonate (DMMP)<br />

Mobility spectra for DMMP are shown <strong>in</strong><br />

Figure 5 and the react<strong>ion</strong> chemistry with the<br />

react<strong>ion</strong> <strong>ion</strong> H + (H 2O) n is known to produce<br />

protonated monomers and proton bound<br />

dimers. A protonated monomer is apparent <strong>in</strong><br />

Figure 5 (bottom trace) at a drift time of 6.61<br />

ms or K o values of 1.94 cm 2 /Vs and the<br />

proton bound dimer is seen at drift time of<br />

9.37 ms or K o values of 1.37 cm 2 /Vs<br />

(referenced to 2,4-lutid<strong>in</strong>e). Incre<strong>as</strong>es <strong>in</strong><br />

NO(g) at 250°C had the expected <strong>in</strong>fluence<br />

on the reactant <strong>ion</strong> peak but the drift time for<br />

Intensity<br />

2 4 6 8 10 12 14 16 18<br />

Drift Time (ms)<br />

15.0 mg/m 3<br />

4.9 mg/m 3<br />

0 mg/m 3<br />

Figure 5:<br />

Mobility spectra for DMMP at 200°C with vary<strong>in</strong>g<br />

concentrat<strong>ion</strong>s of <strong>nitric</strong> <strong>oxide</strong>.<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry


Eiceman, G.A. et al.: "Nitric Oxide <strong>as</strong> Reagent G<strong>as</strong> ...”, IJIMS 5(2002)1, 22-30, p. 30<br />

sources such <strong>as</strong> 63-Ni. The creat<strong>ion</strong> of the<br />

NO + <strong>reagent</strong> <strong>ion</strong> w<strong>as</strong> unfavorable below 125°C<br />

and concentrat<strong>ion</strong>s of 10-600 µg/m 3 for NO(g)<br />

were needed <strong>in</strong> the source for other<br />

temperatures to obta<strong>in</strong> the desired <strong>ion</strong>izat<strong>ion</strong><br />

chemistry.<br />

REFERENCES<br />

[1] F.W. Kar<strong>as</strong>ek, "Pl<strong>as</strong>ma Chromatography", Anal.<br />

Chem. 46(8), 710A (1974)<br />

[2] S.H. Kim, K.R. Betty and F.W. Kar<strong>as</strong>ek, Anal.<br />

Chem. 50(14), 2006 (1978)<br />

[3] C.J. Proctor and J.F.J. Todd, Anal. Chem. 56(11),<br />

1794-1797 (1984).<br />

[4] G.A. Eiceman, Y-F. Wang, L. Garcia-Gonzalez,<br />

C.S. Harden, and D.B. Shoff, Anal. Chim. Acta<br />

306(1), 21-33 (1995).<br />

[5] F. Jelus, and B. Munson, Anal. Chem., 46, 729,<br />

(1974)<br />

[6] D. Hunt, C. N. McEwen and T. M. Harvey, Anal.<br />

Chem., 11, 1730, (1975)<br />

[7] I. Jard<strong>in</strong>e and C. Fenselau, Anal. Chem., 47, 730,<br />

(1975)<br />

[8] D. Hunt and T. M. Harvey, Anal. Chem., 47, 2136,<br />

(1975)<br />

[9] N. E<strong>in</strong>olf and B. Munson, Int. J. M<strong>as</strong>s Spectrom.<br />

Ion Phys., 9, 141, (1972)<br />

[10] B. Jelus, B. Munson, and C. Fenselau, Biomedical<br />

M<strong>as</strong>s Spectrometry, 1, 96, (1974)<br />

[11] D. Hunt, T. M. Harvey, Anal. Chem., 47, 1965,<br />

(1975)<br />

[12] S.C. Subba Rao and C. Fenselau, Anal. Chem. 50,<br />

511, (1978)<br />

[13] F.W. Kar<strong>as</strong>ek and D.W. Denney, Anal. Chem., 46,<br />

633, (1974).<br />

[14] G.A. Eiceman, Internat<strong>ion</strong>al Workshop <strong>in</strong> Ion<br />

Mobility Spectometry Mesalaro NM 1992<br />

[15] J. Stone, E.G. Nazarov, and G.A. Eiceman,<br />

submitted.<br />

ACKNOWLEDGEMENTS<br />

We are grateful to Don Shoff and Steve Harden<br />

for cooperat<strong>ion</strong> <strong>in</strong> early studies by m<strong>as</strong>s<br />

<strong>spectrometry</strong>.<br />

Copyright © 2002 by Internat<strong>ion</strong>al Society for Ion Mobility Spectrometry

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!