07.01.2015 Views

Volume / tomas 28(3) - Sodininkystė ir daržininkystė - Sodininkystės ...

Volume / tomas 28(3) - Sodininkystė ir daržininkystė - Sodininkystės ...

Volume / tomas 28(3) - Sodininkystė ir daržininkystė - Sodininkystės ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lietuvos sodininkystĖs <strong>ir</strong> darŽininkystĖs instituto <strong>ir</strong><br />

lietuvos ŽemĖs Ūkio universiteto mokslo darbai<br />

Scientific works of the Lithuanian institute of<br />

horticulture AND lITHUANIAN UNIVERSITY OF AGRICULTURE<br />

SodininkystĖ <strong>ir</strong> darŽininkystĖ<br />

<strong>28</strong>(3)<br />

Eina nuo 1983 m.<br />

Published since 1983<br />

Babtai 2009


UDK 634/635 (06)<br />

Redaktorių kolegija<br />

Editorial Board<br />

Doc. dr. Česlovas BOBINAS – p<strong>ir</strong>mininkas (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (LSDI, biomedicinos mokslai, agronomija),<br />

dr. Edite KAUFMANE (Latvija, Dobelės sodo augalų selekcijos stotis,<br />

biomedicinos mokslai, biologija),<br />

dr. Aleksandras KMITAS (LŽŪU, biomedicinos mokslai, agronomija),<br />

dr. Laimutis RAUDONIS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Vidmantas STANYS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Andrzej SADOWSKI (Varšuvos ŽŪA, biomedicinos mokslai, agronomija),<br />

dr. Audrius SASNAUSKAS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIČIUS (LŽŪU, biomedicinos mokslai, agronomija).<br />

Redakcinė mokslinė taryba<br />

Editorial Scientific Council<br />

Doc. dr. Česlovas BOBINAS – p<strong>ir</strong>mininkas (Lietuva),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (Lietuva), dr. Kalju KASK (Estija),<br />

dr. Edite KAUFMANE (Latvija), prof. habil. dr. Zdzisław KAWECKI (Lenkija),<br />

prof. habil.dr. Albinas LUGAUSKAS (Lietuva), habil. dr. Maria LEJA (Lenkija),<br />

prof. habil. dr. Lech MICHALCZUK (Lenkija), prof. habil. dr. Andrzej SADOWSKI (Lenkija),<br />

dr. Audrius SASNAUSKAS (Lietuva), prof. dr. Ala SILAJEVA (Ukraina),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIČIUS (Lietuva),<br />

prof. habil. dr. Vidmantas STANYS (Lietuva),<br />

prof. dr. Viktor TRAJKOVSKI (Švedija).<br />

Redakcijos adresas:<br />

Lietuvos sodininkystės <strong>ir</strong> daržininkystės institutas<br />

LT-54333 Babtai, Kauno r.<br />

Tel. (8 37) 55 52 10<br />

Faksas (8 37) 55 51 76<br />

El. paštas institutas@lsdi.lt<br />

Address of the Editorial Office:<br />

Lithuanian Institute of Horticulture<br />

LT-54333 Babtai, Kaunas district, Lithuania<br />

Phone: +370 37 55 52 10<br />

Telefax: +370 37 55 51 76<br />

E-mail institutas@lsdi.lt<br />

Leidinio adresas internete www.lsdi.lt<br />

Leidinys cituojamas CAB Abstracts, EBSCO Publishing, VINITI duomenų bazėse<br />

ISSN 0236-4212 © Lietuvos sodininkystės <strong>ir</strong> daržininkystės institutas, 2009<br />

© Lietuvos žemės ūkio universitetas, 2009


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Controling pear psylla with Abamectin in Bulgaria<br />

Veselin Arnaudov, Hristina Kutinkova<br />

Institute of Fruit Growing, “Ostromila” 12, 4004 Plovdiv, Bulgaria,<br />

e-mail vaarnaudov@abv.bg<br />

Considering pear psylla (Cacopsylla pyri L.) resistance to insecticides routinely used in<br />

Bulgaria the study was undertaken aimed at improving the system of this pest control. The<br />

experiments were carried out in Plovdiv region, South-Central Bulgaria on ‘Butt<strong>ir</strong>a Precoce<br />

Morettini’ and ‘Beurre Hardy’ pear trees in 2007–2008. Efficacy of a. i. Abamectin of a pesticide<br />

supposed to be more selective, not harmful to beneficial fauna, was tested against the<br />

background of a. i. Amitraz as commonly used insecto-acaricide. Post-bloom applications<br />

of Abamectin provide a significant control of summer populations of pear psylla. There are<br />

needed two consecutive sprays of Abamectin at the rate of 240 g a. i. per ha applied after<br />

bloom on young nymphs of the second generation. These treatments do not kill summer adult<br />

forms; however, cause a significant reduction in density of summer pear psylla eggs and<br />

nymphs. Abamectin may be recommended for the integrated pest management programmes<br />

in pear production.<br />

Key words: Abamectin, adults, Amitraz, beneficial fauna, Cacopsylla pyri, eggs, efficacy,<br />

nymphs, summer populations.<br />

Introduction. Two psyllid species Cacopsylla pyri (L.) and Cacopsylla pyrisuga<br />

(Foster) (Hemiptera: Psyllidae) have been reported to cause damage to pear trees in<br />

fruit growing regions of Bulgaria; however, only C. pyri is considered as the species<br />

of economic importance in commercial pear orchards (Harizanov, 1966). C. pyri is<br />

key pest of pear in Bulgaria as well as in other European countries. Its extent and<br />

intensity of damage caused in Bulgarian orchards over the last 20 years has considerably<br />

increased. The pear psylla was particularly abundant in localities, which in<br />

the past had been heavily sprayed with non-selective insecticides – probably due to<br />

devastation of the natural enemies.<br />

Pear psylla is difficult to control because of its ability to develop resistance to<br />

insecticides from various groups, including organophosphates and pyrethroids. Since<br />

the mid-1980’s, populations of C. pyri in Bulgaria, as well as in many other European<br />

countries were found to be resistant to a broad spectrum of insecticides (Harizanov,<br />

1982; Berrada et al., 1995; Arnauodov, 2001; Buès, Boudinhon, 2002; Buès et al.,<br />

2003). Cross-resistance to organophosphates, pyrethroids and Amitraz has been found<br />

in populations of Cacopsylla pyri in Europe (Buès et al., 1999). Kocourek and Stará<br />

3


(2006) reported on resistance of C. pyri populations originated from an orchard intensely<br />

treated with Nomolt 15 SC (teflubenzuron) in Czech Republic.<br />

According to many growers in Bulgaria, treatments with different insecticides<br />

do not provide an expected control of C. pyri, with the exception of insecto-acaricide<br />

Amitraz. Amitraz was the only product that lately ensured an adequate protection<br />

from C. pyri in our country. After prohibiting its use in 2005, the most common active<br />

ingredient involved is Abamectin, a mixture of 80 % avermectin B-1 a and 20 %<br />

avermectin B-1 b, as alternative means for control of the pest.<br />

Biological control by beneficial entomo- and acarofauna present in the orchards<br />

offers at least a partial solution of the problem; however, the use of non-selective<br />

pesticides greatly reduces effectiveness of predators and parasitoids (Burts, Beers,<br />

1994). The<strong>ir</strong> substitution by soft or selective pesticides allows more effective biological<br />

control (Burts, Evereti, 1983). Abamectin is high effective against pear psylla<br />

and soft to some beneficial arthropods, naturally controlling population of this pest<br />

(Nguyen, Berrada, 1994).<br />

The aim of the present study was to assess the efficacy of Abamectin used for<br />

control of Cacopsylla pyri, in order to improve the system of this pest control.<br />

Object, methods and conditions. Field studies were carried out in the region of<br />

Plovdiv in a commercial orchard, on ‘Butt<strong>ir</strong>a Precoce Morettini’ and ‘Beurre Hardy’<br />

pear trees in 2007–2008. Efficacy of Abamectin in controlling Cacopsylla pyri was<br />

compared with that of Amitraz, traditionally used insecto-acaricide. Both insecticides<br />

were applied at the rates recommended by the<strong>ir</strong> manufacturers: L<strong>ir</strong>osect® 2 EC<br />

(20 g/l Abamectin) at a dose 1.2 l per ha (240 g a. i. per ha) and Mitac® 20 EC (20 %<br />

amritaz) at a dose 2.0 l per ha (400 g a. i. per ha). The insecticides were applied twice,<br />

at post-bloom against eggs and newly hatched nymphs of the second generation of<br />

C. pyri – on May 3 and May 13 in 2007 and on May 9 and May 19 in 2008. The insecticides<br />

were applied with “Perla 9” sprayer, using 1 000 L of liquid per ha.<br />

The experiments were set up a block random scheme in 3 variants and 3 replicates<br />

(by four trees for each replicate) for each variant, on 6-year-old pear trees with<br />

spindle-shaped form, from ‘Beurre Hardy’ cultivar.<br />

The results are given through a d<strong>ir</strong>ect counting of living nymphs and vital eggs<br />

on 20 fruit clusters per replicate, including adjacent leaf rosettes and shoots (5 fruit<br />

clusters per tree) sampled from different parts of tree crowns. The evaluation was<br />

carried out before the f<strong>ir</strong>st treatment and on the 3 rd and 9 th day after each insecticide<br />

treatment by inspecting the sampled fruit clusters in the laboratory by binocular and<br />

registering the average number of eggs or nymphs per cluster.<br />

Biological efficacy was expressed as a percentage, and was calculated according<br />

to the formula of Henderson and Tilton (1955). The data were statistically analyzed<br />

by Duncan’s test (Steele, Torrie, 1980).<br />

Results. In 2007, Abamectin (L<strong>ir</strong>osect ® 2 EC) applied twice in the post-bloom<br />

period against the second generation of C. pyri demonstrated a high biological efficacy<br />

against newly hatched nymphs of this pest (on the average 87.6–79.9 %), what<br />

was close to the efficacy of Amitraz (Mitac ® 20 EC) varying from 87.1 to 66.4 % on<br />

the average (Table 1).<br />

4


Table 1. Efficacy of the pesticides tested for control of Cacopsylla pyri nymphs<br />

in 2007<br />

1 lentelė. Cacopsylla pyri nimfų naikinimui naudotų pesticidų efektyvumas, 2007 m.<br />

Insecticides<br />

Insekticidai<br />

02.05<br />

T - 1<br />

Number of nymphs of C. pyri on average per fruit cluster and<br />

biological efficacy of the insecticides<br />

Vidutinis C. pyri nimfų skaičius ant vaisių kekės <strong>ir</strong><br />

biologinis insekticidų efektyvumas (%)<br />

06.05<br />

T + 3<br />

12.05<br />

T + 9<br />

5<br />

13.05<br />

T<br />

16.05<br />

T + 3<br />

22.05<br />

T + 9<br />

efficacy<br />

efektyvumas<br />

(%) 06–22.05<br />

Number of nymphs of C. pyri<br />

C. pyri nimfų skaičius<br />

L<strong>ir</strong>osect ® 2 EC 21.8 1.5 26.2 - 1.5 16.6 -<br />

Mitac ® 20 EC 17.5 5.4 14.7 - 6.8 10.8 -<br />

Control 20.5 62.7 109.3 - 210.3 186.4 -<br />

Kontrolė<br />

Biological efficacy<br />

Biologinis efektyvumas (%)<br />

L<strong>ir</strong>osect ® 2 EC - 97.75 a 77.46 a - 97.02 a 62.85 a 84.52 a<br />

Mitac ® 20 EC - 89.91 a 84.25 a - 75.96 b 56.92 b 76.76 a<br />

The means followed by the same letter do not differ significantly from one another (p = 0.05)<br />

Ta pačia raide pažymėtos reikšmės patikimai viena nuo kitos nesisk<strong>ir</strong>ia (p = 0,05)<br />

Similar results were obtained in 2008. Аbamectin applied twice after bloom<br />

showed a high biological efficacy against newly born nymphs of C. pyri – on the average<br />

82.8–75.6 % (Table 2). It was nearly identical to the efficacy of Amitraz (on the average<br />

81.0–54.4 %). Тhe efficacy of tested insecticides against newly hatched nymphs of<br />

C. pyri varied throughout the ent<strong>ir</strong>e period of study on the average between 84.5 and<br />

76.8 % for Abamectin and between on the average 79.2 and 67.7 % for Amitraz.<br />

Table 2. Efficacy of the pesticides tested for control of Cacopsylla pyri nymphs<br />

in 2008<br />

2 lentelė. Cacopsylla pyri nimfų naikinimui naudotų pesticidų efektyvumas, 2008 m.<br />

Insecticides<br />

Insekticidai<br />

Number of nymphs of C. pyri in average per fruit cluster and biological<br />

efficacy of the insecticides<br />

Vidutinis C. pyri nimfų skaičius ant vaisių kekės <strong>ir</strong> biologinis insekticidų efektyvumas<br />

(%)<br />

08.05<br />

T - 1<br />

11.05<br />

T + 3<br />

18.05<br />

T + 9<br />

19.05<br />

T<br />

22.05<br />

T + 3<br />

<strong>28</strong>.05<br />

T + 9<br />

efficacy<br />

efektyvumas<br />

(%) 11–<strong>28</strong>.05<br />

1 2 3 4 5 6 7 8<br />

Number of nymphs of C. pyri<br />

C. pyri nimfų skaičius<br />

L<strong>ir</strong>osect ® 2 EC 9.5 0 49.8 - 0.8 13.8 -<br />

Mitac ® 20 EC 7.5 1.0 <strong>28</strong>.0 - 3.6 19.0 -<br />

Control<br />

Kontrolė<br />

8.0 33.0 86.1 - 110.7 72 -


Table 2 continued<br />

2 lentelės tęsinys<br />

1 2 3 4 5 6 7 8<br />

Biological efficacy<br />

Biologinis efektyvumas (%)<br />

L<strong>ir</strong>osect ® 2 EC - 100 a 51.25 a - 98.75 a 66.86 a 79.21 a<br />

Mitac ® 20 EC - 96.77 a 65.31 a - 90.00 a 18.85 b 67.73 a<br />

The means followed by the same letter do not differ significantly from one another (p = 0.05)<br />

Ta pačia raide pažymėtos reikšmės patikimai viena nuo kitos nesisk<strong>ir</strong>ia (p = 0,05)<br />

Abamectin was very different in respect to its insecticidal properties. Comparing<br />

this compound with Amitraz, a faster initial effect of Abamectin was noted. Its persistence<br />

was relatively shorter. Abamectin apparently remained active in leaf tissues<br />

for not more than 7–10 days. It doesn’t kill summer adults, albeit caused significant<br />

reductions in the density of summer pear psylla eggs and nymphs. The f<strong>ir</strong>st 2-instar<br />

nymphs of C. pyri were much more susceptible to both insecticides than the 3–5-instar<br />

nymphs of the pest.<br />

The biological efficacy of tested insecticides against the C. pyri eggs ranged in<br />

general for Abamectin from 62.6 to 13.9 % in 2007 and from 63.5 to 19.2 % in 2008,<br />

whereas for Amitraz from 58.3 to 7.0 % in 2007 and from 39.0 to 9.1 % in 2008.<br />

Compared to Amitraz, Abamectin demonstrated a higher biological efficacy against<br />

the C. pyri eggs (Tables 3 and 4).<br />

Table 3. Efficacy of the pesticides tested for control of Cacopsylla pyri eggs in<br />

2007<br />

3 lentelė. Cacopsylla pyri kiaušinėlių naikinimui naudotų pesticidų efektyvumas,<br />

2007 m.<br />

Insecticides<br />

Insekticidai<br />

Number of eggs of C. pyri in average per fruit cluster and biological<br />

efficacy of the insecticides<br />

Vidutinis C. pyri kiaušinėlių skaičius ant vaisių kekės <strong>ir</strong><br />

biologinis insekticidų efektyvumas (%)<br />

02.05<br />

T-1<br />

06.05<br />

T+3<br />

12.05<br />

T+9<br />

13.05<br />

T<br />

16.05<br />

T + 3<br />

22.05<br />

T + 9<br />

efficacy<br />

efektyvumas<br />

(%) 06–22.05<br />

Number of eggs of C. pyri<br />

C. pyri kiaušinėlių skaičius<br />

L<strong>ir</strong>osect ® 2 EC 141 216 129 - 90 45 -<br />

Mitac ® 20 EC 156 260 166 - 138 87 -<br />

Control 113 357 393 - 380 90 -<br />

Kontrolė<br />

Biological efficacy<br />

Biologinis efektyvumas (%)<br />

L<strong>ir</strong>osect ® 2 EC 51.51 a 73.69 a - 27.85 a 0 a 38.26 a<br />

Mitac ® 20 EC 47.25 b 69.40 b - 14.02 b 0 a 32.92 b<br />

The means followed by the same letter do not differ significantly from one another (p = 0.05)<br />

Ta pačia raide pažymėtos reikšmės patikimai viena nuo kitos nesisk<strong>ir</strong>ia (p = 0,05)<br />

6


Table 4. Efficacy of the pesticides tested for control of Cacopsylla pyri eggs in<br />

2008<br />

4 lentelė. Cacopsylla pyri kiaušinėlių naikinimui naudotų pesticidų efektyvumas,<br />

2008 m.<br />

Insecticides<br />

Insekticidai<br />

Number of eggs of C. pyri in average per fruit cluster and biological efficacy<br />

of the insecticides<br />

Vidutinis C. pyri kiaušinėlių skaičius ant vaisių kekės <strong>ir</strong> biologinis insekticidų<br />

efektyvumas (%)<br />

08.05<br />

T - 1<br />

11.05<br />

T + 3<br />

18.05<br />

T + 9<br />

19.05<br />

T<br />

22.05<br />

T + 3<br />

<strong>28</strong>.05<br />

T + 9<br />

efficacy<br />

efektyvumas<br />

(%) 11–<strong>28</strong>.05<br />

Number of eggs of C. pyri<br />

C. pyri kiaušinėlių skaičius<br />

L<strong>ir</strong>osect ® 2 EC 92 150 69 - 41 19 -<br />

Mitac ® 20 EC 68 181 90 - 71 37 -<br />

Control 49 155 171 - 165 39 -<br />

Kontrolė<br />

Biological efficacy<br />

Biologinis efektyvumas (%)<br />

L<strong>ir</strong>osect ® 2 EC - 48.46 a 78.51 a - 38.42 a 0 a 41.35 a<br />

Mitac ® 20 EC - 15.85 b 62.07 b - 18.24 b 0 a 24.04 b<br />

The means followed by the same letter do not differ significantly from one another (p = 0.05)<br />

Ta pačia raide pažymėtos reikšmės patikimai viena nuo kitos nesisk<strong>ir</strong>ia (p = 0,05)<br />

Тhe efficacy of tested insecticides against the C. pyri eggs varied throughout the<br />

period of study on the average between 41.4 and 38.3 % for Abamectin and between<br />

32.9 and 24 % for Amitraz.<br />

Discussion. The control of the second summer generation of C. pyri eggs and<br />

larvae is very important in the seasonal programme for control of pear psylla in pear<br />

growing areas of Bulgaria. A field study conducted in a commercial pear orchard<br />

showed that the tested product L<strong>ir</strong>osect ® 2 EC (Abamectin) gave promising results<br />

in control of pear psylla, Cacopsylla pyri. This insecticide reduced the populations<br />

of C. pyri to an extent comparable with that the standard insecticide Mitac ® 20 EC<br />

(Amitraz), at the rates used. Two consecutive applications of Abamectin after bloom,<br />

on young nymphs of the second generation provide a significant control of summer<br />

populations of pear psylla.<br />

Abamectin demonstrated a high biological efficacy against pear psylla eggs and<br />

newly hatched nymphs, similar to that of Amitraz. Its characteristic features are quick<br />

initial toxicity and a relatively short persistence (not more than 7–10 days). The product<br />

exhibited a strong deterring effect on oviposition by summer females and hence<br />

caused a reduction of the total number of laid eggs. This compound applied twice<br />

against C. pyri eggs gave better results than the standard compound Amitraz. As far as<br />

Abamectin is concerned, the results obtained in this study are in agreement with those<br />

reported earlier by the other authors, under different conditions (Buès, Boudinhon,<br />

2002; Marcic, et al., 2002; Kocourek, Stará, 2006).<br />

7


At the concentration of 0.12 % (L<strong>ir</strong>osect ® 2 EC), the highest biological activity of<br />

the product was recorded against the young (1st and 2nd) nymphal stages (up to 95 %<br />

mortality) in comparison with the other biological stages of the pest. The insecticide<br />

was less active against the older 3–5-instar nymphs, causing only 35 % mortality of<br />

them, at the same concentration.<br />

So, Abamectin may be used in control of pear psylla, instead of Amitraz.<br />

Considering its selectivity, it is less harmful to beneficial arthropods. Therefore, it<br />

should be especially useful as a component of the integrated pest management (IPM)<br />

in pear orchards.<br />

Conclusions. 1. The insecto-acaricide Abamectin shows a high biological activity<br />

to C. psylla eggs and nymphs and may be successfully used in the seasonal control<br />

programme against pear psylla.<br />

2. Abamectin does not kill summer adult forms of pear psylla, albeit causes significant<br />

reduction in summer densities of pear psylla eggs and nymphs.<br />

3. Abamectin demonstrates a quick initial effect and relatively short persistence –<br />

retained only for 7–10 days.<br />

4. Two treatments with Abamectin at a dose of 240 g a. i. per ha, applied after<br />

bloom – against newly hatched nymphs of the second generation, should be applied<br />

for control of pear psylla.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 11<br />

References<br />

1. Arnaoudov V. 2001. Efficacy of some pesticides for control of pear psylla, Psylla<br />

pyri L. in Bulgaria. 9 th International Conference of Horticulture, Lednice 2001,<br />

1: 15–19.<br />

2. Berrada S., Nguyen T. X., Merzoug D., Fournier D. 1995. Selection for<br />

Monocrotophos resistance in pear psylla, Cacopsylla pyri (L.) (Hom, Psyllidae).<br />

Journal of Applied Entomology, 119(7): 507–510.<br />

3. Buès R., Boudinhon L. 2002. Insecticide resistance in the pear psylla. Acta<br />

Horticulturae (ISHS), 596: 567–570.<br />

4. Buès R. , Boudinhon L. , Toubon J. F. , Faivre D’Arcier F. 1999. Geographic and<br />

seasonal variability of resistance to insecticides in Cacopsylla pyri, L. (Hom,<br />

Psyllidae). Journal of Applied Entomology, 123(5): <strong>28</strong>9–297.<br />

5. Buès, R. , Boudinhon , L., Toubon J. F. 2003. Resistance of pear psylla Cacopsylla<br />

pyri L. (Hom; Psyllidae) to deltametrin and synergism with piperonil butoxide.<br />

Journal of Applied Entomology, 127(5): 305–312.<br />

6. Buès, R., Toubon J. F. , Boudinhon L. 2000. Genetic analysis of resistance to<br />

azinphosmethyl in the pear psylla Cacopsylla pyri. Entomologia Experimentalis<br />

et Applicata, 96(2): 159–166.<br />

8


7. Burts E. C., Evereti C. 1983. Effectiveness of a soft pesticide program on pear<br />

pests. Journal of Economic Entomology, 76(4): 936–941.<br />

8. Burts E. C., Beers E. H. 1994. Controlling pear psylla with fenoxycarb in western<br />

North America. OILB/SROP Bulletin, 17(2): 39–42.<br />

9. Harizanov A. 1966. Chemical experiments for control of the psyllids in the fruit<br />

crops. Horticultural and Viticultural Science, 3(2): 143–149. (in Bulgarian).<br />

10. Harizanov A. 1982. The pear psyllas. Plant Protection Newsletter, 4: 23–27. (in<br />

Bulgarian).<br />

11. Henderson C. F., Tilton E. W. 1955. Tests with acaricides against the brown<br />

wheat mite. Journal Economic Entomology, 48(2): 157–161.<br />

12. Kocourek F., Stará J. 2006. Journal of Fruit and Ornamental Plant Research, 14<br />

(Suppl. 3): 167–174.<br />

13. Marcic D., Peric P., Prijovic M., Ogurlic I., Andric G. 2002. Chemical control of<br />

Cacopsylla pyri L. in Serbian pear orchards using biorational insecticides. Acta<br />

Horticulturae (ISHS), 800: 941–946.<br />

14. Nguen T. X., Berrada, S. 1994. Toxicité relative de certains acaricides sur<br />

Anthocoris nemoralis, prédateur de psylles. OILB/SROP Bullletin, 17(2):<br />

53–56.<br />

15. Steel, R., Torrie, J. H. 1980. Principles and Procedures of Statistics. McGraw-<br />

Hill, Inc., New York.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Kriaušių blakučių naikinimas Abamektinu Bulgarijoje<br />

V. Arnaudov, H. Kutinkova<br />

Santrauka<br />

Atsižvelgiant į kriaušinių blakučių (Cacopsylla pyri L.) atsparumą įprastiniams<br />

Bulgarijoje naudojamiems insekticidams, atliktas tyrimas, siekiant pagerinti šio kenkėjo<br />

naikinimo sistemą. Bandymai atlikti 2007–2008 metais Plodinovo regione, pietų-vidurio<br />

Bulgarijoje su ‘Butt<strong>ir</strong>a Precoce Morettini’<strong>ir</strong> ‘Beurre Hardy’ veislių kriaušėmis. Abamektino<br />

veiklioji medžiaga, kuri laikoma viena iš efektyviausių, nekenksminga naudingajai faunai,<br />

kurios efektyvumas palygintas su įprastai naudojama insekto-akaricido Amitrazės veikliąja<br />

medžiaga. Abamektino panaudojimas po žydėjimo gerokai sumažino vasarines kriaušinių<br />

blakučių populiacijas. Po žydėjimo ant jaunų antros kartos nimfų Abamektiną reikia purkšti<br />

du kartus po 240 g/ha. Šie purškimai nesunaikina vasarinių suaugusių kenkėjų, tačiau gerokai<br />

sumažina kriaušinių blakučių vasarinių kiaušinėlių <strong>ir</strong> nimfų gausumą. Abamektiną<br />

galima rekomenduoti naudoti integruotose kriaušių kenkėjų kontrolės programose.<br />

Reikšminiai žodžiai: Abamektinas, Amitrazas, Cacopsylla pyri, efektyvumas, kiaušinėliai,<br />

naudinga fauna, nimfos, suaugėliai, vasarinės populiacijos.<br />

9


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Possibilities of integrated management of onion<br />

downy mildew<br />

Gunita Bimsteine 1 , Līga Lepse 2 , B<strong>ir</strong>uta Bankina 1<br />

1<br />

Institute of Soil and Plant Sciences, Latvia University of Agriculture,<br />

Liela Street 2, Jelgava, LV-3004, e-mail B<strong>ir</strong>uta.Bankina@llu.lv<br />

2<br />

Pūre Horticultural Research Center, Abavas Street 2, Pūre, Tukums district,<br />

LV-3124 Latvia, e-mail liga.lepse@puresdis.lv<br />

Onion downy mildew caused by Peronospora destructor is one of the most important<br />

onion diseases that requ<strong>ir</strong>e fungicide application. The aim of the research was to find out<br />

methods of integrated control of downy mildew in onion.<br />

Investigation was carried out in Pūre Horticultural Research Center in 2008. Three<br />

onion hybrids were included in the investigation: ‘Safrane’ F 1<br />

, ‘Hypark’ F 1<br />

and ‘Alonso’ F 1<br />

.<br />

There were investigated three plant protection variants: 1) fungicide applied according to the<br />

DACOM Plant Plus decision support system; 2) fungicide used according to spraying scheme;<br />

3) no fungicide was used. Fungicide with active ingredients Metalaxyl and Mankoceb were<br />

used in the trials.<br />

The f<strong>ir</strong>st symptoms of the disease were observed only on 30 July. Differences in development<br />

of the disease between hybrids were detected. Severity of downy mildew achieved 1.6<br />

% (‘Alonso’ F 1<br />

), 3.1 % (‘Hypark’ F 1<br />

) and 4.5 % (‘Safrane’ F 1<br />

).<br />

Technical effectiveness of fungicide application fluctuated depending on varieties and<br />

spraying variant: 18.8–93.5 % for DACOM Plant Plus and 62.5–83.9 % for schematic spraying.<br />

The most effective disease control was achieved by application of DACOM programme.<br />

Further investigations are necessary to obtain consistent results.<br />

Key words: forecast, fungicides, Peronospora destructor, spraying.<br />

Introduction. Onion downy mildew caused by Peronospora destructor (Berk.)<br />

Casp. is an economically important disease causing losses both in the yield and quality<br />

of onion (Allium cepa L.). Infection in onion causes early defoliation, reduced size<br />

and poor storage ability of bulbs (Peter et al., 2004, Surviliene et al., 2008).<br />

The disease symptoms vary with the type of infection. Systemic infection occurs<br />

when plants are grown from infected bulbs, but local infection partly is caused<br />

by a<strong>ir</strong>-borne conidia. Onion bulbs with systemic infection are damaged faster and<br />

during moist weather all the leaf surface on infected plants is covered by grayish<br />

violet sporulation of P. destructor. In case of local infection, oval to cylindrical spots<br />

11


(3–30 mm in size) slightly paler than the rest of foliage are apparent on the leaves.<br />

Older leaves are attacked f<strong>ir</strong>st and infection spreads to other leaves and plants (Peter<br />

et al., 2004; Palti, 1989).<br />

Without fungicide treatment economically significant onion production would not<br />

be possible. Onion downy mildew is a disease, which is effectively controlled with<br />

fungicide application (Whiteman, Beresford, 1998). Planting time, resistant cultivars,<br />

soil drainage and healthy seed or bulb material are also included in the management<br />

of this disease. The fungicide efficiency depends on the time of application and developmental<br />

stage of the disease. It is very important to notice the f<strong>ir</strong>st symptoms of the<br />

disease in sufficient plant protection system (Buloviene, Surviliene, 2006; Whiteman,<br />

Beresford, 1998).<br />

Development of mildew epidemics depends primarily on moisture, but temperature<br />

and light also are important factors, which influence different stages of P. destructor<br />

(Palti, 1989, Buloviene, Surviliene, 2006). Cool temperatures (10–12 °C), moderate<br />

relative humidity and low solar <strong>ir</strong>radiance are more favorable conditions for spore<br />

survival. Sporangia of P. destructor disperse mainly during the morning and early<br />

afternoon and they can survive in the field for several hours until the conditions are<br />

more suitable for infection, such as those at night (Palti, 1989; Bashi, Aylor, 1983).<br />

Knowledge of the relationships between weather factors and pathogen sporulation is<br />

important for developing predictive models of downy mildew epidemics (Palti, 1989;<br />

Buloviene, Surviliene, 2006).<br />

Different forecast models (ZWIREPO, DOWNCAST, ONIMIL and others) were<br />

made to improve schemes of fungicide application (Friedrich et al., 2003). Dutch farmers<br />

used weather based Decision support systems against diseases of field vegetables<br />

since the middle of the 1980 (Bouma, 2004). The Agri Yield Management system<br />

developed by DACOM provides growers around the world with practical solutions<br />

for profitable and sustainable agriculture. By combining sensor technology, internet<br />

and scientific knowledge, growers can continuously monitor and fine-tune the<strong>ir</strong> production<br />

process throughout the growing season (http://www.dacom.nl). It was found<br />

to be usable to introduce DACOM Plant Plus decision support system in the onion<br />

growing system in Latvia. Evaluation of the system efficiency under Latvia conditions<br />

in integrated plant protection system becomes interesting.<br />

Therefore in 2008 investigation was carried out attaining to find out the most<br />

effective methods of integrated control of downy mildew in onion.<br />

Object, methods and conditions. Investigations were carried out in Pūre Horticultural<br />

Research Center in 2008. Three onion hybrids were included in the investigation:<br />

‘Safrane’ F 1<br />

, ‘Hypark’ F 1<br />

and ‘Alonso’ F 1<br />

. There were investigated three plant<br />

protection variants: 1) fungicide treatment was performed according to the DACOM<br />

Plant Plus decision support system; 2) fungicide used according to experts’ estimation<br />

based on experience; 3) no fungicide was used.<br />

Investigation was arranged in 4 replications, each plot – 10 m 2 . Onion seeds were<br />

sown by a precise sowing-machine “Robin Stanhay” in loamy soil on 23 April, in<br />

three-row beds on plane surface. Cultivation that followed was performed according<br />

to agro-ecological requ<strong>ir</strong>ements of onions.<br />

12


Peronospora destructor control was performed with the following treatments:<br />

Variant 1 – Ridomil Gold MZ 68 WG (metalaxyl) 2.5 kg ha -1 on 08.07 and 14.07,<br />

and Penncozeb 75 DG (mankoceb) 2 kg ha -1 on 29.07.<br />

Variant 2 – Ridomil Gold MZ 68 WG (metalaxyl) 2.5 kg ha -1 on 14.07 and<br />

Penncozeb 75 DG (mankoceb) 2 kg ha -1 on 29.07.<br />

Onion hybrids used in the trial were characterized as follows:<br />

‘Safrane’ F 1<br />

– vegetation period in the investigation was observed shorter than it<br />

was given in the hybrid description – 135 days. Leaves mid-waxed, grey-green and<br />

slightly hanging down, average height of foliage 80 cm;<br />

‘Hypark’ F 1<br />

– vegetation period 150 days. Leaves mid-strong waxed, grey-green,<br />

almost upstanding, average height of foliage 78 cm;<br />

‘Alonso’ F 1<br />

– vegetation period 130 days. Leaves mid-strong waxed, green, almost<br />

upstanding, average height of foliage 73 cm. Resistance to Peronospora destructor is<br />

indicated in the description of hybrid.<br />

The severity of downy mildew was evaluated each week and was scored using<br />

5 point system: 0 – no disease symptoms; 1 – some spots of disease; 2 – damaged<br />

1/3 of a plant; 3 – damaged 1/2 of a plant; 4 – damaged 2/3 of a plant; 5 – all leaves<br />

damaged.<br />

Onion bulbs were harvested on the 3 rd decade of August. Yield was weighted in the<br />

field d<strong>ir</strong>ectly after harvest, dried in a plastic tunnel, cleaned and placed for storage.<br />

Meteorological data were recorded by “Lufft” automatic meteorological station.<br />

A<strong>ir</strong> temperature, precipitation, a<strong>ir</strong> humidity, solar <strong>ir</strong>radiation, wind and dry leave<br />

measurements were recorded.<br />

ANOVA procedures were used for experimental data processing.<br />

Results. F<strong>ir</strong>st symptoms of downy mildew on the leaves of plants were noticed<br />

on 15 July in hybrid ‘Safrane’, but sharp development of this disease was observed<br />

after 30 July. Differences of downy mildew development were observed depending<br />

on hybrids (Fig. 1). The most susceptible hybrid was ‘Safrane’ – the severity of disease<br />

achieved 4.5 points.<br />

13


Fig. 1. Development of disease depending on fungicide application scheme<br />

1 pav. Ligos eiga priklausomai nuo fungicidų naudojimo schemos<br />

The f<strong>ir</strong>st fungicide treatment was performed on 8 July according to DACOM<br />

Plant Plus decision support system, but on experience-based spraying – a week later.<br />

At this time disease symptoms were not observed. In total, during vegetation period<br />

DACOM Plant Pus recommended three applications of fungicides (Fig. 1). Treatments<br />

of fungicides significantly reduced the severity of downy mildew in planting, but<br />

efficiency was depending on hybrids as well.<br />

Hybrid and fungicide application scheme influenced yield. Onion yield was<br />

significantly higher, if scheme of DACOM Plant Plus was used (Fig. 2). Routine or<br />

experience-based variant did not give sufficient results.<br />

14


Fig. 2. Onion yield depending on hybrid and schemes of fungicide application<br />

2 pav. Svogūnų derliaus priklausomybė nuo hibridų <strong>ir</strong> fungicidų naudojimo schemos<br />

Discussion. Development of downy mildew has strong correlation with weather<br />

conditions. The f<strong>ir</strong>st decade of June in 2008 was extremely dry (amount of precipitation<br />

only 0.1 mm), relative humidity (RH) exceeded 90 % only in some cases, but<br />

mostly fluctuated from 50–80 %. The most important factor for development of onion<br />

downy mildew is high RH, the greatest number of sporangia was produced at 100 %<br />

(Gilles et al., 2004), but the peak dispersal of spores coincided with drying of the leaves.<br />

Infection is not possible if leaves are dry (Hildebrand, Sutton, 1982). Abundant<br />

rainfall (60 mm) was observed in the second decade of June, but RH > 95 % only<br />

in July. These observations explained sharp development of the disease at the end of<br />

July.<br />

Our investigations conf<strong>ir</strong>m characterization of varieties according to which<br />

‘Alonso’ is more resistant comparing to ‘Safrane’.<br />

It is difficult to explain the obtained data about disease development and obtained<br />

yield. Significant difference between hybrids ‘Alonso’ and ‘Hypark’ in downy mildew<br />

severity was not observed at the end of vegetation period (12.08) depending on scheme<br />

of fungicide application. Visible effect of three applications of fungicide (recommended<br />

by DACOM Plant Plus) was noted only for hybrid ‘Safrane’. These results were<br />

different comparing with the other investigations. Buloviene and Surviliene observed<br />

high biological efficacy (74.38 % to 89.36 %) of all the used fungicides (Buloviene,<br />

Surviliene, 2006).<br />

Nevertheless, in all cases significant increase in yield was determined in trials<br />

with three applications of fungicide. Importance of the necessity to control the f<strong>ir</strong>st<br />

symptoms of the disease (could be latent), as described by other authors (Buloviene,<br />

Surviliene, 2006; Battilani et al., 1996), is one of possible reasons of efficiency of<br />

DACOM Plant Plus recommendations.<br />

Conclutions. Results of one-year investigations conf<strong>ir</strong>med possible effectiveness<br />

of DACOM Plant Plus decision support system in improvement of downy mildew<br />

control. Investigations are continued in 2009.<br />

15


Acknowledgements. Financial support from the Ministry of Agriculture of Latvia<br />

is gratefully acknowledged.<br />

Gauta 2009 06 22<br />

Parengta spausdinti 2009 08 03<br />

References<br />

1. Battilani P., Rossi V., Racca P., Giosue S. 1996. ONIMIL, a forecaster for primaru<br />

infection of downy mildew of onion. Bulletin OEPP/EPPO, 26: 567–576.<br />

2. Bashi E., Aylor D. E. 1985. Survival of detached sporangia of Peronospora destructor<br />

and Peronospora tabacina. Phytopathology, 73(8): 1135–1139.<br />

3. Bouma E. 2004. Decision support systems used in the Netherlands for reduction<br />

in the input of active substances in agriculture. EPPO Bulletin, 33(3): 461–466.<br />

4. Bulovienė V., Survilienė E. 2006. Effect of env<strong>ir</strong>onmental conditions and inoculum<br />

concentration on sporulation of Peronospora destructor. Agronomy<br />

Research, 4: 147–150.<br />

5. Friedrich S., Leinhos G. M. E., Lopmeier F. -J. 2003. Development of ZWIREPO,<br />

a model forecasting sporulation and infection periods of onion downy mildew<br />

based on meteorological data. European Journal of Plant Pathology, 109:<br />

35–45.<br />

6. Gilles T., Phelps K., Clarkson J. P., Kennedy R. 2004. Development of<br />

MILIONCAST, an improved model for predicting downy mildew sporulation<br />

on onions. Plant disease, 88(7): 695–702.<br />

7. Hildebrand P. D., Sutton J. C. 1982. Weather variables in relation to and epidemic<br />

of onion downy mildew. Phytopathology, 72(2): 219–224.<br />

8. Palti J. 1989. Epidemiology, prediction and control of onion downy mildew caused<br />

by Peronospora destructor. Phytoparasitica, 17(1): 31–48.<br />

9. Peter T. N., Spencer-Phillips, Michael J., Jeger Y. 2004. Advances in downy<br />

mildew research. Kluwer Academic Publishers. 2: 81–89.<br />

10. Survilienė E., Valiuškaitė A., Raudonis L. 2008. The effect of fungicides on<br />

the development downy mildew of onions. Žemd<strong>ir</strong>bystė – Agriculture, 95(3):<br />

171–179.<br />

11. Whiteman S. A., Beresford R. M. 1998. Evaluation of onion downy mildew<br />

disease risk in New Zealand using meteorological forecasting criteria. Proc. 51 st<br />

N. Z. Plant Protection Conference, 117–122.<br />

16


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Svogūnų netikrosios miltligės integruotos kontrolės galimybės<br />

G. Bimsteine, L. Lepse, B. Bankina<br />

Santrauka<br />

Svogūnų netikroji miltligė, sukeliama Peronospora destructor, yra viena iš svarbiausių<br />

svogūnų ligų, nuo kurios būtina naudoti fungicidus. Šio tyrimo tikslas <strong>ir</strong> buvo surasti svogūnų<br />

netikrosios miltligės integruotos kontrolės būdus. Tyrimai atlikti Pūre sodininkystės<br />

tyrimų centre 2008 metais. Tyrime panaudoti trys svogūnų hibridai: ‘Safrane’ F 1<br />

, ‘Hypark’ F 1<br />

<strong>ir</strong> ‘Alonso’ F 1<br />

. T<strong>ir</strong>ti trys augalų apsaugos variantai: 1) fungicidai naudoti pagal „DACOM<br />

Plant Plus“ sistemą; 2) fungicidai naudoti pagal purškimo schemą; 3) fungicidai nenaudoti.<br />

Bandymuose naudoti fungicidai su veikliosiomis medžiagomis metalaksilu <strong>ir</strong> mankocebu.<br />

P<strong>ir</strong>mieji ligos simptomai pastebėti liepos 30 dieną. Sk<strong>ir</strong>tingiems hibridams liga vystėsi nevienodai.<br />

‘Alonso’ F 1<br />

netikrosios miltligės intensyvumas siekė 1,6 %, ‘Hypark’ F 1<br />

– 3,1 %,<br />

o ‘Safrane’ F 1<br />

– 4,5 %. Techninis fungicido naudojimo veiksmingumas priklausė nuo veislių<br />

<strong>ir</strong> purškimo varianto: purškiant pagal „DACOM Plant Plus“ sistemą, jis siekė 18,8–93,5 %,<br />

o schematinio purškimo atveju – 62,5–83,9 %. Veiksmingiausiai kelias ligai buvo užk<strong>ir</strong>stas<br />

taikant DACOM programą. Siekiant išsamesnių rezultatų reikalingi tolimesni tyrimai.<br />

Reikšminiai žodžiai: fungicidai, Peronospora destructor, prognozės, purškimas.<br />

17


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Interspecific relation peculiarities between soil and<br />

phytophatogenic fungi<br />

Danguolė Bridžiuvienė, Jūratė Repečkienė<br />

Institute of Botany, Žaliųjų ežerų st. 49, LT-08406 Vilnius, Lithuania,<br />

e-mail danguole.bridziuviene@botanika.lt<br />

Ecological methods of biological control of plant diseases became more and more popular<br />

in recent years. The aim of the investigation was to select soil fungi applicable for protection<br />

from causative agents of cultural plant diseases. Antagonistic activity of fungi was studied by<br />

pa<strong>ir</strong>ing method using cultural blocs, cultural liquid and volatile metabolites. 43 fungal strains<br />

were examined against Alternaria brassicicola, A. radicina, A. tenuissima, Cladosporium<br />

cucumerinum, C. tenuissimum, Colletotrichum linicola, Fusarium culmorum, F. oxysporum,<br />

F. solani and Phoma sp. It was found that 36 of them showed varying degree of antagonistic<br />

activity against treated strains. Most strains suppressed the growth of Cladosporium genus<br />

phytopathogens and the growth of Fusarium genus strains was stopped rarely. Some of screened<br />

strains excreted fungicidal compounds to cultural liquid (for example, Trichoderma<br />

v<strong>ir</strong>ens and Penicillium sp.) and some acted through the<strong>ir</strong> volatile metabolites (Arthrinium<br />

sphaerospermum and Trichoderma v<strong>ir</strong>ens). The optimization of cultivation conditions as<br />

well as the choice of duration of cultivation is important factor to fungi ability to produce<br />

fungicidal compounds.<br />

Key words: fungi, fungicidal action, fungistatic action, plant pathogens.<br />

Introduction. Sustainable agriculture should apply env<strong>ir</strong>onment-friendly strategies<br />

to avoid pollution of soil, water and products by chemicals. Consequently,<br />

in plant protection field the main attention has been concentrated on the biological<br />

control of plant pathogens in recent years.<br />

It is probable that biological control acts rarely through a single mechanism.<br />

Biological control agents may simply operate by occupying the ecological niche of<br />

the target organism so preventing its establishment and reducing its population. In<br />

this way antagonistic fungal species displace pathogens. Production of inhibitory to<br />

pathogens substances, including soluble, nonvolatile and volatile components, as well<br />

as extracellular enzymes are other ways of biological control. An inhibiting action of<br />

antagonists led to the reduction of phytopathogen conidia production and suppression<br />

of growth (Calistru et al., 1997; Schoeman et al., 1999; Kalko et al., 2001).<br />

Not all soils are rich in fungi with antagonistic abilities. It was found that introduction<br />

of several indigenous Trichoderma strains into the soil considerably affected<br />

19


the species composition. These changes influenced the phytosanitary state of soils<br />

and reduced the infectious lodging of conifer seedlings (Yakimenko, Grodnitskaya,<br />

2000).<br />

It was noticed that fungi isolated from the same env<strong>ir</strong>onment as pathogens are<br />

more effective. For biological control the native strains should be used better and the<strong>ir</strong><br />

population should be enriched in soil. Many studies of biocontrol agents have focused<br />

on Trichoderma species but the attempt to find more species with antagonistic abilities<br />

are made as well. Grapes inoculated with Botrytis cinerea were protected from disease<br />

by Trichoderma v<strong>ir</strong>ide 81.2 % and by T. harzianum – 81.8 % (Machowicz-Stefaniak,<br />

1998). Active strains against Fusarium wilt diseases were found among Penicillium,<br />

Trichoderma, Gliocladium and Nigrospora genera fungi (Srinon et al., 2006).<br />

The study of interspecific relations between soil fungi and plant pathogens may<br />

turn a background for biocontrol technologies. The aim of the investigation was to<br />

screen soil fungal strains with antagonistic properties against plant pathogens.<br />

Object, methods and conditions. For primary antagonistic activity screening,<br />

43 fungal strains isolated from soil were used. As target fungi 10 phytopathogens<br />

were chosen: Alternaria brassicicola (Schwein.) Wiltsh<strong>ir</strong>e 0722; A. radicina Meier,<br />

Drechsler et E. D. Eddy EŽ-25; A. tenuissima (Kunze) Wiltsh<strong>ir</strong>e U-H-0; Cladosporium<br />

cucumerinum Ellis et Arthur 0721; C. tenuissimum Cooke 0679; Colletotrichum<br />

linicola Pethyrb. et Laff. U-L-07; Fusarium culmorum (W.G.Sm.) Sacc. 0691;<br />

F. oxysporum Schltdl. 0720; F. solani (Mart.) Appel et Wollenw. 0711 and Phoma sp.<br />

B-G-04.<br />

Tests for the biotic interaction among the fungi were carried out on malt agar in<br />

Petri dishes. The test fungi discs (1 cm in diameter) were cut from 7-day-old colonies<br />

and placed on malt agar medium, which was inoculated with phytopathogen spore suspension.<br />

Plates were incubated at the temperature of 26 °C. After 3 days of incubation,<br />

the diameter of fungicidal or fungistatic zones around agar discs was measured. The<br />

width of the resulting inhibitory zone was used as a measure of antagonistic activity<br />

(Билай, 1982).<br />

For detection of antagonistic effect of the<strong>ir</strong> culture filtrates, soil test-fungi were<br />

incubated in liquid Czapek medium for 7 days. Mycelium was removed by filtration.<br />

5-, 7- and 12-day culture filtrates (0.1 ml) were placed in hole made in agar inoculated<br />

with target-fungi. Plates without the filtrate served as control. Plates were incubated<br />

at the temperature of 26 °C. After 3 days of incubation the width of fungicidal or<br />

fungistatic zones around holes was measured (Билай, 1982).<br />

Detection of volatile antibiotics was performed by placing an inverted culture of<br />

a susceptible test-culture over that of the potential antagonist. Any reduction in the<br />

growth rate relative to control (expressed in %) by measuring colony diameter after<br />

4, 6 and 8 days was estimated. Some modified Czapek agar mediums were used for<br />

estimation of medium composition influence on volatile antibiotic production (Wheatly<br />

et al., 1997). The carbon source sucrose in standard medium was replaced by 2 % of<br />

glucose and in another variant in latter medium nitrogen source NaNO 3<br />

was replaced<br />

by 5 g of peptone.<br />

20


Results. Fungi isolated from various soils and plant remnants were selected for<br />

the primary screening of the<strong>ir</strong> antagonistic activity. In total 43 strains belonging to 15<br />

different genera were studied and 36 of them showed varying degree of antagonistic<br />

activity to phytopathogenic fungi belonging to genera Alternaria, Cladosporium,<br />

Colletotrichum, Fusarium and Phoma. The data of soil fungi interaction with various<br />

genera of phytopathogens are given in Table 1.<br />

Table 1. Number of soil fungal strains affecting the growth of phytopathogens<br />

from different genera<br />

1 lentelė. T<strong>ir</strong>tų d<strong>ir</strong>vožemio mikromicetų padermių, veikiančių įva<strong>ir</strong>ių genčių fitopatogeninius<br />

mikromicetus, skaičius<br />

Genera of soil<br />

fungi<br />

D<strong>ir</strong>vožemio<br />

mikromicetai<br />

Number<br />

of tested<br />

strains<br />

T<strong>ir</strong>tų padermių<br />

skaičius<br />

Number of active strains against phytopathogens<br />

Aktyvių padermių skaičius<br />

Cladosporium Fusarium<br />

(2 strains (3 strains<br />

2 padermės) 3 padermės)<br />

Alternaria<br />

(2 strains<br />

2 padermės)<br />

21<br />

others<br />

(2 strains)<br />

kitos (2 padermės)<br />

Acremonium 6 2* (1)** 2 (1) (4) 1 (2)<br />

Arthrinium 5 (2) 2 (1) (5) (5)<br />

Chaetomium 4 4 3 2 (2) 4<br />

Cylindrocarpon 1 1 1 1 (1) (1)<br />

Clonostachys 1 0 0 0 1<br />

Cunninghamella 1 0 0 0<br />

Humicola 1 1 0 (1) (1)<br />

Mariannaea 1 1 1 1 2<br />

Mortierella 2 2 0 2 (2) 2<br />

Oidiodendron 1 1 2(1) (1) (2)<br />

Paecilomyces 3 1 0 2 (2) (2)<br />

Penicillium 8 4 (4) 7 (5) 6 (7) 6 (2)<br />

Talaromyces 2 1 (2) 2 (1) 1 (2) 2 (2)<br />

Trichoderma 5 2 (1) 4 (1) 2 (4) 2 (10<br />

Umbelopsis 2 (1) 1 (1) 1 (1) 1 (1)<br />

In total / Iš viso 43 21 (10) 27 (11) 18 (32) 20 (13)<br />

* – fungicidal effect / fungicidinis poveikis<br />

** – fungistatic effect / fungistatinis poveikis<br />

The biggest number of antagonists suppressed the growth of Cladosporium genus<br />

fungi – 27 strains (62.8 %) showed fungicidal activity and fungistatic activity was<br />

estimated mostly against Fusarium culmorum, F. oxysporum and F. solani (32 strains<br />

tested or 74.4 %).<br />

The greatest number of active strains was found among Chaetomium, Penicillium<br />

and Trichoderma species. It should be noted, that Chaetomium elatum Kunze 5OA;<br />

8OA and Ch. globosum Kunze EŽ-27 affected the phytopathogens not only by stopping<br />

the<strong>ir</strong> growth around the discs (due to extra-cellular metabolites), but by overgrowth<br />

of the target fungi as well (due to the<strong>ir</strong> competitive abilities). Therefore, the inhibitory<br />

zones around Chaetomium discs reached 5–8 mm in pa<strong>ir</strong>ing with Alternaria,<br />

Fusarium, Phoma and even 6–11 mm in pa<strong>ir</strong>ing with Colletotrichum, Cladosporium


genera strains. Among Penicillium the strains P. simplicissimum (Oudem.) Thom EŽ-<br />

25 and Penicillium sp. 0541 were more active as compared with other strains studied,<br />

especially against Alternaria and Cladosporium (diameter of sterile zones reached<br />

3–15 mm). Trichoderma v<strong>ir</strong>ens (J. H. Mills, Giddens et A. A. Foster) Arx S29-1,<br />

T. hamatum (Bonord.) Bainier S37-1 and T. v<strong>ir</strong>ide Pers S29-2 stopped the growth of<br />

the mentioned phytopathogens in 8–20 mm.<br />

Most active 18 strains were selected for further studies on ability to release<br />

antibiotics to nutrient medium. Four phytopathogens of different genus were chosen<br />

as target-fungi. The cultural filtrates of 15 strains affected fungistatically and/or fungicidally<br />

the growth of Alternaria radicina and Fusarium solani, 14 – Cladosporium<br />

cucumerinum and 12 – F. culmorum (Table 2).<br />

The obtained data showed that the inhibitory action of cultural filtrates differed in<br />

time ant specificity. The action of fungal cultural filtrates was mostly fungistatic and the<br />

width of growth suppression zone varied from 1 mm when, for example, Penicillium<br />

simplicissimum 5-day cultural filtrate was used against Fusarium culmorum, to 15 mm<br />

when Trichoderma v<strong>ir</strong>ens S37-1 5-day cultural filtrate was used against Alternaria radicina.<br />

The growth of A. radicina most strongly was inhibited by 7-day cultural filtrate<br />

of Penicillium sp. 0541 (fungicidal zone 18 mm), Cladosporium cucumerinum – by<br />

7-day cultural filtrate of Gliocladium sp. Cr-3d (fungicidal zone – 8 mm), Fusarium<br />

culmorum – by 5-day cultural filtrate of Acremonium roseum (Oudem.) W. Gams<br />

U-5-60 (fungicidal zone 5 mm) and F. solani – by 5-day cultural filtrate of Penicillium sp.<br />

0541 (fungicidal zone 5 mm).<br />

Table 2. Antagonistic action of fungal cultural filtrates towards plant pathogen<br />

fungi (active strain number after 5, 7 and 12 cultivation days)<br />

2 lentelė. Mikromicetų kultūrinio skysčio antagonistinis poveikis fitopatogeniniams<br />

grybams (aktyvių padermių skaičius po 5, 7 <strong>ir</strong> 12 augimo parų)<br />

Phytopathogenic fungi<br />

Growth days<br />

Fitopatogeniniai grybai<br />

Auginimo paros Alternaria<br />

radicina<br />

Cladosporium<br />

cucumerinum<br />

Fusarium<br />

culmorum<br />

Fusarium<br />

solani<br />

5 4* (8)** 4 (9) 2 (5) 1 (6)<br />

7 6 (8) 8 (5) 0 (8) 3 (10)<br />

12 4 (8) 1 (8) 1 (8) 1 (12)<br />

* – fungicidal effect / fungicidinis poveikis<br />

** – fungistatic effect / fungistatinis poveikis<br />

Antibiotic effect of fungal cultural filtrates depended on cultivation timescale<br />

and changed in the course (Fig.). Some of them decreased gradually. The cultural<br />

filtrate of Chaetomium elatum 8OA showed the strongest fungicidal effect towards<br />

Alternaria radicina on 5 th cultivation day and made up 9 mm width inhibitory zone.<br />

On 7 th day it declined to 6 mm zone and on 12 th day reached only 3 mm. The latter<br />

antagonist showed towards Cladosporium cucumerinum a dual effect (fungistatic and<br />

fungicidal) at the same time.<br />

22


Fig. Dynamics of antagonistic activity of Chaetomium elatum 8OA<br />

culture filtrate on Alternaria radicina and Cladosporium cucumerinum<br />

Pav. Chaetomium elatum 8OA kultūros filtrato antagonistinio poveikio Alternaria radicina <strong>ir</strong><br />

Cladosporium cucumerinum dinamika<br />

The action of Paecilomyces sp. S. p-20 cultural filtrate decreased as well, and<br />

even turned from fungicidal on 5 th day (5 mm inhibitory zone) to fungistatic on<br />

12 th day (5 mm suppression zone). The antagonistic (fungistatic) effect of Penicillium<br />

griseofulvum Dierckx 0457 towards Alternaria radicina, on the contrary, increased in<br />

the course of cultivation and made up 2 mm suppression zone on 5 th and later reached<br />

5 mm suppression zone. Mariannaea elegans G. Arnaud L14-3 has no antibiotic activity<br />

towards Alternaria radicina on 5 th cultivation day, but his cultural filtrate on 7 th<br />

day showed fungistatic effect (13 mm zone) and even fungicidal effect (7 mm zone)<br />

on 12 th day. Nevertheless, in most cases the highest antibiotic effect appeared on 7 th<br />

cultivation day.<br />

The action of volatile metabolites, produced by Arthrinium sphaerospermum<br />

Fuckel Pl-5/10, Mortierella alpina Peyronel 3OB, Penicillium simplicissimum EŽ-25<br />

and Trichoderma hamatum S37-1 towards the growth of plant pathogens was studied<br />

(Table 3). The most effective producer of volatile metabolites was T. hamatum S37-1.<br />

For example, the growth of Alternaria brassicicola was suppressed in 18–<strong>28</strong> %,<br />

compared with control, (relative colony width was 82–72 %, respectively) under the<br />

action of Penicillium simplicissimum EŽ-25, but even in 73–86 % under the action<br />

of T. hamatum S37-1 (relative colony width was 27–14 %, respectively). The volatile<br />

metabolites of Arthrinium sphaerospermum Pl-5/10 effectively suppressed the growth<br />

of Alternaria brassicicola (relative size of colonies comparing to control after 8 days<br />

was 24 %), Colletotrichum linicola (55 %), Fusarium culmorum (62 %) and Phoma sp.<br />

(67 %). Mortierella alpina was more effective against Alternaria tenuissima, but<br />

stimulated the growth of some phytopathogenic strains (Cladosporium tenuissimum and<br />

Fusarium culmorum). The volatile metabolites of Penicillium simplicissimum EŽ-25<br />

were less effective (suppressed the growth of various strains 1–32 %). It was noticed<br />

that action of volatile metabolites was the greatest after 8 days growth, but in some<br />

cases it reached maximum just after 6 days (Arthrinium sphaerospermum Pl-5/10 and<br />

Mortierella alpina 3OB against Cladosporium and Fusarium genera strains).<br />

23


Table 3. Relative colony diameter (%) of phytopathogenic fungi under action of<br />

volatile metabolite produced on malt extract medium after 4, 6 and 8 cultivation<br />

days<br />

3 lentelė. Santykinis fitopatogeninių mikromicetų kolonijų, t<strong>ir</strong>tų veikiant mikromicetų<br />

lakiaisiais metabolitais po 4, 6 <strong>ir</strong> 8 kultivavimo parų, skersmuo (%)<br />

Phytopathogenic fungi<br />

Fitopatogeniniai grybai<br />

Arthrinium<br />

sphaerospermum<br />

Pl-5/10<br />

Mortierella<br />

alpine<br />

3OB<br />

Penicillium Trichoderma<br />

simplicissimum hamatum<br />

EŽ-25 S37-1<br />

4 6 8 4 6 8 4 6 8 4 6 8<br />

Alternaria brassicicola 36 31 24 89 87 78 82 87 72 27 17 14<br />

Alternaria radicina 100 100 80 100 79 67 96 100 100 71 50 39<br />

Alternaria tenuissima 80 75 70 88 54 46 89 95 95 44 27 23<br />

Cladosporium cucumerinum 77 67 70 94 100 88 81 82 73 25 15 15<br />

Cladosporium tenuissimum 81 66 72 117 96 113 69 71 79 59 37 33<br />

Coletotrichum linicola 83 76 55 130 108 120 79 93 99 87 54 50<br />

Fusarium culmorum 80 75 62 120 125 138 88 81 75 92 75 63<br />

Fusarium oxysporum 92 89 100 99 89 100 90 88 81 56 50 50<br />

Fusarium solani 97 110 100 112 106 100 98 98 100 78 50 56<br />

Phoma sp. 90 78 67 125 121 1<strong>28</strong> 82 80 68 75 61 51<br />

The cultivation of Arthrinium sphaerospermum Pl-5/10 and Mortierella alpina<br />

3OB on different media showed the volatile metabolite production dependence on<br />

medium composition (Table 4).<br />

Table 4. The effect of volatile metabolites of test-fungi Arthrinium sphaerospermum<br />

Pl-5/10 and Mortierella alpina 3OB grown on modified Czapek media<br />

towards plant pathogens (relative colony diameter after 7 cultivation days, %)<br />

4 lentelė. Mikromicetų Arthrinium sphaerospermum Pl-5/10 <strong>ir</strong> Mortierella alpina 3OB,<br />

augintų ant modifikuotų Čapeko terpių, lakiųjų metabolitų poveikis fitopatogenams (santykinis<br />

kolonijų skersmuo po 7 kultivavimo parų, %)<br />

Phytopathogenic<br />

fungi<br />

Fitopatogeniai<br />

grybai<br />

Arthrinium sphaerospermum Pl-5/10<br />

czapek czapek with czapek with<br />

with 2 % 2 % 2 % glucose<br />

glucose sucrose and peptone<br />

čapekas su čapekas su čapekas su<br />

2 % 2 % 2 % gliukozės<br />

gliukozės sacharozės <strong>ir</strong> peptonu<br />

czapek<br />

with 2 %<br />

glucose<br />

čapekas su<br />

2 %<br />

gliukozės<br />

Mortierella alpina 3OB<br />

czapek<br />

with 2 %<br />

sucrose<br />

čapekas su<br />

2 %<br />

sacharozės<br />

czapek with<br />

2 % glucose<br />

and peptone<br />

čapekas su<br />

2 % gliukozės<br />

<strong>ir</strong> peptonu<br />

1 2 3 4 5 6 7<br />

Alternaria 82 86 78 89 87 83<br />

brasicicola<br />

Alternaria 87 90 83 72 79 78<br />

radicina<br />

Alternaria 85 82 78 73 54 98<br />

tenuissima<br />

Cladosporium<br />

cucumerinum<br />

62 86 81 100 100 100<br />

24


Table 4 continued<br />

4 lentelės tęsinys<br />

1 2 3 4 5 6 7<br />

Cladosporium 70 81 78 91 96 63<br />

tenuissimum<br />

Colletotrichum<br />

86 82 80 88 108 84<br />

linicola<br />

Fusarium 78 83 68 98 125 78<br />

culmorum<br />

Fusarium 100 100 62 100 89 100<br />

oxysporum<br />

Fusarium 100 100 100 78 106 59<br />

solani<br />

Phoma sp. 76 076 56 57 121 77<br />

Glucose as a sole carbon source and peptone as nitrogen source (instead of<br />

NaNO 3<br />

) in modified Czapek medium favored the production of volatile metabolites<br />

of Arthrinium sphaerospermum Pl-5/10. The latter antagonist suppressed the growth<br />

of plant pathogens 17–38 % (the relative colony diameter was 83–62 %, except<br />

Fusarium solani). The volatile metabolites of A. sphaerospermum Pl-5/10 produced<br />

on Czapek medium with glucose suppressed most heavily the growth of Cladosporium<br />

genus pathogens and on Czapek with glucose and peptone – Phoma sp., Fusarium<br />

oxysporum and F. culmorum.<br />

Alike tendency was observed in Mortierella alpina 3OB case. Growing on<br />

Czapek with glucose and peptone the suppression of plant pathogens reached 16–41 %<br />

(except Cladosporium cucumerinum and Fusarium oxysporum). The best inhibition<br />

by M. alpina 3OB volatile metabolites on Czapek with glucose was noticed towards<br />

Phoma sp., on Czapek with sucrose – towards Alternaria tenuissima and on Czapek<br />

with glucose and peptone – towards Fusarium solani and Cladosporium tenuissimum.<br />

Furthermore this test-fungi growing on standard Czapek medium (with sucrose) stimulated<br />

the development of Colletotrichum linicola, Fusarium culmorum, F. solani<br />

and Phoma sp.<br />

Discussion. Species of Trichoderma and the<strong>ir</strong> biopreparations are mostly used<br />

against a number of fungal pathogens of agricultural importance (including the genera<br />

of Sclerotinia, Phytophthora and Botrytis) (Schoeman et al., 1999; Pięta et al.,<br />

2003; Stankevičienė, Snieškienė, 2003). However, the data about antagonistic features<br />

of other typical soil fungi was presented (Chung Soohee, Kim Sang-Dal, 2005;<br />

Soytong et al., 2006). Consequently, it is supposed that a wide spectrum of fungi for<br />

various plant protections under certain conditions (in greenhouses, for field cultures<br />

and houseplants) could be used. It is difficult to find the strains active against all plant<br />

pathogens; therefore, the selection of active fungi against certain pathogens is very<br />

important. Our results of pa<strong>ir</strong>ing tests on malt agar medium showed that fungal strains<br />

from Chaetomium, Mariannaea, Penicillium, Talaromyces and Trichoderma genera<br />

could inhibit the growth of all plant pathogens studied and other studied strains act<br />

selectively. For example, Mortierella genus strains suppressed Alternaria, Fusarium<br />

and Phoma but failed to affect the pathogens from Cladosporium genus.<br />

25


The tests with cultural filtrates and cultural discs of test fungi actions on plant<br />

pathogens showed different results. When Mortierella alpina 3OB discs were used they<br />

inhibited Fusarium solani growth, but its cultural filtrate showed no effect. The same<br />

tendency was established in case with Mariannaea elegans L14-3 and Trichoderma<br />

v<strong>ir</strong>ens S29-1 cultural filtrates towards Alternaria radicina. These results conf<strong>ir</strong>m the<br />

idea of existence of different ways of interaction between fungal species. Some microbial<br />

antibiotics are nonvolatile and tend to diffuse through the liquid phase, in contrast<br />

to volatile metabolites, which spread as vapors (Schoeman et al., 1999). On the other<br />

hand, the same action of Penicillium sp. 0541 towards Fusarium solani or Alternaria<br />

radicina was noticed, notwithstanding what discs or cultural filtrate was used. These<br />

results coincide with A. M. Abdel-Sater (2001) data obtained, which showed the similar<br />

antagonistic activity in solid culture as well as of culture filtrates.<br />

The results obtained with inverted test-cultures over potential antagonist elucidated<br />

the strains that produce active volatile antibiotics. Such was Trichoderma hamatum<br />

S37-1, which inhibited the growth of Fusarium oxysporum even to 50 %, though its<br />

cultural filtrate showed only fungistatic action.<br />

Great dependence of antibiotic production on cultivation time and medium composition<br />

was estimated. It was found out that different fungal strains produce antibiotic<br />

metabolites most intensively not at the same time. For instance, cultural filtrate of<br />

Chaetomium elatum 8OA accumulated after 7 cultivation days and Paecilomyces sp.<br />

SP-20 stopped most powerfully Alternaria radicina after 3 days though after 12 days<br />

only fungistatic effect was fixed.<br />

Much data presented on d<strong>ir</strong>ect correlation between degree of inhibition of fungi<br />

growth and nutrient medium composition (Engelkes et al., 1997; Rosenzwig, Stotzky,<br />

1980). Zh. I. Pavlovskaja et al. (1998) estimated that Trichoderma lignorum and<br />

Gliocladium catenulatum produce volatile metabolites against Fusarium sambucinum<br />

mostly on malt agar, whey and glucose. Our investigations with Arthrinium sphaerospermum<br />

Pl-5/10 and Mortierella alpina 3OB showed that the latter strains produce<br />

volatile metabolites mostly on modified Czapek medium with a sole carbon source<br />

glucose and nitrogen source – peptone.<br />

The obtained results suggest that some fungi might be promising as biocontrol<br />

agents. The great species inhibition selectivity and antibiotic production (non-volatile<br />

and volatile) dependence on cultivation conditions requ<strong>ir</strong>es exhaustive scientific<br />

inqu<strong>ir</strong>y. The ecological significance shouldn’t be emitted and vegetative experiments<br />

and fungal complex action need to be studied, as well.<br />

Conclusions. 1. The ability to produce antibiotics was characteristic for 36 from<br />

43 tested fungal strains. Antifungal activity varied between different species isolates<br />

as well as between strains within the same species.<br />

2. The most active strains belonged to Chaetomium, Mariannaea, Penicillium,<br />

Talaromyces and Trichoderma genera. They mostly inhibited the growth of<br />

Cladosporium and Alternaria but were less effective against Fusarium.<br />

26


3. The action of nonvolatile and volatile metabolites and great dependence on cultivation<br />

conditions was noticed. Arthrinium sphaerospermum Pl-5/10 and Mortierella<br />

alpina 3OB strains produced volatile metabolites mostly on modified Czapek medium<br />

with a sole carbon source glucose and nitrogen source – peptone after 8 cultivation<br />

days.<br />

Gauta 2009 06 22<br />

Parengta spausdinti 2009 08 01<br />

References<br />

1. Abdel-Sater A. M. 2001. Antagonistic interaction between fungal pathogen<br />

and leaf surface fungi of onion (Allium cepa L.). Pakistan Journal of Biological<br />

Sciences, 4 (7): 838–842.<br />

2. Calistru C., McLean M., Berjak P. 1997. In vitro studies on the potential for biological<br />

control of Aspergillus flavus and Fusarium moniliforme by Trichoderma<br />

species – a study on the production of extracellular metabolites by Trichoderma<br />

species. Mycopathologia, 137(2): 115–124.<br />

3. Chung S., Kim S.-D. 2005. Biological control of phytopathogenic fungi by bacillus<br />

amyloliquefaciens 7079; suppression rates are better than popular chemical<br />

fungicides. Journal of microbiology and biotechnology, 15(5): 1 011–1 021.<br />

4. Engelkes C. A., Nuclo R. L., Fravel D. R. 1997. Effect of carbon, nitrogen and<br />

C : N ratio on growth, sporulation and biocontrol efficiency of Talaromyces flavus.<br />

Phytopathology, 5: 500–505.<br />

5. Kalko G. V., Vorobyov N. L., Lagutina T. M., Novikova I. I. 2001. Inhibition<br />

of the phytopathogenic fungus Fusarium oxysporum by microbe antagonists in<br />

peat. Mikologya i fitopatologya, 35(3): 68–75.<br />

6. Machowicz–Stefaniak Z. 1998. Antagonistic activity of epiphytic fungi from<br />

grape-vine against Botrytis cinerea Pers. Phytopathology Polonica, 16: 45–52.<br />

7. Pavlovskaja Zh. I., Mikhailova R. V., Lobanok A. G., Moroz I. V., Kobzarova V. S.<br />

1998. Antagonistic effect of Trichoderma lignorum (Tode) Harz OM 534 and<br />

Gliocladium catenulatum Gilman et Abbot 453 on Fusarium sambucinum<br />

Fuckel. Mikologya i fitopatologya, 32(3): 41–46.<br />

8. Pięta D., Pastucha A., Patkowska E. 2003. The use of antagonistic microorganisms<br />

in biological control of bean diseases. Horticulture and Vegetable growing,<br />

22(3): 401–405.<br />

9. Rosenzweig W. D., Stotzky G. 1980. Influence of Env<strong>ir</strong>onmental factors on antagonism<br />

of fungi by bacteria in soil: nutrient levels. Applied and Env<strong>ir</strong>onmental<br />

Microbiology, 39(2): 354–360.<br />

10. Schoeman M. W., Webber J. F., Dickinson D. J. 1999. The development of ideas<br />

in biological control applied to forest products. International Biodeterioration<br />

and Biodegradation, 43: 109–123.<br />

27


11. Soytong K., Srinon W., Rattanacherdchai K., Kanokmedhakul S., Kanokmedhakul<br />

K. 2006. Application of antagonistic fungi to control anthracnose disease<br />

of grape. Journal of Agricultural Technology, 1: 33–41.<br />

12. Srinon W., Chuncheen K., J<strong>ir</strong>attiwarutkul K., Soytong K., Kanokmedhaku S.<br />

2006. Efficacies of antagonistic fungi against Fusarium wilt disease of cucumber<br />

and tomato and the assay of its enzyme activity. Journal of Agricultural<br />

Technology, 2(2): 191–201.<br />

13. Stankevičienė A., Snieškienė V., 2003. Trichoderma v<strong>ir</strong>ide against some of pink<br />

rot and wilt agents. Horticulture and Vegetable growing, 22(3): 395–399.<br />

14. Wheatly R., Hackett Ch., Bruce A., Kundzewicz A. 1997. Effect of substrate composition<br />

on production of volatile organic compounds from Trichoderma spp. inhibitory<br />

to wood decay fungi. International Biodeterioration and Biodegradation,<br />

39: 199–205.<br />

15. Yakimenko E. E., Grodnitskaya I. D. 2000. Effect of Trichoderma fungi on the<br />

soil micromycetes that cause infectious conifer seedling lodging in Siberian tree<br />

nurseries. Microbiology, 69(6): 850–854.<br />

16. Билай В. И. (ред.) 1982. Методы экспериментальной микологии. Науковa<br />

думка, Киев.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

D<strong>ir</strong>vožemio <strong>ir</strong> fitopatogeninių mikromicetų tarprūšinės sąveikos ypatumai<br />

D. Bridžiuvienė, J. Repečkienė<br />

Santrauka<br />

Augalų ligų ekologiški biologinės kontrolės metodai šiuo metu sulaukia vis daugiau dėmesio.<br />

Tyrimų tikslas buvo atrinkti d<strong>ir</strong>vožemyje paplitusias mikromicetų padermes, pasižyminčias<br />

antagonistinėmis savybėmis prieš augalų ligų sukėlėjus. Antagonistinis mikromicetų aktyvumas<br />

buvo t<strong>ir</strong>tas poravimo metodu naudojant kultūrų agaro blokus, kultūrinį skystį <strong>ir</strong> lakiuosius<br />

metabolitus. T<strong>ir</strong>tas 43 d<strong>ir</strong>vožemio mikromicetų padermių aktyvumas Alternaria brassicicola,<br />

A. radicina, A. tenuissima, Cladosporium cucumerinum, C. tenuissimum, Colletotrichum lini,<br />

Fusarium culmorum, F. oxysporum, F. solani <strong>ir</strong> Phoma sp. atžvilgiu. Iš jų 36 padermės rodė<br />

didesnį ar mažesnį poveikį fitopatogeninėms grybų padermėms. Dauguma t<strong>ir</strong>tų padermių<br />

stabdė Cladosporium genties fitopatogenų augimą, o Fusarium genties grybus dažniau veikė<br />

fungistatiškai. Kai kurios padermės (pvz., Trichoderma v<strong>ir</strong>ens, Penicillium sp.) veikė išsk<strong>ir</strong>damos<br />

antibiotines medžiagas į terpę, o kitos (pvz., Trichoderma v<strong>ir</strong>ens <strong>ir</strong> Penicillium sp.) – lakiųjų<br />

metabolitų pagalba. Fungicidinių medžiagų gamybos intensyvumui turėjo įtakos mitybinės<br />

terpės sudėtis <strong>ir</strong> auginimo trukmė. Mikromicetų gebėjimui aktyviai gaminti fungicidinius<br />

junginius yra svarbus auginimo sąlygų optimizavimas bei kultivavimo trukmės parinkimas.<br />

Reikšminiai žodžiai: fitopatogenai, fungicidinis poveikis, fungistatinis poveikis, mikromicetai.<br />

<strong>28</strong>


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Influence of boron fertilizer and meteorological<br />

conditions on red beet infection with scab and<br />

productivity<br />

Ona Bundinienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail o.bundiniene@lsdi.lt<br />

Investigations of the additional red beet fertilization with boron fertilizers through<br />

leaves were carried out at the Lithuanian Institute of Horticulture, on Calc(ar)i-Epihypogleyc<br />

Luvisols – LVg-p-w-cc) of sandy loam on light loam in 2006–2007. There was little amount of<br />

humus and nitrogen in the soil, big amount of phosphorus, calcium and magnesium, average<br />

and big amount of potassium, average and big amount of boron; it was alkaline. There was<br />

investigated the influence of various boron fertilizers and meteorological conditions on scab<br />

prevalence in root-crops of different red beet cultivars and hybrids.<br />

In 2007 scab prevalence and disease intensity both in red beet hybrids and cultivars was<br />

2–3 times smaller than in 2006. The increase of temperature stimulated scab prevalence (for<br />

red beet ‘Boro’ F 1<br />

r = 0.88; for red beet ‘Kamuoliai 2’ r = 0.76) and increased intensity (correspondingly<br />

r = 0.88 and 0.85), and the increase of precipitation decreased scab prevalence<br />

and intensity (scab prevalence correspondingly r = -0.90 and -0.79, intensity r = -0.90 and<br />

-0.87).<br />

In both years of investigation root-crops of red beet cultivar ‘Kamuoliai 2’ were more<br />

infected by scab than red beet ‘Boro’ F 1<br />

.<br />

Boron fertilizers positively influenced the yield of red beet hybrids and cultivars and<br />

decreased scab prevalence and intensity (according to the average data of 2006–2007, on rootcrops<br />

of red beet cultivar ‘Boro’ F 1<br />

correspondingly 14.2 % and 15.0 %, on root-crops of red<br />

beet cultivar ‘Kamuoliai 2’ – 23.8 % and 6.3 %). Fertilizer Boramin Ca was the most effective<br />

to red beet. Economical efficiency of this fertilizer was correspondingly 2.6 % and 7.4 %.<br />

The increase of scab prevalence and intensity decreased red beet standard yield. The<br />

influence on root-crops of cultivar ‘Boro’ F 1<br />

was strong (correspondingly r = -0.91 and<br />

r = -0.95), and on root-crops of cultivar ‘Kamuoliai 2’ – average (correspondingly r = -0.44<br />

and r = -0.43).<br />

Key words: boron fertilizer, cultivar, hybrid, intensity, prevalence, productivity, red<br />

beet, scab, .<br />

29


Introduction. The most frequent nutrient deficiency encountered in cultivated<br />

beets is boron deficiency. Boron deficiency results in stunted plants, the deformation<br />

and death of the growing point, and slow growth (Nottingham, 2004, http://ourworld.<br />

compuserve.com/). When 10 t vegetable yield is grown, 23.7 kg of boron is obtained<br />

from the soil (Анспок, 1990). Boron deficiency occur in light-textured acid soils<br />

in humid regions because of boron tendency to leach, and in heavy-textured soils<br />

with high pH because boron is readily adsorbed under these conditions (Eisler, 2000;<br />

Gupta, 2007). The decrease of soil acidity creates conditions for bigger necessity of<br />

boron fertilizers, because soil boron agility decreases and it doesn’t get into the plants<br />

(Томсон, Троу, 1982). At high relative a<strong>ir</strong> humidity boron applied to the cotyledons<br />

was transported to hypocotyls and roots, whereas at low relative humidity no translocation<br />

of boron was detectable (Eichert, Goldback, 2006). There was no loss in yield<br />

of tops, roots or sugar from inadequate boron supply when soil boron exceeded 0.50<br />

mg B kg of soil (Christenson, Draycott, 2006). Boron fertilizers increase sugar beet<br />

yield 20.2 %, the amount of sugar – 0.3–0.6 % and the incidence of diseases of heart<br />

roots – 12.5–75.4 % (Анспок, 1990).<br />

Boron was found to reduce the severity of many diseases because of the function,<br />

which boron has on cell wall structure, plant membranes and plant metabolism<br />

(Dordas, 2008), and its deficiency caused some diseases (Томсон, Троу, 1982). Boron<br />

deficient beets had brown tops and roots were rough, scabby, and off colour (Gupta,<br />

Cutcliffe, 1985).<br />

Common scabies (Streptomyces scabies (Thaxter) Waksman and Henrici) are<br />

most seen on mature tuber or root-crop and consist of c<strong>ir</strong>cular or angular lesions on the<br />

surface and rarely they may appear raised or penetrate to a few millimeters. Common<br />

scab gives an overall scruffy and unmarketable yield (Parry, 1990; Poljak et al., 2009;<br />

Koike et al., 2006). Streptomycetes are abundant in soils, rather than seed-borne and<br />

are controlled through agronomic rather than regulatory means by ensuring that soil<br />

moisture is maintained at field capacity by <strong>ir</strong>rigating during the critical 4–6 week infection<br />

period and following tuber initiation (Elphinstone, 2007; Loria et al., 2006). The<br />

disease is seasonal and tends to most severe in light, freely drained alkaline soils after<br />

periods of dry summer weather (a<strong>ir</strong> temperature above 20 °C humidity – 50–70 %)<br />

and fertilization with fresh manure (Repšienė, Mineikienė, 2006; Ražukas et al., 2003;<br />

Elphinstone, 2007; Olanya et al., 2006; Parry, 1990; Waterer, 2002). Nutrient management<br />

and time of fertilization can decrease the severity of incidence of common scabies<br />

(Lambert et al., 2005; Davies et al.; Pavlista, 2005; Klikocka, 2009).<br />

T h e a i m o f t h e s t u d y was to investigate the influence of various boron<br />

fertilizers and meteorological conditions on scab prevalence and intensity in the rootcrop<br />

of various red beet cultivars and hybrids.<br />

Object, methods and conditions. Investigations were carried out at the Lithuanian<br />

Institute of Horticulture, on the calcaric epihypoghleyic luvisol of sandy loam on<br />

light loam (IDg8-k / Calc(ar)i- Epihypogleyc Luvisols – LVg-p-w-cc) in 2006–2007.<br />

Soil ploughing layer was 20–25 cm in thickness. There was little amount of humus<br />

(1.53–1.74 %) and nitrogen (38.2–60.5 kg ha -1 of soil) in the soil, very big amount<br />

of phosphorus (335–401 mg kg -1 of soil), calcium (6400–10850 mg kg -1 of soil) and<br />

30


magnesium (1 <strong>28</strong>0–2 880 mg kg -1 of soil), average and big amount of potassium (191<br />

229 mg kg -1 of soil), average and big amount of boron (0.80–1.23 mg kg -1 of soil); it<br />

was alkaline (pH KCl<br />

7.2–7.6).<br />

Preplant – occupied fallow. Soil was cultivated and crop supervised according<br />

to the recommendations accepted at the LIH. There were grown red beet cultivars<br />

‘Boro’ F 1<br />

and ‘Kamuoliai 2’ on flat surface. Sowing scheme 62 + 8 cm. seed rate – 500<br />

thousand unit ha -1 of germinable seeds.<br />

Before red beet sowing, there was scattered N90P120K180 and additionally – N 30<br />

when red beet had 4–6 leaves. There was fertilized with ammonium saltpetre, granulated<br />

superphosphate and potassium magnesia. Boron fertilizers were applied for thee times:<br />

1) when red beet had 6–10 leaves; 2) after 12–14 days; 3) at root-crop formation, i. e.<br />

at the end of July (2006 – 06 21; 07 04; 07 17; 2007 06 27; 07 10; 07 19). For solution<br />

preparation 500 l ha -1 of water were used; its concentration was 0.2–0.3 %.<br />

S c h e m e o f t r i a l / Bandymo schema:<br />

Factor A / Veiksnys A – red beet hybrid and cultivar / burokėlių hibridas <strong>ir</strong> veislė:<br />

1. ‘Boro’ F 1<br />

2. ‘Kamuoliai 2’<br />

F actor B / veiksnys B – different boron fertilizers / įva<strong>ir</strong>ios boro trąšos<br />

(B / F – background fertilization / foninis tręšimas N 90 + 30<br />

P 120<br />

K 180<br />

):<br />

1. Without boron / be boro.<br />

2. Boric acid / Boro rūgštis (17.2 % B).<br />

3. Tradebore / Tradeboras (15.4 % B).<br />

4. Tradebore Mo / Tradeboras Mo (15.4 % B and / <strong>ir</strong> Mo).<br />

5. Lyderis® Bor / Lyderis® Bor (10.5 % B, 0.01 % Zn, 0.007 % Cu,<br />

0.016 % Mn, 0.05 % Fe).<br />

6. Boramin Ca / Boramin Ca (6.5 % free amino acids / laisvųjų amino rūgščių,<br />

10.4 % CaO, 0.27 % B).<br />

Experiment was carried out in four replications. Fields lied out in random design.<br />

Record plot area – 4.8 m 2 .<br />

Red beet scabbiness was evaluated twice per vegetation: at the end of July and<br />

during harvest gathering. There were pulled up sex plants in each replication (24 plants<br />

per variant). After external inspection the<strong>ir</strong> root-crops injured by scab were evaluated<br />

in scores. The amount of injured root-crops (1), disease intensity (2) and economical<br />

efficiency of the applied means (3) was calculated in percents according to the<br />

formulas (Waller et al., 1998):<br />

P = n / N × 100, (1)<br />

here: P – injured root-crops (%),<br />

n – the number of scab injured root-crops,<br />

N – the number of inspected root-crops.<br />

R = Σ(a × b) × 100 / AK, (2)<br />

here: R – disease intensity (%),<br />

a – the number of root-crops injured in equal score,<br />

b – score of injury,<br />

A – the number of inspected root-crops,<br />

31


K – the highest score of injury (0–3),<br />

Σ – the sum of root-crops injured in equal score and<br />

multiplications of score values.<br />

Y = b – a / a × 100, (3)<br />

here: Y – economical efficiency of the applied means (%),<br />

a – yield obtained without applying the means,<br />

b – yield obtained without applying the means.<br />

Red beet yield was gathered when they reached technical maturity.<br />

M e t e o r o l o g i c a l c o n d i t i o n s. Thermal and <strong>ir</strong>rigational conditions during<br />

red beet vegetation were characterized by monthly average a<strong>ir</strong> temperature, monthly<br />

precipitation sum, multiannual average and G. Selianinov hydrothermal coefficient –<br />

HTK (Table 1).<br />

HTK = Σp / 0.1 Σt, (4)<br />

here: Σt – period when the sum of active temperatures was bigger than 10° C;<br />

Σp – the sum of precipitation during the period, which average temperature<br />

> 10° C.<br />

When HTK ≥ 1.6 – excessive humidity, HTK 1–1.5 – optimal humidity, HTK 0.9–<br />

0.8 – slight draught, HTK 0.7–0.6 – average draught, HTK 0.5–0.4 – big draught,<br />

HTK ≤ 0.4 – very big draught (Bukantis, 2004, http://www. hkk.gf.vu.lt/).<br />

Meteorological conditions during the year of investigation were different: in 2006<br />

temperature of vegetation period 1.4 °C exceeded the multiannual average and was<br />

2.6 °C higher than in 2007, and in 2007 it was 1.2 °C lower than the average multiannual<br />

parameters (Table 1). In 2006 a<strong>ir</strong> temperature in May was alike multiannual one,<br />

and temperature parameters of all the other months exceeded the multiannual ones.<br />

In 2007 a<strong>ir</strong> temperature in all the vegetation months, except August, was lower than<br />

the average multiannual parameters (Table 1).<br />

Table 1. Meteorological conditions<br />

1 lentelė. Meteorologinės sąlygos<br />

Month<br />

Mėnuo<br />

Years<br />

Metai<br />

Long-term<br />

average<br />

Daugiamečiai<br />

vidurkiai<br />

The data of Kaunas meteorological station<br />

Kauno meteorologinės stoties duomenys<br />

Years<br />

Metai<br />

Long-term<br />

average<br />

Daugiamečiai<br />

vidurkiai<br />

Years<br />

Metai<br />

2006 2007 2006 2007 2006 2007<br />

Long-term<br />

average<br />

Daugiamečiai<br />

vidurkiai<br />

average a<strong>ir</strong> temperature precipitation sum<br />

vidutinė oro temperatūra (°C) kritulių suma (mm)<br />

HTK<br />

1 2 3 4 5 6 7 8 9 10<br />

Gegužė 12.6 11.2 12.3 74.0 104.4 50.7 1.89 2.23 1.33<br />

May<br />

B<strong>ir</strong>želis 16.3 15.1 15.9 13.8 72.2 71.2 0.33 1.59 1.49<br />

June<br />

Liepa<br />

July<br />

19,3 15,2 17,3 30,2 173,6 75,3 0,50 3,68 1,40<br />

32


Table 1 continued<br />

1 lentelės tęsinys<br />

1 2 3 4 5 6 7 8 9 10<br />

Rugpjūtis 17.5 16.6 16.7 173.4 42.8 78.4 3.20 0.83 1.51<br />

August<br />

Rugsėjis 14.5 10.6 12.1 83.0 57.8 58.7 1.90 1.82 1.62<br />

September<br />

Spalis 9.7 5.4 7,1 47.0 51.2 50.5 1.69* - -<br />

October<br />

Average (sum) 15.0 12.4 13.6 70.2 83.7 64.1 1.56 2.03 1.47<br />

Vidutinė, suma<br />

* Note: In 2006 only f<strong>ir</strong>st decade of October<br />

* Pastaba: 2006 metais tik p<strong>ir</strong>moji spalio dekada<br />

During both years of investigation precipitation rate exceeded the multiannual<br />

average, but rainy months and the amount of precipitation were different. In 2006<br />

June, July and October were dry, and in August, September and October of 2007<br />

precipitation rate was smaller than the multiannual average. The evaluation of the<br />

conditions during vegetation period according to the hydrothermal coefficient showed<br />

that agrometeorological conditions for red beet growing were as follows: in May and<br />

September of both the years of investigation – the excess of humidity, in June and<br />

July 2006 and in August 2007 – draught. Excessive humidity was in August 2006 and<br />

July 2007 (Table 1).<br />

Data significance was evaluated by the method of two-factorial dispersion<br />

analysis, using the program ANOVA, dependence – using the program STAT_ENG<br />

(Tarakanovas, Raudonius, 2003).<br />

Results. Meteorological conditions, cultivars of the grown red beet and fertilization<br />

with boron fertilizers influenced red beet root-crop infection by scab. In 2007<br />

scab prevalence and disease intensity in red beet hybrids and cultivars was 2–3 times<br />

smaller than these in 2006. Scab infection and disease intensity of red beet cultivar<br />

‘Kamuoliai 2’ in both years of investigation in July and in autumn at harvesting time<br />

was bigger than these of red beet cultivar ‘Boro’ F 1<br />

(Tables 2, 3).<br />

In 2006 at the end of July scab prevalence from boron fertilizers on root-crops<br />

of red beet cultivar ‘Boro’ F 1<br />

decreased 6.7 %, on cultivar ‘Kamuoliai 2’ – 32.5 %, in<br />

2007 – correspondingly 10.8 % amd 25.9 %. Disease intensity in red beet of cultivar<br />

‘Boro’ F 1<br />

on the average slightly increased, in ‘Kamuoliai 2’ – 13.4 % decreased,<br />

and in 2007 in red beet of hybrids and cultivars decreased correspondingly 12.5 %<br />

and 13.4 % (Table 2). The smallest scab prevalence and disease intensity in 2006,<br />

when the year was hot and less humid than 2007, on root-crops of red beet cultivar<br />

‘Boro’ F 1<br />

was after application of Lyderis®Bor, and on root-crops of red beet cultivar<br />

‘Kamuoliai 2’ – after application of boron fertilizers Boramin Ca. In cool and humid<br />

2007, Lyderis®Bor was the most effective both to hybrids and cultivars.<br />

Increasing temperature of June-July increased scab prevalence on red beet<br />

rootstocks (for red beet cultivar ‘Boro’ F 1<br />

r = 0.96; for red beet cultivar ‘Kamuoliai<br />

2’ r = 0.84) and intensity (correspondingly r = 0.95; r = 0.83). When precipitation<br />

rate increased, scab prevalence and intensity decreased (correspondingly prevalence<br />

r = -0.96 and r = -0.82, intensity r = -0.94 and r = -0.82).<br />

33


Table 2. Spread of common scabies on red beet root-crop in July<br />

2 lentelė. Paprastųjų rauplių plitimas ant burokėlių šakniavaisių liepos mėnesį<br />

Hybrid / cultivar<br />

(factor A)<br />

Hibridas / veislė<br />

(veiksnys A)<br />

Years<br />

Metai<br />

Fertilization with boron (factors B)*<br />

Tręšimas boru (veiksnys B)<br />

1 2 3 4 5 6<br />

34<br />

Babtai, 2006–2007<br />

LSD 05<br />

B<br />

R 05<br />

B<br />

Disease prevalence<br />

Ligos išplitimas (%)<br />

‘Boro’ F 1<br />

2006 79.2 79.2 79.2 66.7 62.5 75.0 12.1<br />

‘Kamuoliai 2’ 2006 95.8 87.5 62.5 70.8 54.2 41.7<br />

‘Boro’ F 1<br />

2007 25.0 29.25 12.5 20.8 0 8.3 8.2<br />

‘Kamuoliai 2’ 2007 41.7 29.2 8.4 25.0 0 16.7<br />

LSD 05<br />

A 2006 5.4<br />

R 05<br />

A 2007 3.7<br />

LSD 05<br />

A × B<br />

R 05<br />

A × B<br />

2006 18.0<br />

2007 12.14<br />

Disease intensity<br />

Ligos intensyvumas (%)<br />

‘Boro’ F 1<br />

2006 60.4 70.9 66.7 60.4 54.2 75.0 10.7<br />

‘Kamuoliai 2’ 2006 64.6 72.9 43.8 52.1 50.0 37.5<br />

‘Boro’ F 1<br />

2007 25.0 29.2 8.3 16.7 0 8.3 8.5<br />

‘Kamuoliai 2’ 2007 37.5 29.2 8.4 20.8 0 12.5<br />

LSD 05<br />

AB 2006 4.8<br />

R 05<br />

A 2007 3.8<br />

LSD 05<br />

A × B<br />

R 05<br />

A × B<br />

2006 15.9<br />

2007 12.6<br />

* Note: Variants of fertilization are shown in the methodical part<br />

* Pastaba: Tręšimo variantai pateikti metodinėje dalyje<br />

August of 2006 was hot and humid (HTK 3.2 – clear excess), and August of 2007 –<br />

cool and dry (HTK 0.83 – slight drought). After application of boron fertilizers, disease<br />

prevalence on root-crops of red beet cultivar ‘Boro’ F 1<br />

in 2006 decreased 17.5 %, intensity<br />

– 19.2 %, on root-crops of red beet cultivar ‘Kamuoliai 2’ correspondingly – 31.5 %<br />

and 7.5 %, in 2007 correspondingly 10.8 % and 13.1 %, 15.9 % and 5.0 % (Table 3).<br />

Therefore, in the year favourable to scab prevalence boron fertilizers were more effective<br />

in red beet cultivar ‘Kamuoliai 2’. The least scab prevalence and intensity on<br />

hybrid and cultivar root-crops in 2006 was observed applying fertilizer Boramin Ca,<br />

and in 2007 – on root-crops of cultivar ‘Boro’ F 1<br />

fertilizing with Lyderis®Bor and on<br />

root-crops of cultivar ‘Kamuoliai 2’ fertilizing with Tradebor Mo.<br />

When a<strong>ir</strong> temperature increased during vegetation period, scab prevalence (for<br />

red beet cultivar ‘Boro’ F 1<br />

r = 0.88; for red beet cultivar ‘Kamuoliai 2’ r = 0.76) and<br />

intensity (correspondingly r = 0.88 and r = 0.85) increased also. The increasing amount<br />

of precipitation, on the contrary, decreased scab prevalence and intensity (scab prevalence<br />

correspondingly r = -0.90 and r = -0.79; intensity correspondingly r = -0.90<br />

and -0.87).


Table 3. Spread of common scabies on red beet root-crop during harvesting<br />

3 lentelė. Paprastųjų rauplių paplitimas ant burokėlių šakniavaisių derliaus nuėmimo<br />

metu<br />

Hybrid / cultivar<br />

(factor A)<br />

Hibridas / veislė<br />

(veiksnys A)<br />

Years<br />

Metai<br />

Fertilization with boron (factors B)*<br />

Tręšimas boru (veiksnys B)<br />

1 2 3 4 5 6<br />

35<br />

Babtai, 2006–2007<br />

LSD 05<br />

B<br />

R 05<br />

B<br />

Disease prevalence<br />

Ligos išplitimas (%)<br />

‘Boro’ F 1<br />

2006 66.7 58.3 54.2 41.7 50.0 41.7 13.0<br />

‘Kamuoliai 2’ 2006 87.5 58.3 45.8 62.5 70.8 41.7<br />

‘Boro’ F 1<br />

2007 25.0 25.0 16.7 20.8 0 8.3 11.4<br />

‘Kamuoliai 2’ 2007 41.7 29.2 29.2 12.5 20.8 37.5<br />

LSD 05<br />

A 2006 5.8<br />

R 05<br />

A 2007 5.1<br />

LSD 05<br />

A × B<br />

R 05<br />

A × B<br />

2006 19.3<br />

2007 16.9<br />

Disease intensity<br />

Ligos intensyvumas (%)<br />

‘Boro’ F 1<br />

2006 66.7 45.8 54.2 45.8 50.0 41.7 11.9<br />

‘Kamuoliai 2’ 2006 56.3 41.7 43.8 56.3 64.6 37.5<br />

‘Boro’ F 1<br />

2007 25.0 25.0 16.7 20.8 0 8,3 9.1<br />

‘Kamuoliai 2’ 2007 26.4 22.9 29.2 12.5 16.0 26.4<br />

LSD 05<br />

A 2006 5.3<br />

R 05<br />

A 2007 4.1<br />

LSD 05<br />

A × B<br />

R 05<br />

A × B<br />

2006 17.7<br />

2007 13.5<br />

* Note: Variants of fertilization are shown in the methodical part<br />

* Pastaba: Tręšimo variantai pateikti metodinėje dalyje<br />

According to the average data of 2006–2007 investigations, additional fertilization<br />

through leaves with boron more influences the yield of red beet cultivar ‘Kamuoliai 2’.<br />

The standard red beet cultivar ‘Kamuoliai 2’ yield after fertilization increased on the<br />

average 1.1 t ha -1 (in 2006 – 0.3, in 2007 – 1.7 t ha -1 ), and this one of cultivar ‘Boro’ F 1<br />

increased only in 2007 (Fig.).<br />

Root-crop yield of red beet cultivar ‘Kamuoliai 2’ during the both years of investigation<br />

mostly (in 2006 – 1.9 t ha -1 , in 2007 – 3.1 t ha -1 ) increased after fertilization<br />

with Boramin Ca, in comparison with the yield of red beet grown without boron<br />

fertilizers. Economical efficiency of these boron fertilizers comprised correspondingly<br />

in 2006 4.9 %, in 2007 9.9 %; according to the average data of both years – 7.4 %.<br />

The yield of red beet cultivar ‘Boro’ F 1<br />

in 2006 mostly (only 0.4 t ha -1 ) increased after<br />

fertilization with Boramin Ca, and in 2007 – after fertilization with Boramin Ca and<br />

Lyderis®Bor (correspondingly 2.0 and 2.1 t ha -1 ). Economical efficiency of these fertilizers<br />

was correspondingly in 2006 1.2 %, in 2007 – 4.0 and 4.2 %; according to the


average data of both years 2.6 % (only Boramin Ca). Probably applying Boramin Ca,<br />

the main influence did calcium and free amino acids present in the composition of<br />

the fertilizer.<br />

Fig. Influence of boron fertilizers on standard yield of red beet<br />

Pav. Boro trąšų įtaka raudonųjų burokėlių standartiniam derliui<br />

The increase of scab prevalence and intensity decreased red beet standard yield.<br />

The influence on the yield of cultivar ‘Boro’ F 1<br />

was strong (correspondingly r = -0.91<br />

and r = -0.95), and on the yield of cultivar ‘Kamuoliai 2’ – average (correspondingly<br />

r = -0.44 and r = -0.43).<br />

Discussion. When it is warm (over 20 °C) and dry (humidity 50–70 %) during<br />

vegetation, the conditions for scab prevalence are very favourable (Ražukas et al.,<br />

2003; Davies et al., 1976; Schoneveld, 1974). It was established in light loamy Albeluvisol<br />

of Western Lithuania that hydrothermal coefficient slightly influenced scab<br />

prevalence (Repšienė, Mineikienė, 2006). The data of our investigations carried out<br />

at the LIH showed that the temperature increase increased and precipitation increase<br />

– decreased scab prevalence and intensity.<br />

Potato resistance to common scab disease depends on genetic oneness and earliness<br />

of potato cultivars group (Ražukas <strong>ir</strong> kt., 2003; Klikocka, 2009). Trial results<br />

in Croatia showed that ‘Des<strong>ir</strong>e’ had significant higher percent of infected tubers with<br />

higher intensity of infection than ‘Courage’. In wet season, there was no evident on<br />

scabies infection and referred that lime addition increased scab incidence (Poljak<br />

et al., 2009). Scab lesions table beet and potato can cause considerable reductions in<br />

quality, resulting in loss of marketable yield (Koike et al., 2006; Ražukas et al., 2003).<br />

‘Avon Early’, ‘Elsoms’ 257 and ‘Bikor’ were the most resistant ‘globe’ beets, while<br />

‘New Globe’ and ‘Little Ball’ – most susceptible. ‘Boltardy’ and ‘Crimson Globe’, the<br />

cultivars widely grown in the fen, were among the more susceptible. The significance<br />

of this noticeable effect is not yet known, but it may reflect cultivar differences in the<br />

36


proportion of ‘root’ above and below ground (Lapwood et al., 1976). Our investigations<br />

showed that scab infection in root crops of red beet cultivar ‘Kamuoliai 2’ in both years<br />

of investigations was bigger than this one in red beet cultivar ‘Boro’ F 1<br />

.<br />

The application of fertilizers with S, Mg and B decreased the tuber infection rate<br />

and intensity of Streptomyces scabies, increasing potato tuber yield (Klikocka, 2009).<br />

According to the average data of 2006–2007, at the end of July boron fertilizers applied<br />

in our investigations 29.2 % decreased scab prevalence on root-crops of red beet cultivar<br />

‘Kamuoliai 2’, intensity – 18.3 %, in the autumn – 23.8 % and 6.3 %; on root-crops of<br />

red beet cultivar ‘Boro’ F 1<br />

– at the end of July correspondingly 8.8 % and 3.7 %, in the<br />

autumn – 14.2 and 15.0 %. Fertilizer Boramin Ca was the most effective to red beet.<br />

Economical efficiency of this fertilizer was correspondingly 2.6 % and 7.4 %.<br />

There was no effect of fertilizer material, application rate, or the<strong>ir</strong> interaction on the<br />

dry weight of alfalfa (Byers et al., 2001). Dried mass yield of sunflower was influenced<br />

by boron addition and dose 1.0 mg dm -3 provided the best yield and borax was more<br />

efficient (Marchetti et at., 2001). The data in the calcareous to a boron deficient soils of<br />

Pakistan showed that maximum sunflower biomass was produced with 1.0 mg kg -1 B,<br />

and application of ≥ 2.0 mg kg -1 proved toxic, resulting in drastic yield suppressions.<br />

Boron requ<strong>ir</strong>ement can vary and depend on cultivar, plant age and plant part (Rashid,<br />

Rafique, 2005). A weekly foliar spray with boron (300 mg L -1 B) increased tomato<br />

marketable yield and fruit quality, reducing shoulder check incidence by 50 % compared<br />

to untreated plants (Huang, Snapp, 2009). In acid Oxisols of Brazil, boron application<br />

significantly increased common bean yield in only the f<strong>ir</strong>st crop (Fageria et at., 2007).<br />

The foliar pulverization with boron brought benefit to the culture of beet, when boric<br />

acid or commercial product Supa bor® in concentration of 0.046 % was used (Saude<br />

et al., 2006, www.abhorticultura.com.). Boron and phosphorus did not affect yield of<br />

table beet, but boron application reduced incidence of root canker (Hemphill, 1982).<br />

Our investigations showed that boron fertilizers positively influenced red beet yield<br />

both of hybrids and cultivars.<br />

Conclusions. 1. The increase of temperature increased scab prevalence (for red<br />

beet ‘Boro’ F 1<br />

r = 0.88; for red beet ‘Kamuoliai 2’ r = 0.76) and intensity (correspondingly<br />

r = 0.88 and 0.85). The increase of precipitation decreased scab prevalence<br />

and intensity (scab prevalence correspondingly r = -0.90 and -0.79, intensity correspondingly<br />

r = -0.90 and -0.87).<br />

2. Scab infection and disease intensity in root crops of red beet cultivar<br />

‘Kamuoliai 2’ in both years of investigations was bigger than this one in red beet<br />

cultivar ‘Boro’ F 1<br />

.<br />

3. Boron fertilizers positively influenced red beet yield both of hybrids and cultivars.<br />

4. According to the average data of 2006–2007, at the end of July the applied<br />

boron fertilizers 23.8 % and 6.3 % decreased scab prevalence on root-crops of red beet<br />

cultivar ‘Kamuoliai 2’, on root-crops of red beet cultivar ‘Boro’ F 1<br />

– correspondingly<br />

14.2 and 15.0 %.<br />

37


5. Scab prevalence and intensity increase decreased red beet standard yield. The<br />

influence on the yield of cultivar ‘Boro’ F 1<br />

was strong (correspondingly r = -0.91<br />

and r = -0.95), and on the yield of cultivar ‘Kamuoliai 2’ – average (correspondingly<br />

r = -0.44 and r = -0.43).<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 11<br />

References<br />

1. Byers D. E., Mikkelsen R. L., Cox F. R. 2001.Greenhouse evaluation of four<br />

boron fertilizer materials. Journal of plant nutrition, 24(4/5): 717–725.<br />

2. Bukantis A. 2004. Taikomoji meteorologija_2. Agrometeorologija. http://www.<br />

hkk.gf.vu.lt/<br />

3. Christenson D. R., Draycott A. P. 2006. Nutrition – phosphorus, sulphur, potassium,<br />

sodium, calcium, magnesium and micronutrients – liming and nutrients<br />

deficiencies. In: A. P. Draycott (eds.), Sugar beet, Blackwell Publishing, Oxford,<br />

185–219.<br />

4. Davies J. R., McDole R. E., Callihan R. H. 1976. Fertilizer effects on common<br />

scab of potato and the relation of calcium and phosphate-phosphorus.<br />

Phytopathology, 66: 1 236–1 241.<br />

5. Dordas C. 2008. Role of nutrients in controlling plant diseases in sustainable<br />

agriculture. A review. Agronomy for Sustainable Development, <strong>28</strong>: 33–46.<br />

6. Eichert T., Goldback H. E. 2006. Ambient a<strong>ir</strong> humidity affects phloem mobility<br />

of foliar-applied boron. Acta Hoticulturae, 700: 67–70.<br />

7. Eisler R. 2000. Handbook of chemical risk assessment. Metalloids, radiation,<br />

cumulative, index to chemicals and species, 3: 1 567–1 613.<br />

8. Elphinstone J. G. 2007. The canon of potato science: 11 bacterial pathogens.<br />

Potato Research, 50: 247–249.<br />

9. Fageria N. K., Baligar V. C., Zobel R. W. 2007. Yield, nutrient uptake, and soil<br />

chemical properties as influenced by liming and boron application in common<br />

bean in a no-tillage system. Communications in Soil Science and Plant Analysis,<br />

38(11&12): 1 637–1 653.<br />

10. Gupta U. C., Cutcliffe J. A. 1985. Boron nutrition of carrots and table beets<br />

grown in boron deficient soil. Communications in Soil Science and Plant<br />

Analysis, 16(5): 509–516.<br />

11. Gupta U. C. 2007. Boron. In: Handbook of Plant Nutrition. A. V. Barker, D. J.<br />

Pilbeam (eds.). CRC Press, 241–249.<br />

12. Hemphill D. D., Weber M. S., Jackson T. L. 1982. Table beet yield and boron<br />

deficiency as influenced by lime, nitrogen, and boron. Soil Science Society<br />

American Journal, 46: 1 190–1 192.<br />

38


13. Huang J., Snapp S. S. 2009. Potassium and boron nutrition enhance fruit quality<br />

in Midwest fresh market tomatoes. Communications in Soil Science and Plant<br />

Analysis, 40(11&12): 1 937–1 952.<br />

14. Klikocka H. 2009. Influence of NPK fertilization enriched with S, Mg, and<br />

micronutrients contained in Liquid fertilizer INSOL 7 on potato tubers yield<br />

(Solanom tuberosum L.) and infestation of tubers with Streptomyces Scabies and<br />

Rhizoctonia Solani. Journal of Elementology, 14(2): 271–<strong>28</strong>8.<br />

15. Koike S. T., Gladders P., Paulus A. O. 2006. Vegetable diseases: color handbook.<br />

Academic Press.<br />

16. Lambert D. H., Powelson M. L., Stevenson W. R. 2005. Nutritional interactions<br />

influencing diseases of potato. American Journal of Potato Research, 82:<br />

309–319.<br />

17. Lapwood D. H., Adams M. J., Crisp A. F. 1976. The Susceptibility of Red Beet<br />

Cultivars to Streptomyces Scab. Plant Pathology, 25: 31–33.<br />

18. Loria R., Kers J. A., Joshi M. 2006. Evolution of plant pathogenicity in<br />

Streptomyces. Annual Review of Phytopathology, 44: 469–487.<br />

19. Marchetti M, E., Motomya W. R., Fabricio A. C, Noveino J. O. 2001. Sunflower,<br />

Heliantus annuus, response to sources and levels of boron. Maringa, 2(5):<br />

1 107–1 110.<br />

20. Nottingham S. 2004. Beetroot. http://ourworld.compuserve.com/homepages/<br />

Stephen_Nottingham/ beetroot1.htm August 2004 SFN.<br />

21. Olanya O. M., Lambert D. H., Porter G. A. 2006. Effects of pests and soil management<br />

systems on potato diseases. American Journal of Potato research, 83(5):<br />

397–408.<br />

22. Parry D. W. 1990. Plant pathology in agriculture. New York, 385: 290–303.<br />

23. Pavlista A. D. 2005. Early-season applications of sulfur fertilizers increase potato<br />

yield and reduce tuber defects. Agronomy Journal, 97: 599–603.<br />

24. Poljak M., Horvat T., Nemet D., Buturac I. 2009. Effect of sustainable agricultural<br />

practices on control of potato scab in Croatia. Acta Horticulturae, 830(2):<br />

469–476.<br />

25. Rashid A., Rafique E. 2005. Internal boron requ<strong>ir</strong>ement on young sunflower<br />

plants: proposed diagnostic criteria. Communications in Soil Science and Plant<br />

Analysis, 36(15&16): 2 113–2 119.<br />

26. Ražukas A., Čeponienė S., Repečkienė J. 2003. Potato cultivars resistance to common<br />

scab Streptomyces scabies. Sodininkystė <strong>ir</strong> daržininkystė, 22(3): 354–361.<br />

27. Repšienė R., Mineikienė E. V. 2006. Meteorologinių sąlygų <strong>ir</strong> sk<strong>ir</strong>tingų<br />

žemd<strong>ir</strong>bystės sistemų įtaka bulvių ‘M<strong>ir</strong>ta’ gumbų ligotumui bei derlingumui.<br />

Žemės ūkio mokslai, 3: 16–25.<br />

<strong>28</strong>. Saude I. B., Gracano D. B. C., Reis M. A., Cardoso V. P., Macie<strong>ir</strong>a G. A. A., da<br />

Fonseca F. H. A., Salgado P. J. A., Yuri J. E. 2006. Influence of boron sources<br />

and concentrations in the beet yield. //http. www.abhorticultura.com.br/.../trabalhos/ev_1/a344_t614_com.<br />

39


29. Tarakanovas P., Raudonius S. 2003. Agronominių tyrimų duomenų statistinė<br />

analizė, taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo<br />

SELEKCIJA <strong>ir</strong> IRRISTAT. Akademija, Kėdainių r.<br />

30. Waller J. M., Ritchie B. J., Holderness M. 1998. IMI Technical Handbook No. 3:<br />

Plant Clinic Handbook. IMI, Bakeham Lane, Egham, Surrey TW20 9TY, UK,<br />

94.<br />

31. Waterer D. 2003. Impact of high soil pH on potato yields and grade losses to<br />

common scab. Canadian Journal Plant Science, 82: 583–586.<br />

32. Анспок П. И. 1990. Микроудобрения. Ленинград.<br />

33. Томсон Л. М., Троу Ф. Р. 1982. Почвы и их плодородие. Москва.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Boro trąšų <strong>ir</strong> meteorologinių sąlygų įtaka burokėlių užsikrėtimui<br />

rauplėmis <strong>ir</strong> derlingumui<br />

O. Bundinienė<br />

Summary<br />

Burokėlių papildomo tręšimo boro trąšomis per lapus tyrimai atlikti Lietuvos sodininkystės<br />

<strong>ir</strong> daržininkystės institute 2006–2007 m. priesmėlio ant lengvo priemolio karbonatingajame<br />

sekliai glėjiškame išplautžemyje (IDg8-k / Calc(ar)i- Epihypogleyc Luvisols – LVg-p-w-cc).<br />

D<strong>ir</strong>vožemis buvo mažo humusingumo <strong>ir</strong> azotingumo, didelio fosforingumo, kalcingumo <strong>ir</strong><br />

magningumo, vidutinio kalingumo <strong>ir</strong> kalingas, vidutinio <strong>ir</strong> didelio boringumo, šarmiškas. T<strong>ir</strong>ta<br />

įva<strong>ir</strong>ių boro trąšų <strong>ir</strong> meteorologinių sąlygų įtaka rauplių išplitimui sk<strong>ir</strong>tingų burokėlių veislių<br />

<strong>ir</strong> hibridų šakniavaisiuose.<br />

2007 m. rauplių paplitimas <strong>ir</strong> ligos intensyvumas tiek hibrido, tiek veislės burokėliuose buvo<br />

2–3 kartus mažesnis negu 2006 m. Temperatūros didėjimas skatino rauplių plitimą (‘Boro’ F 1<br />

burokėliams r = 0,88; ‘Kamuoliai 2’ veislės burokėliams r = 0,76) <strong>ir</strong> stiprino intensyvumą<br />

(atitinkamai r = 0,88 <strong>ir</strong> 0,85), o kritulių kiekio didėjimas rauplių išplitimą <strong>ir</strong> intensyvumą mažino<br />

(išplitimas atitinkamai r = -0,90 <strong>ir</strong> -0,79, intensyvumas r = -0,90 <strong>ir</strong> -0,87).<br />

Abiem tyrimo metais ‘Kamuoliai 2’ veislės burokėlių šakniavaisiai buvo labiau užsikrėtę<br />

rauplėmis negu ‘Boro’ F 1<br />

burokėliai.<br />

Boro trąšos darė teigiamą įtaką tiek hibrido, tiek veislės burokėlių derliui <strong>ir</strong> mažino rauplių<br />

išplitimą bei intensyvumą (vidutiniais 2006–2007 metų duomenimis, ant ‘Boro’ F 1<br />

burokėlių<br />

šakniavaisių atitinkamai 14,2 <strong>ir</strong> 15,0 %, ant ‘Kamuoliai 2’ veislės burokėlių šakniavaisių – 23,8 %<br />

<strong>ir</strong> 6,3 %). Efektyviausios burokėliams buvo Boramin Ca trąšos. Ūkinis šių trąšų efektyvumas<br />

buvo atitinkamai 2,6 % <strong>ir</strong> 7,4 %.<br />

Rauplių išplitimo <strong>ir</strong> intensyvumo didėjimas mažino burokėlių standartinį derlių. ‘Boro’ F 1<br />

šakniavaisių derliui įtaka buvo stipri (atitinkamai r = -0,91 <strong>ir</strong> r = -0, 95), ‘Kamuoliai 2’ veislės<br />

burokėliams – vidutinė (atitinkamai r = - 0,44 <strong>ir</strong> r = - 0,43).<br />

Reikšminiai žodžiai: boro trąšos, derlingumas, hibridas, intensyvumas, išplitimas,<br />

raudonieji burokėliai, rauplės, veislė.<br />

40


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Toxicity of insecticides to predatory mite<br />

Phytoseuilus persimilis in cucumber<br />

Laisvūnė Duchovskienė, Laimutis Raudonis, Rasa Karklelienė,<br />

Roma Starkutė<br />

Investigations were carried out with greenhouse cucumbers at the Lithuanian Institute of<br />

Horticulture in 2004–2005. The impact of three applied insecticides Envidor 240 SC (a. i. sp<strong>ir</strong>odiclofen<br />

240 g l -1 ) at the rates of 0.03 and 0.05 %, NeemAzal-T/S (a. i. 1 % azad<strong>ir</strong>achtin A)<br />

at the rate of 0.5 % and Agri-50 (a. i. <strong>28</strong> % see weeds) at the rate of 0.3 % were determined<br />

on predatory mite Phytoseiulus persimilis. There were found significant differences between<br />

the number of predatory mites after application of Envidor 240 SC, NeemAzal-T/S and in<br />

untreated plants. Envidor 240 SC (0.05 % and 0.03 %) was from moderately toxic (mortality<br />

ranged from 50.98–66.67 %) 3 days after treatment to slightly toxic (25.0–48.75 % mortality)<br />

7 days after treatment. Envidor 240 SC was non-toxic 14 days after treatment. Agri-50 and<br />

NeemAzal-T/S were only slightly toxic (<strong>28</strong>.89–33.33 %) 3 days after treatment in 2005. Based<br />

on the results, NeemAzal-T/S and Agri-50 may be a useful part of Integrated Pest Management<br />

(IPM) programs.<br />

Key words: Agri-50, cucumber, Envidor, NeemAzal, Phytoseiulus persimilis.<br />

Introduction. Tetranychus urticae is one of the most serious pests in a number<br />

of agricultural systems. Its outbreaks are often a consequence of repeated and nonselective<br />

pesticide applications, which enhance pesticide resistance (Helle, Sabelis,<br />

1985). Resistance of T. urticae to numerous acaricides has developed difficulties controlling<br />

outbreaks of these pests (Carbonaro et al., 1986). Phytoseiulus persimilis can<br />

be affective as one of tools in the integrated pest management program for controlling<br />

T. urticae (Cote et al., 2002; Kim, Yoo, 2002). Despite successful suppression of<br />

T. urticae, limitations to the effectiveness of P. persimilis arise under certain conditions.<br />

The optimum conditions for rapid population development of P. persimilis are<br />

temperature of 27 °C and relative humidity (RH) of 60 % to 85 % (Stenseth, 1979).<br />

The effect of chemical classes like organophosphates, pyrethroids, organochlorines<br />

and carbamates on P. persimilis is from most to least harmful (Pratt, Croft, 2000).<br />

After threshold levels of T. urticae are surpassed, release of predators combined with<br />

compatible acaricide is more effective than using chemical or biological control tactics<br />

alone (Trumble, Morse, 1993).<br />

Object, methods and conditions. Investigations were carried out with greenhouse<br />

cucumbers at the Lithuanian Institute of Horticulture in 2004–2005. The general<br />

EPPO standards were used for investigations (Anon, 1997).<br />

Envidor 240 SC (a. i. sp<strong>ir</strong>odiclofen 240 g l -1 ) at the rates of 0.03 % and 0.05 %,<br />

41


NeemAzal-T/S (a. i. 1 % azad<strong>ir</strong>achtin A) at the rate of 0.5 % and algae extracts Agri-50<br />

(a. i. <strong>28</strong> % see weeds) at the rate of 0.3 % water spraying solution was applied. The<br />

plot size for tests was 5 m 2 . Four replications were made in a randomized block design.<br />

20 leaves per plot were observed to determine the number of P. persimilis for evaluation<br />

the efficiency of tested products. Phytoseiulus persimilis adults were obtained<br />

from Biobest (Belgium). Six predators per square meter were released after arrival.<br />

The cucumber plants were naturally infected by Tetranychus urticae. Insecticide was<br />

applied 10 days after P. persimilis introduction. Predators were recorded as follows:<br />

24 h before and 3, 7 and 14 days after treatment. The counts of mortality of adults<br />

and larvae were corrected by Abbott’s formula (1925). We used quantitative toxicity<br />

categories from International Organization for Biological Control for assessment of<br />

pesticide toxicity to predatory and phytophagous mites in field trials: nontoxic (< 25 %<br />

mortality), slightly toxic (25–50 %), moderately toxic (51–75 %), very toxic (> 75 %)<br />

(Hassan et al., 1985).<br />

The number of predatory mites among treatments was compared with a single<br />

factor analysis of variance (ANOVA). Specific differences were identified with<br />

Duncan’s multiple range test.<br />

Results. Predatory mites were numerous in 2004 comparing with 2005. Decrease<br />

of P. persimilis number from exposure to residues of Envidor 240 SC was mostly<br />

significantly greater as observed in control comparing with NeemAzal-T/S and<br />

Agri-50 (especially Envidor 240 SC at the rate of 0.05 %) after application (Table<br />

1).<br />

Table 1. Number of predatory mites Phytoseiulus persimilis after application of<br />

insecticides<br />

1 lentelė. Grobuoniškų erkių Phytoseiulus persimilis gausumas po purškimo insekticidais<br />

Babtai, 2004–2005<br />

Mean number of Phytoseiulus persimilis, unit/ leaf<br />

Vidutinis Phytoseiulus persimilis skaičius ant lapo<br />

Treatments<br />

before<br />

days after application<br />

Variantai<br />

application<br />

dienos po purškimo<br />

prieš purškimą 3 7 14<br />

1 2 3 4 5<br />

2004<br />

Untreated<br />

4.4 ab 5.1 c 5.6 b 3.2 a<br />

Nepurkšta<br />

Envidor 240 SC 0.05 % 5.6 ab 2.3 a 4.2 ab 2.7 a<br />

Envidor 240 SC 0.03 % 5.2 ab 2.5 a 3.8 ab 3.1 a<br />

NeemAzal-T/S 1 % EC 0.5 % 4.2 ab 4.1 abc 5.4 ab 6.2 b<br />

AGRI-50 0.3 % 5.7 b 4.8 bc 5.0 ab 4.1 a<br />

42


Table 1 continued<br />

1 lentelės tęsinys<br />

1 2 3 4 5<br />

2005<br />

Untreated<br />

3.0 abc 4.5 c 8.0 c 3.4 abc<br />

Nepurkšta<br />

Envidor 240 SC 0.05 % 2.0 a 1.5 a 4.1 a 2.6 a<br />

Envidor 240 SC 0.03 % 2.5 abc 2.0 ab 4.7 a 3.3 abc<br />

NeemAzal-T/S 1 % EC 0.5 % 3.2 bc 3.0 bcd 7.2 bc 4.4 bc<br />

AGRI-50 0.3 % 3.5 c 3.2 bcd 6.3 abc 4.8 c<br />

Note: Means followed by the same letter are not different significantly (P = 0.05) according to<br />

Duncan’s multiple range test<br />

Pastaba: Reikšmės, pažymėtos tomis pačiomis raidėmis, pagal Dunkano kriterijų (P = 0,05) iš<br />

esmės nesisk<strong>ir</strong>ia.<br />

There were not found statistical differences of number of predatory mites treated<br />

with Envidor 240 SC 0.03 and 0.05 %. The number of P. persimilis treated with Agri-50<br />

did not differ significantly comparing with NeemAzal-T/S. Decrease of P. persimilis<br />

was insignificant after treatment with Agri-50, NeemAzal-T/S and in untreated plots.<br />

Small decrease of predatory mites comparing with untreated plots was observed only<br />

3 days after spraying. A number of mites began to increase after 7 days, but after 14<br />

days in all the treatments number of P. persimilis decreased.<br />

Envidor 240 SC (0.05 % and 0.03 %) was from moderately toxic (mortality ranged<br />

from 50.98–66.67 %) to slightly toxic (25.0–48.75 % mortality) (Table 2).<br />

Table 2. Residue toxicity to Phytoseiulus persimilis after application of insecticides<br />

2 lentelė. Išliekamasis toksiškumas Phytoseiulus persimilis po purškimo insekticidais<br />

Treaments<br />

Variantai<br />

43<br />

Babtai, 2004–2005<br />

Mortality of Phytoseiulus persimilis<br />

Phytoseiulus persimilis žuvimas (%)<br />

after application<br />

po purškimo<br />

3 d. 7 d. 14 d.<br />

2004 2005 2004 2005 2004 2005<br />

Envidor 240 SC 0.05 54.90 66.67 25.00 48.75 15.62 23.53<br />

Envidor 240 SC 0.03 50.98 55.55 32.14 41.25 3.12 2.94<br />

NeemAzal-T/S 1% EC 0.5% 19.61 33.33 3.57 10.00 -93.75 -29.41<br />

AGRI-50 5.88 <strong>28</strong>.89 10.71 21.25 -<strong>28</strong>.75 -41.18<br />

Envidor 240 SC was non-toxic only 14 days after treatment. Three days after spraying<br />

Agri-50 and NeemAzal-T/S were only slightly toxic (<strong>28</strong>.89–33.33 %) in 2005.<br />

Discussion. Numerous field studies using P. persimilis alone and P. persimilis<br />

combined with compatible acaricides demonstrate that adequate control can be<br />

achieved with correct combination of acaricides and this predatory mite (Osborne,


Patitt, 1985, Cashion et al., 1994). The level of compatibility will usually depend on<br />

the post application interval (Cote et al., 2002). We measured toxicity of acaricides<br />

to commercially available P. persimilis. We did not consider side effects, which can<br />

occur from acaricide residues like other authors (Oomen et al., 1991).<br />

Decrease of P. persimilis number from exposure to residues of Envidor 240 SC<br />

was significantly greater than this observed in untreated plots 3 days and 7 days after<br />

spraying in 2005. There were not found statistical differences of number of predatory<br />

mites treated with different rates of Envidor 240 SC and mortality of P. persimilis<br />

was similar. The toxic effect of pesticides on mites depends on the chemistry of pesticides,<br />

the<strong>ir</strong> rates, microclimatic conditions and development stages of mites (Pratt<br />

and Croft, 2000; Papaioannou-Souliotis et al., 2000; Stenseth, 1979). It was found that<br />

Envidor 240 SC was non-toxic to predatory mites in strawberry under field conditions<br />

(Raudonis, 2006). In our treatment Envidor 240 SC (0.05 and 0.03 %) was from<br />

moderately toxic (after 3 days) to slightly toxic (after 7 days) to P. persimilis. The<br />

mortality ranged from 25.0–66.67 %. Envidor 240 SC (both rates) was non-toxic and<br />

had not long-lasting effect 14 days after spraying.<br />

It was found that Neem products are active for only a short period, but all neem<br />

products may not be equally compatible with P. persimilis (Cote et al., 2002). D<strong>ir</strong>ect<br />

application of neem formulation containing 80 % neem oil at a rate of 3 % was highly<br />

toxic to P. persimilis (Papaioannou-Souliotis et al., 2000). NeemAzal-T/S containing<br />

triterpenoid azad<strong>ir</strong>achtin has a number of useful properties for insect control due to its<br />

repellency, feeding and oviposition deterrence, insect growth regulator. This product<br />

is considered as safe to the env<strong>ir</strong>onment and reduces the rate of pest development<br />

(Schmutterer, 1990; Pavela, Holy, 2003). On the other hand, Azad<strong>ir</strong>achtin was the<br />

least toxic from tested insecticides to other predatory mite Neoseiulus californicus<br />

(Castagnoli et al., 2005). Nevertheless, in our treatment NeemAzal-T/S was only<br />

slightly toxic 3 days after treatment. Neem products may be a useful part of Integrated<br />

Pest Management (IPM) programs, however, its short residual toxicity may not suppress<br />

large population of two spotted spider mite (Cote et al., 2002). The number of<br />

P. persimilis on leaves treated with Agri-50 did not essentially differ comparing with<br />

NeemAzal-T/S and both products did not statistically reduce the number of P. persimilis<br />

comparing with unsprayed plots. Proper insecticide selection may create favorable<br />

conditions for combination predator release and the use of chemical products.<br />

Conclusions. Envidor 240 SC (0.05 and 0.03 %) was moderately toxic (mortality<br />

of P. persimilis ranged from 50.98 to 66.67 %) three days after treatment and slightly<br />

toxic (mortality 25.0–48.75 %) seven days after treatment. Only fourteen days after<br />

treatment Envidor 240 SC was non-toxic.<br />

NeemAzal-T/S and Agri-50 were slightly toxic (mortality of P. persimilis ranged<br />

from <strong>28</strong>.89 to 33.33 %) only three days after treatment. Based on the results, NeemAzal-<br />

T/S and Agri-50 could be a used for Integrated Pest Management (IPM) programs.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 03<br />

44


References<br />

1. Abbott W. S. 1925. A method for computing the effectiveness of an insecticide.<br />

Journal of Economic Entomology, 18: 265–267.<br />

2. Anon. EPPO Standards. 1997. Guidelines for the efficacy evaluation of plant protection<br />

products. Insecticides & Acaricides. Editor European and Mediterranean<br />

Pl. Prot. Org. Paris, 3: 231.<br />

3. Carbonaro M. A., Moreland D. E., Edg V. E., Matoyama N., Rock G. C.,<br />

Dauterman W.C. 1986. Studies of the mechanisms of cyhexatin resistance in the<br />

two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Journal of<br />

Economic Entomology, 79: 579–580.<br />

4. Cashion G. J., Bixler H., Price J. F. 1994. Nursery IPM trials using predatory<br />

mites. Proceedings of the Florida State Horticultural Society, 107: 220–222.<br />

5. Cote K. W., Lewis E. E., Schultz P. 2002. Compatibility of acaricide residues with<br />

Phytoseiulus persimilis and the<strong>ir</strong> effect on Tetranychus urticae. HortScience,<br />

37(6): 906–909.<br />

6. Castagnoli M., Liguori M., Simoni S., Duco C. 2005. Toxicity of some insecticides<br />

to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus.<br />

BioControl, 50: 611–622.<br />

7. Hassan E., Oomen, P. A., Overmeer W. P. J., Plevoets P., Reboulet J. N.,<br />

Rieckmann W., Samsoe-Petersen L., Sh<strong>ir</strong>es S. W., Staubli A., Stevensen J.,<br />

Tuset J. J., Vanwetswinkel G., Zon A. Q. 1985. Standard methods to the test of<br />

side effects of pesticides on natural enemies of insects and mites developed by<br />

the IOBC/WPRS. Bulletin OEPP/EPPO, 15: 214–255.<br />

8. Helle W., Sabelis M. W. 1985. Spider Mites. The<strong>ir</strong> Biology, natural Enemies and<br />

Control. Elsevier, Amsterdam, Oxford, New York, Tokio, 1 A: 391–395.<br />

9. Kim S. S., Yoo S. S. 2002. Comparative toxicity of some acaricides to the predatory<br />

mite, Phytoseiulus persimilis and the two-spotted spider mite Tetranychus<br />

urticae. BioControl, 47 (5): 563–573.<br />

10. Oomen P. A., Romeijn G., Wiegers G. L. 1991. Side effects of 100 acaricides on<br />

the predatory mite Phytoseiulus persimilis, collected and evaluated according<br />

to the EPPO guideline. Bulletin European and Mediterranean Plant Protection<br />

organization (OEPP/EPPO), 21: 701–712.<br />

11. Osborne L. S., Petitt F. L. 1985. Insecticidal soap and the predatory mite<br />

Phytoseiulus persimilis (Acari: Phytoseiidae), used in management of the twospotted<br />

spider mite (Acari: Tetranychidae) on greenhouse grown foliage plants.<br />

Journal of Economic Entomology, 78: 687–691.<br />

12. Papaioannou-Souliotis P., Markouiannaki-Printziou D., Zoaki-Malissiova D.<br />

2000. Side effects of Neemark (Azad<strong>ir</strong>achta indica A. Juss) and two new vegetable<br />

oil formulations on Tetranychus urticae Koch. and its predator Phytoseiulus<br />

persimilis Athias-Henriot. Bollettino di Zoologia Agraria e di Bachicoltura,<br />

32: 25.<br />

45


13. Pavela R., Holy K. 2003. Effect of azad<strong>ir</strong>achtin on larvae of Lymantria dispar,<br />

Spodoptera litoralis and Mamestra brassicae. Sodininkystė <strong>ir</strong> daržininkystė,<br />

22(3): 434–441.<br />

14. Pratt P. D., Croft B. A. 2000. Toxicity of pesticides registered for use in landscape<br />

nurseries to the acarine biological control agent, Neoseiulus fallacis. Journal<br />

of Env<strong>ir</strong>onmental Horticulture, 18: 197–201.<br />

15. Raudonis L. 2006. Comparative toxicity of sp<strong>ir</strong>odiclofen and lambdacihalotrin<br />

to Tetranychus urticae, Tarsonemus pallidus and predatory mite Amblyseius<br />

andersoni in a strawberry site under field conditions. Agronomy Research, 4:<br />

317–326.<br />

16. Schmutterer H. 1990. Properties and potential of natural pesticides from neem<br />

tree, Azad<strong>ir</strong>achta indica. Annual Review of Entomology, 35: 271–297.<br />

17. Stenseth C. 1979. Effect of temperature and humidity on the development of<br />

Phytoseiulus persimilis and its ability to regulate populations of Tetranychus<br />

urticae (Acarina: Phytoseiidae, Tetrancyhidae). Entomophaga, 249: 311–317.<br />

18. Trumble J. T., Morse J. P. 1993. Economics of integrating the predaceous mite<br />

Phytoseuilus persimilis (Acarina: Phytoseiidae) with pesticides in strawberries.<br />

Journal of Economic Entomology, 86: 879–885.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Insekticidų toksiškumas grobuoniškoms erkėms<br />

Phytoseuilus persimilis agurkuose<br />

L. Duchovskienė, L. Raudonis, R. Karklelienė, R. Starkutė<br />

Santrauka<br />

Tyrimai atlikti Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute 2004–2005 metais šiltnamyje<br />

augintuose agurkuose. T<strong>ir</strong>tas trijų insekticidų: Envidor 240 SC (v. m. sp<strong>ir</strong>odiklofenas 240 g l -1 )<br />

0,03 <strong>ir</strong> 0,05 %, Nimazal-T/S (v. m. 1% azad<strong>ir</strong>achtinas A) 0,5 % <strong>ir</strong> Agri-50 (v. m. <strong>28</strong> % jūros žolė)<br />

0,3 % poveikis grobuoniškoms erkėms Phytoseiulus persimilis. Buvo rasti esminiai sk<strong>ir</strong>tumai<br />

tarp grobuoniškų erkių skaičiaus po purškimo Envidor 240 SC, Nimazal T/S <strong>ir</strong> nepurkštų augalų.<br />

Envidor 240 SC (0,05 % <strong>ir</strong> 0,03 %) buvo nuo vidutiniškai toksiško (P. persimilis m<strong>ir</strong>tingumas<br />

kito nuo 50,98 iki 66,67 %) praėjus 3 dienoms po purškimo iki silpnai toksiško (P. persimilis<br />

m<strong>ir</strong>tingumas kito nuo 25,0 iki 48,75 %) praėjus 7 dienoms po purškimo. Envidor 240 SC (0,05 %<br />

<strong>ir</strong> 0,03 %) po 14 dienų buvo netoksiškas. Agri-50 <strong>ir</strong> Nimazal T/S 2005 metais buvo silpnai<br />

toksiški (<strong>28</strong>,89–33,33 %) praėjus 3 dienoms po purškimo. Remiantis tyrimų rezultatais, Nimazal-<br />

T/S <strong>ir</strong> Agri-50 gali būti sėkmingai naudojami integruotos augalų apsaugos (IAA) programose.<br />

Reikšminiai žodžiai: Agri-50, agurkai, Envidor, Nimazal-T/S, Phytoseiulus persimilis.<br />

46


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Effect of Abamectin on two-spotted spider mite and<br />

leaf miner flies in greenhouse cucumbers<br />

Laisvūnė Duchovskienė, Elena Survilienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail l.raudonis@lsdi.lt<br />

Effect of Abamectin 18 g l -1 on two-spotted spider mite (Tetranychus urticae Koch.) and<br />

leaf miner flies (L<strong>ir</strong>iomyza strigata, L<strong>ir</strong>iomyza bryoniae) was studied in greenhouse cucumbers<br />

in 2005–2006. Efficiency of Abamectin 18 g l -1 0.12 % and 0.1 % against two-spotted spider<br />

mite was respectively 92.24–100 % and 82.8–99.2 %. Efficiency of insecticide Abamectin<br />

18 g l -1 0.075 % and 0.05 % against two-spotted spider mite was respectively 81.0–100 %<br />

and 72.4–94.0 %. Efficiency of Abamectin 18 g l -1 0.12 % and 0.1 % against leaf miner flies<br />

was respectively 63.6–80.3 % and 60.4–75.26 %. Efficiency of insecticide Abamectin 18 g l -1<br />

0.075 % and 0.05 % against leaf miner flies was respectively 35.9–54.4 % and 30.7–49.6 %.<br />

Azad<strong>ir</strong>achtin A 10 g l -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 were less effective against two-spotted<br />

spider mite and leaf miner flies.<br />

Key words: Abamectin, Azad<strong>ir</strong>achtin A, cucumber, L<strong>ir</strong>iomyza bryoniae, L<strong>ir</strong>iomyza<br />

strigata, Sp<strong>ir</strong>odiclofen, Tetranychus urticae.<br />

Introduction. Tetranychus urticae is major pest on field crops, glasshouse crops,<br />

horticultural crops, ornamentals and fruit trees (Van de Vrie et al., 1972). It is one of<br />

the most serious pests in a number of agricultural systems; its outbreaks are often<br />

a consequence of repeated and non-selective pesticide applications, which enhance<br />

pesticide resistance (Helle, Sabelis, 1985). However, spider mite does not attack all<br />

plants to the same degree because of differences in nutritive and toxic constituents<br />

(Boom et al., 2003). Moreover, it can easily adapt to plant varieties that have been<br />

especially selected for resistance, as was shown for e. g. in tomato, broccoli and<br />

cucumber (Fry, 1989). Two-spotted spider mite feeds on leaves causing damage in<br />

chlorophyll and producing white spots that may become more or less coherent with<br />

time (Nachman, Zemek, 2002). Leafmining flies L<strong>ir</strong>iomyza strigata, L<strong>ir</strong>iomyza bryoniae<br />

are frequent species in Lithuanian glasshouses and around them (Ostrauskas<br />

et al., 2003, Ostrauskas et al., 2005). Adult leaf miner flies puncture plant leaves for<br />

feeding and oviposition. Larvae reduce the photosynthetic activity of the leaves by<br />

mining (Parrella et al., 1985). The decreased leaf productivity by T. urticae and leaf<br />

miner fly larvae feeding caused biomass reduction and altered the pattern of dry matter<br />

partitioning in the plant; damaged plants accumulated more dry matter in leaves,<br />

47


and partitioning of dry matter to fruits was hindered (Park, Lee, 2005; Parrella et al.,<br />

1985).<br />

Thus experiments performed in 2005–2006 were designed to clarify how active ingredient<br />

Abamectin affect two-spotted spider mite and leaf miner flies in cucumber.<br />

Object, methods and conditions. The investigations were carried out in greenhouse<br />

cucumber during growing seasons of 2005–2006 in Lithuania as efficiency trials<br />

of Abamectin 18 g l -1 against two-spotted mite and leaf miner flies. Greenhouse was<br />

covered with double film, the sides of greenhouse – with plastic. The general principles<br />

of investigations were in accord with EPPO standards (Anon, 1997).<br />

The trial was carried out according to trial plan as follows (Table 1).<br />

Table 1. Trial plan<br />

1 lentelė. Bandymo planas<br />

Treatment<br />

Variantas<br />

Untreated<br />

Nepurkšta<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l-1<br />

Azad<strong>ir</strong>achtin A 10 g l -1<br />

(standard / standartas)<br />

Sp<strong>ir</strong>odiclofen 240 g l -1<br />

(standard / standartas)<br />

Trade name<br />

Registruoto preparato pavadinimas<br />

Vertimex 1.8 EC<br />

Vertimex 1.8 EC<br />

Vertimex 1.8 EC<br />

Vertimex 1.8 EC<br />

NeemAzal-T/S<br />

Envidor 240 SC<br />

Rate l per ha<br />

Norma l/ha (%)<br />

1.2 (0.12 %)<br />

1.0 (0.1 %)<br />

0.75 (0.075 %)<br />

0.5 (0.05 %)<br />

5.0 (0.5 %)<br />

0.5 (0.05 %)<br />

The size of plot for tested plants was 10 m 2 . Four replications were made in randomized<br />

block design. To determine efficiency of the examined insecticide 10 plants<br />

per plot were observed. After f<strong>ir</strong>st observation leaves with leaf miner flies mines was<br />

removed. Mines were identified according to Pakalniškis et al. (2005). Pests were<br />

recorded as follows: 24 h before and 3, 7, 9 and 14 days after treatment. Biological<br />

efficiency of insecticides in pest control was presented as percentage of pest mortality.<br />

Statistical analysis of results was done.<br />

Microclimate conditions in greenhouses at the time of treatments were favourable<br />

for insecticide applications (Table 2).<br />

Efficacy of abemectin against two-spotted spider mites was calculated: x = 100<br />

(1 – A b/B a) (x – efficacy of insecticide, %, A – number of mites per leaf before spraying<br />

in untreated plot, B – number of mites per leaf before spraying in treated plot,<br />

a – number of mites per leaf after spraying in untreated plot, b – number of mites per<br />

leaf after spraying in treated plot).<br />

The number of two-spotted spider mites and damaged leaves of leaf miner flies<br />

was compared among treatments in this study with single factor analysis of variance<br />

(ANOVA). Specific differences were identified with Duncan’s multiple range test.<br />

48


Table 2. C<strong>ir</strong>cumstances during application<br />

2 lentelė. Sąlygos purškimo metu<br />

Date of application<br />

Purškimo data<br />

2005-07-20 2006-06-23<br />

Code of plant growth stage during application (BBCH scale)<br />

Augalo augimo tarpsnis (pagal BBCH skalę)*<br />

Temperature on the date of application<br />

Temperatūra (°C)<br />

Relative a<strong>ir</strong> humidity on the date of application<br />

73–74<br />

18<br />

81<br />

51–52<br />

18<br />

80<br />

Santykinė oro drėgmė, %<br />

* Growth stages are described according to BBCH scale<br />

* Augalų augimo tarpsniai apibūdinami pagal BBCH skalę (Meier, 1997)<br />

Results. Trial data shows that insecticide Abamectin 18 g l -1 , at rates of 0.12,<br />

0.10, 0.075 % spraying solution was highly effective against two-spotted spider mites<br />

in 2005. There were not found any statistical differences of number of two-spotted<br />

spider mites between Abamectin 18 g l -1 0.12 % and Abamectin 18 g l -1 0.05 % other<br />

3 and 7 days after treatments, but 9 days after 1st treatment it was found statistical<br />

differences between them (Table 3).<br />

The number of two-spotted spider mites was significant less among Abamectin<br />

18 g l -1 0.12 % and standards Azad<strong>ir</strong>achtin A 10 g l -1 0.5 % 3 days after 1st treatment<br />

and Abamectin 18 g l -1 0.12 % and Azad<strong>ir</strong>achtin A 10 g l -1 and Sp<strong>ir</strong>odiclofen 240 g l -1<br />

0.05 % 9 days after 1 st treatment.<br />

Table 3. Abundance of two-spotted spider mite (Tetranychus urticae) on cucumbers<br />

after f<strong>ir</strong>st application<br />

3 lentelė. Paprastųjų voratinklinių erkių (Tetranychus urticae) gausumas agurkuose po<br />

p<strong>ir</strong>mojo purškimo<br />

Treatments<br />

Variantas<br />

before<br />

treatment<br />

prieš<br />

purškimą<br />

Number of mites per leaf<br />

Erkių skaičius ant lapo<br />

3 days after 7 days after<br />

treatment treatment<br />

praėjus 3 dienoms praėjus 7 dienoms<br />

po purškimo po purškimo<br />

Babtai, 2005–2006<br />

9 days after<br />

treatment<br />

praėjus 9 dienoms<br />

po purškimo<br />

1 2 3 4 5<br />

2005<br />

Untreated<br />

40.25 58.0 c 62.5 b 59.25 e<br />

Nepurkšta<br />

Abamectin 0.12 % 31.75 4.5 a 1.0 a 0 a<br />

Abamectin 0.10 % 34.25 10.0 ab 1.75 a 0.5 abc<br />

Abamectin 0.075 % 33.75 11.0 ab 3.25 a 0 ab<br />

Abamectin 0.05 % <strong>28</strong>.50 12.75 ab 2.75 a 10.5 d<br />

Azad<strong>ir</strong>achtin A 0.5 % 27.0 21.0 b 6.50 a 10.0 cd<br />

Sp<strong>ir</strong>odiclofen 0.05 % 31.50 23.5 b 5.75 a 9.25 bcd<br />

49


Table 3 continued<br />

3 lentelės tęsinys<br />

1 2 3 4 5<br />

2006<br />

Untreated<br />

34.25 38.0 d 64.50 c 89.50 c<br />

Nepurkšta<br />

Abamectin 0.12 % 37.00 2.50 a 0.75 a 1.25 a<br />

Abamectin 0.10 % 36.50 4.0 ab 2.25 ab 2.0 a<br />

Abamectin 0.075 % 33.75 8.25 abc 3.0 ab 5.0 ab<br />

Abamectin 0.05 % 37.50 11.50 abc 4.25 ab 6.0 ab<br />

Azad<strong>ir</strong>achtin 0.5 % 38.0 17.75 c 12.25 b 8.75 b<br />

Sp<strong>ir</strong>odiclofen 0.05 % 35.50 15.0 bc 7.50 ab 8.25 b<br />

Note: Means followed by the same letter are not different significantly (P = 0.05) according<br />

to Duncan’s multiple range test<br />

Pastaba: Reikšmės, pažymėtos tomis pačiomis raidėmis, pagal Dunkano kriterijų (P = 0,05) iš<br />

esmės nesisk<strong>ir</strong>ia<br />

The abundance of two-spotted spider mites in 2006 grew not so fast as in 2005.<br />

There were not found any statistical differences of the number of two-spotted spider<br />

mites between Abamectin 18 g l -1 0.12 % and Abamectin 18 g l -1 (0.10, 0.075, 0.05%)<br />

3, 5, 7 and 14 days after treatments. The number of two-spotted spider mites was<br />

significant less among Abamectin 18 g l -1 (0.12, 0.1, 0.075, 0.05 %) and standards<br />

Azad<strong>ir</strong>achtin A 10 g l -1 0.5 % and Sp<strong>ir</strong>odiclofen 240 g l -1 0.05 % 3 days after 1 st treatment.<br />

There were found statistical differences of number among Abamectin 18 g l -1<br />

0.12 % and standards Azad<strong>ir</strong>achtin A 10 g l -1 0.5 % and Sp<strong>ir</strong>odiclofen 240 g l -1 0.05 %<br />

3, 7 and 14 days after 1st treatment and Abamectin 0.1 % and Azad<strong>ir</strong>achtin A 10 g l -1<br />

14 days after 1st treatment.<br />

Abamectin 18 g l -1 0.12 % was very efficient against two-spotted spider mite: 99.1,<br />

98.4 and 100 % 5, 7 and 9 days after 1st treatment in 2005 (Table 4). An efficiency of<br />

Abamectin 18 g l -1 (0.1 and 0.075 %) after 1st treatment against two-spotted spider<br />

mite was over 90 %. Effect of Abamectin 18 g l -1 0.05 % against mites was lower.<br />

Abamectin 18 g l -1 0.12 % was very efficient against two-spotted spider mite: 93.9,<br />

98.9, 98.7 and 98.1 % – 3, 7, 14 and 21 days after 1st treatment in 2006. Efficiency<br />

of Abamectin 18 g l -1 (0.1 and 0.075 %) after 1st treatment against two-spotted spider<br />

mite was over 90 %.<br />

There were found statistical differences of number of mines in leaf between all doses<br />

of Abamectin 1.8 g l -1 and untreated plants 7, 9 and 10 days after treatment (Table 5).<br />

The number of mines in leaf was significant less in Abamectin 1.8 g l -1 (0.12 and<br />

0.1 %) treated plants compare with Azad<strong>ir</strong>achtin A 50 g l -1 and Sp<strong>ir</strong>odiclofen 240 g l -1<br />

treated plants 7, 9 days after treatment in 2005. The number of mines was significant<br />

less in Abamectin 0.12 % treated plants than Azad<strong>ir</strong>achtin A and Sp<strong>ir</strong>odiclofen treated<br />

plants after 7 and 14 days after treatment in 2006. There were not found any statistical<br />

differences of number of mines in leaf between Abamectin all doses, except the highest<br />

and lowest doses after 9 days after treatment in 2005.<br />

50


Table 4. Efficiency of insecticide Abamectin applied against two-spotted spider<br />

mite (Tetranychus urticae) after f<strong>ir</strong>st application<br />

4 lentelė. Insekticido abamektino efektyvumas nuo paprastųjų voratinklinių erkių<br />

(Tetranychus urticae) po p<strong>ir</strong>mojo purškimo<br />

Treatments<br />

Variantas<br />

3 days after treatment<br />

praėjus 3 d. po purškimo<br />

Biological efficiency<br />

Biologinis efektyvumas (%)<br />

7 days after treatment<br />

praėjus 7 d. po purškimo<br />

Babtai, 2005–2006<br />

9 days after treatment<br />

praėjus 9 d. po purškimo<br />

2005<br />

Untreated<br />

- - -<br />

Nepurkšta<br />

Abamectin 0.12 % 92.24 98.40 100<br />

Abamectin 0.10 % 82.76 97.20 99.16<br />

Abamectin 0.075 % 81.03 94.80 100<br />

Abamectin 0.05 % 78.02 95.60 82.<strong>28</strong><br />

Azad<strong>ir</strong>achtin 0.5 % 63.79 89.60 83.12<br />

Sp<strong>ir</strong>odiclofen 0.05 % 59.48 90.80 84.39<br />

2006<br />

Untreated<br />

- - -<br />

Nepurkšta<br />

Abamectin 0.12 % 93.91 98.93 98.71<br />

Abamectin 0.10 % 90.12 96.73 87.40<br />

Abamectin 0.075 % 77.97 95.<strong>28</strong> 81.45<br />

Abamectin 0.05 % 72.36 93.98 72.40<br />

Azad<strong>ir</strong>achtin 0.5 % 57.90 82.88 61.49<br />

Sp<strong>ir</strong>odiclofen 0.05 % 61.92 88.78 60.59<br />

Table 5. Damaged leaves of miner fly larvae on cucumbers after the f<strong>ir</strong>st application<br />

5 lentelė. Minamusių lervų pažeisti lapai po p<strong>ir</strong>mojo purškimo<br />

Treatments<br />

Variantas<br />

before 7 days after<br />

treatment treatment<br />

prieš praėjus 7 d.<br />

purškimą po purškimo<br />

Number of mines in leaf<br />

Minų skaičius lape<br />

2005 2006<br />

9 days after<br />

treatment<br />

praėjus 9 d.<br />

po purškimo<br />

before<br />

treatment<br />

prieš<br />

purškimą<br />

Babtai, 2005–2006<br />

7 days after<br />

treatment<br />

praėjus 7 d.<br />

po purškimo<br />

14 days after<br />

treatmen<br />

praėjus 14 d.<br />

po purškimo<br />

1 2 3 4 5 6 7<br />

Untreated<br />

0.50 0.42 d 0.45 f 0.35 0.27 d 0.30 d<br />

Nepurkšta<br />

Abamectin 0.12 % 0.55 0.12 a 0.12 a 0.32 0.05 a 0.10 a<br />

51


Abamectin 0.10 % 0.42 0.12 a 0.15 ab 0.37 0.07 ab 0.12 ab<br />

Abamectin 0.075 % 0.45 0.20 ab 0.22 abc 0.27 0.10 ab 0.15 abcd<br />

Abamectin 0.05 % 0.52 0.22 ab 0.25 bcd 0.25 0.12 ab 0.15 abcd<br />

Azad<strong>ir</strong>achtin A 0.5 % 0.45 0.32 bcd 0.37 def 0.30 0.20 bcd 0.25 bcd<br />

Sp<strong>ir</strong>odiclofen 0.05 % 0.45 0.30 bcd 0.35 cdef 0.32 0.20 bcd 0.22 abcd<br />

Note: Means followed by the same letter are not different significantly (P = 0.05) according<br />

to Duncan’s multiple range test<br />

Pastaba: Reikšmės, pažymėtos tomis pačiomis raidėmis, pagal Dunkano kriterijų (P = 0,05) iš<br />

esmės nesisk<strong>ir</strong>ia.<br />

Abamectin 18 g l -1 0.12 % effectively reduced the number of mines in leaves<br />

(Table 6). Efficiency of Abamectin 18 g l -1 (0.1, 0.075 and 0.05 %) was lower. Efficiency<br />

of Azad<strong>ir</strong>achtin A 50 g l -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 was low. The lowest efficiency<br />

of almost all treated active ingredients was 14 days after treatment.<br />

Table 6. Efficiency of insecticide Abamectin against miner flies after the f<strong>ir</strong>st<br />

application<br />

6 lentelė. Insekticido abamektino efektyvumas nuo minamusių po p<strong>ir</strong>mojo purškimo<br />

Treatments<br />

Variantai<br />

7 days after<br />

treatment<br />

praėjus<br />

7 dienoms<br />

po purškimo<br />

Biological efficiency<br />

Biologinis efektyvumas (%)<br />

2005 2006<br />

52<br />

9 days after<br />

treatment<br />

praėjus<br />

9 dienoms<br />

po purškimo<br />

7 days after<br />

treatment<br />

praėjus<br />

7 dienoms<br />

po purškimo<br />

Babtai, 2005–2006<br />

14 days after<br />

treatment<br />

praėjus<br />

14 dienų<br />

po purškimo<br />

Untreated<br />

- - - -<br />

Nepurkšta<br />

Abamectin 0.12 % 71.43 75.80 80.30 63.60<br />

Abamectin 0.10 % 65.99 60.40 75.26 62.20<br />

Abamectin 0.075 % 47.09 54.40 51.39 35.90<br />

Abamectin 0.05 % 46.63 46.60 48.15 30.70<br />

Azad<strong>ir</strong>achtin 0.5 % 15.35 8.50 13.53 3.40<br />

Sp<strong>ir</strong>odiclofen 240 SC 0.05 % <strong>28</strong>.58 13.40 18.80 19.80<br />

It was no observed negative d<strong>ir</strong>ect effect on crop, beneficial fauna or pest resistance<br />

of insecticide Abamectin 18 g l -1 .<br />

Discussion. The number of various acaricides and insecticides were tested against<br />

two-spotted spider mite, Tetranychus urticae Koch. in different countries (Herron<br />

and Rophail, 1998; Nauen et al., 2001; Castagnoli et al., 2005). Three active ingredients<br />

from different chemical classification were tested in this study. The higher rates<br />

of Abamectin 1.8 g l -1 (0.12, 0.1, 0.075 %) effectively protected cucumbers against<br />

mites 14 days after treatment. Lowest rate (0.05 %) of Abamectin less affected mites,<br />

but statistically this effect differed only 9 days after f<strong>ir</strong>st application in 2005. Only<br />

the highest rates of Abamectin (0.12, 0.1 %) efficiently reduced damage of miner fly


larvae. Azad<strong>ir</strong>achtin A 10 g l -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 were less effective against<br />

two-spotted spider mite and not enough effective against miner flies. Sp<strong>ir</strong>odiclofen<br />

240 g l -1 (0.5 l/ha) was less effective too, when in strawberry this insecticide (0.4 l/ha)<br />

was high efficient against two-spotted spider mite (Raudonis et al., 2005).<br />

According to Ochoa and Carballo (1993) Abamectin applied at the commercially<br />

recommended dosage, showed a satisfactory level of control of the eggs and larvae of<br />

L<strong>ir</strong>iomyza huidobrensis. Lower dosages were less effective, like in our study. Abamectin<br />

provides residual activity in the field because of its translaminar action and rapid penetration<br />

of leaf tissue (Dybas, 1989), maybe this proposition explain why this active<br />

ingredient is more effective against leaf miner flies than Azad<strong>ir</strong>achtin and Sp<strong>ir</strong>odiclofen.<br />

One of the new methods according to Luksienė et al. (2005) results in exposition of<br />

insects to the bait, containing hematoporphyrin dimethyl ether and following <strong>ir</strong>radiation<br />

with visible light resulted in total killing of L<strong>ir</strong>iomyza bryoniae adults.<br />

The ability of T. urticae to develop resistance to several acaricides has caused<br />

problems in many countries involved in agricultural production during the past 40 years<br />

(Herron, Rophail, 1993; Hinomoto, Takafuji, 1995; Stumpf, Nauen, 2001). Because of<br />

resistance problems it is more difficult to control leaf miner flies worldwide (Parrella<br />

et al., 1985). After 7–8 years of widespread commercial use of abamectin in pear<br />

orchards all T. urticae populations collected from pear showed low to moderate levels<br />

of resistance (Beers et al., 1998). The percentage of resistant mites to Abamectin<br />

decreased to levels equal or lower than 15 % in six months (Sato et al., 2005). Among<br />

T. urticae populations no resistance against abamectin was found in a population than<br />

had been subjected to fewer than 6 applications per year (Campos et al., 1995). In our<br />

experiment there was no observed negative d<strong>ir</strong>ect effect on crop, beneficial fauna or<br />

pest resistance of insecticide Abamectin 18 g l -1 . Trumble and Morse (1993) reported<br />

that the best economic returns were generated by abamectin against T. urticae in<br />

combination with Phytoseiulus persimilis. This indicates that the chemical application<br />

of two-spotted spider mite can be successfully integrated with biological control.<br />

Abamectin is not only highly effective but it comes from biological source, which can<br />

be used in an env<strong>ir</strong>onmentally friendly manner (have relatively low toxicity to many<br />

non-target arthropods) in integrated pest management programs (Dybas, 1989).<br />

Conclusions. 1. Efficiency of insecticide Abamectin 18 g l -1 0.12 % against twospotted<br />

spider mite was 92.24–100 %, against leaf miner flies it was 63.6–80.3 %.<br />

Abamectin 18 g l -1 0.12 % was effective against two-spotted spider mite till 14 days,<br />

against leaf miner flies – 9 days.<br />

2. Efficiency of insecticide Abamectin 18 g l -1 0.1 % against two-spotted spider<br />

mite was 82.8–99.2 %, against leaf miner flies – 60.4–75.26 %. Abamectin 18 g l -1<br />

0.10 % was effective against two-spotted spider mite till 14 days, against leaf miner<br />

flies – 7 days.<br />

3. Efficiency of insecticide Abamectin 18 g l-1 0.075 % against two-spotted spider<br />

mite was 81.0–100 %, against leaf miner flies – 35.9–54.4 %. Abamectin 18 g l -1<br />

0.075 % was effective against two-spotted spider mite till 14 days, against leaf miner<br />

flies was not enough effective.<br />

53


4. Efficiency of insecticide Abamectin 18 g l -1 0.05 % against two-spotted spider<br />

mite was 72.4–94.0 %, against leaf miner flies – 30.7–49.6 %. Abamectin 18 g l -1<br />

0.05 % was effective against two-spotted spider mite till 14 days, against leaf miner<br />

flies was not enough effective.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 19<br />

References<br />

1. Anon. EPPO Standards. 1997. Guidelines for the efficacy evaluation of plant protection<br />

products. Insecticides & Acaricides. Editor European and Mediterranean<br />

Plant Protection Organization, Paris.<br />

2. Beers E. H., Riedl H., Dunley J. E. 1998. Resistance to Abamectin and reversion<br />

to susceptibility to Fenbutatinoxide in spider-mite (Acari: Tetranychidae)<br />

populations in the Pacific-Northwest. Journal of Economic Entomology, 91:<br />

352–360.<br />

3. Boom C. E. M., Beek T. A., Dicke M. 2003. Differences among plant species<br />

in acceptance by the spider mite Tetranychus urticae Koch. Journal of Applied<br />

Entomology, 127(3): 177–183.<br />

4. Campos F., Krupa D. A., Dybas R. A. 1995. Susceptibility of population of<br />

two-spotted spider mite (Acari: Tetranychidae) populations in California to<br />

Abamectin. Journal of Economic Entomology, 88(2): 225–231.<br />

5. Castagnoli M., Liguori M., Simoni S., Duso C. 2005.Toxicity of some insecticides<br />

to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus.<br />

Biocontrol, 50: 611–622.<br />

6. Dybas R. A. 1989. Abamectin use in crop protection. In Champbell W. C. (ed.)<br />

Ivermectin and abamectin. Springer, NY, USA.<br />

7. Fry J. D. 2000. Evolutionary adaptation to host plants in a laboratory population<br />

of the phytophagous mite Tetranychus urticae Koch. Oecologia, 81: 559–565.<br />

8. Helle W., Sabelis M. W. 1985. Spider Mites. The<strong>ir</strong> Biology, natural Enemies and<br />

Control. Elsevier, Amsterdam, Oxford, New York, Tokyo, 1 A: 391–395.<br />

9. Herron G. A., Rophail J. 1998. Tebufenpyrad (Pyranica®) resistance detected<br />

in two-spotted spider mite Tetranychus urticae Koch. (Acarina: Tetranychidae)<br />

from apples in Western Australia, Experimental and Applied Acarology, 22:<br />

633–641.<br />

10. Hinomoto N., Takafuji A. 1995. Genetic changes in the population structure of<br />

the two-spotted spider mite, Tetranychus urticae Koch. (Acari: Tetranychidae)<br />

on vinyl-house strawberries. Applied Entomology and Zoology, 30: 521–5<strong>28</strong>.<br />

11. Z. Luksienė, V. Buda, S. Radziutė. 2005. Effects of visible-light-activated hematoporphyrin<br />

dimethyl ether on the survival of leafminer L<strong>ir</strong>iomyza bryoniae.<br />

Ekologija, 3: 17–21.<br />

54


12. Meier U. 1997. Growth stages of Mono- and Dicotyledonous plants. BBCH<br />

Monograph. Berlin: Blackwell Wissenschafts-Verlag.<br />

13. Nachman G., Zemek R. 2002. Interactions in a tritrophic acarine predator-prey<br />

metapopulation system III: Effects of Tetranychus urticae (Acari: Tetranychidae)<br />

on host plant condition. Experimental and Applied Acarology, 25: 27–42.<br />

14. Nauen R., Stumpf N., Elbert A., Zebitz C. P. W., Kraus W. 2001. Acaricide toxicity<br />

and resistance in larvae of different strains of Tetranychus urticae and Panonychus<br />

ulmi (Acari: Tetranychidae). Pest Management Science, 57: 253–261.<br />

15. Ochoa P., Carrballo M. 1993. Effect of various insecticides on L<strong>ir</strong>iomyza huidobrencis<br />

(Diptera: Agromyzidae) and its parasitoid Diglyphus isaea Walker<br />

(Hymenoptera: Eulophidae). Manejo Integrado de Plagas (Costa Rica), 26:<br />

8–12.<br />

16. Ostraukas H., Pakalniškis S., Taluntytė L. 2005. Dipte-rous miners collected in<br />

greenhouse areas in Lithuania. Ekologija, 2:22-29.<br />

17. Ostraukas H., Pakalniškis S., Taluntytė L. 2003. The species composition of plant<br />

miningdipterous (Insecta: Diptera) of greenhouse surroundings in Lithuania.<br />

Ekologija, 3: 3–11.<br />

18. Pakalniškis S., Ostrauskas H., Taluntytė L. 2005. Dvisparniai vabzdžiai šiltnamio<br />

<strong>ir</strong> daržo kultūrinių augalų minuotojai. Vilnius.<br />

19. Park Y.-L., Lee J.-H. 2005. Impact of two-spotted spider mite (Acari:<br />

Tetranychidae) on growth and productivity of glasshouse cucumbers. Journal of<br />

Economic Entomology. 98: 457–463.<br />

20. Parrella M. P., Jones V. P., Youngman R. R., Lebeck L. M. 1985. Effect of leaf<br />

mining and leaf stippling of L<strong>ir</strong>iomyza spp. on photosynthetic rates of chrysanthemum.<br />

Annals Entomological Society of America, 78: 90–93.<br />

21. Raudonis L., Valiuškaitė A., Survilienė E. 2005. Effects of Sp<strong>ir</strong>odiclofen on<br />

the Two-spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae) in<br />

Strawberries. Sodininkystė <strong>ir</strong> daržininkystė, 24(2): 43–53.<br />

22. Sato M. E., Silva M. Z., Raga A., Souza Filho M. F. 2005. Abamectin resistance<br />

in Tetranychus urticae Koch. (Acari: Tetranychidae): selection, cross-resistance<br />

and stability of resistance. Neotropical Entomology, 34(6): 991–998.<br />

23. Stumpf N., Nauen R. 2001. Cross resistance, inheritance, and biochemistry<br />

of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus<br />

urticae (Acari: Tetranychidae). Journal of Economic Entomology, 94:<br />

1 577–1 583.<br />

24. Trumble J. T., Morse J. P. 1993. Economics of integrating the predaceous mite<br />

Phytoseiulus persimilis (Acari: Phytoseiidae) with pesticides in strawberries.<br />

Horticultural Entomology, 86: 879–885.<br />

25. Van de Vrie M., McMurtry J. A., Huffaker C. B. 1972. Biology, ecology and pest<br />

status, and host-plant relationships of Tetranychids. Hilgardia, 41: 343–432.<br />

55


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Abamektino poveikis paprastosioms voratinklinėms erkėms <strong>ir</strong><br />

minamusėms šiltnamio agurkuose<br />

L. Duchovskienė<br />

Santrauka<br />

2005–2006 m. t<strong>ir</strong>tas abamektino 18 g l -1 poveikis paprastosioms voratinklinėms erkėms<br />

(Tetranychus urticae Koch.) <strong>ir</strong> minamusėms (L<strong>ir</strong>iomyza strigata, L<strong>ir</strong>iomyza bryoniae) šiltnamio<br />

agurkuose. Abamektino 18 g l -1 0,12 % <strong>ir</strong> 0,1 % koncentracijų efektyvumas nuo paprastųjų<br />

voratinklinių erkių buvo atitinkamai 92,24–100 % <strong>ir</strong> 82,8–99,2 %. Abamektino 18 g l -1 0,075 %<br />

<strong>ir</strong> 0,05 % koncentracijų efektyvumas nuo paprastųjų voratinklinių erkių buvo atitinkamai<br />

81,0–100 % <strong>ir</strong> 72,4–94,0 %. Abamektino 18 g l -1 0,12 % <strong>ir</strong> 0,1 % koncentracijų efektyvumas<br />

nuo minamusių buvo atitinkamai 63,6–80,3 % <strong>ir</strong> 60,4–75,26 %. Abamektino 18 g l -1 0,075 % <strong>ir</strong><br />

0,05 % koncentracijų efektyvumas nuo minamusių buvo atitinkamai 35,9–54,4 % <strong>ir</strong> 30,7–49,6<br />

%. Azad<strong>ir</strong>achtino A 10 g l -1 0,5 % koncentracijos <strong>ir</strong> sp<strong>ir</strong>odiklofeno 240 g l -1 0,05 % koncentracijos<br />

efektyvumas nuo paprastųjų voratinklinių erkių <strong>ir</strong> minamusių buvo mažesnis.<br />

Reikšminiai žodžiai: abamektinas, agurkai, azid<strong>ir</strong>achtinas A, L<strong>ir</strong>iomyza bryoniae,<br />

L<strong>ir</strong>iomyza strigata, sp<strong>ir</strong>odiklofenas, Tetranychus urticae.<br />

56


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Different fungicide combinations against apple scab<br />

helping to avoid fungus resistance<br />

Maija Eihe, Regina Rancane, Liga Vilka<br />

Latvian Plant Protection Research Center, Lielvardes iela 36/38, Riga, LV 1006,<br />

Latvia, e-mail regina.rancane@laapc.lv<br />

IOBC guidelines for integrated fruit production prescribe the use of forecasting systems<br />

in d<strong>ir</strong>ect plant protection. In Latvia, LPPRC, model RIMpro for apple scab (Venturia inaequalis)<br />

control was tested from 2003. Following to FRAC guidelines, in order to reduce the<br />

risk of fungus resistance developing, from 2007 efficacy of fungicide mixtures (Chorus, a.<br />

i. cyprodinil + Dithane NT, a. i. mancoceb; Effector, a. i. dithianon + Candit, a. i krezoxymmethyl)<br />

and alternately curative or strobilurine – protective fungicide use was tested. In all<br />

cases the f<strong>ir</strong>st protective application before scab ascospores discharge was carried out with<br />

Cu product Champion 50. In case of emergency Effector was used during secondary scab<br />

infection period.<br />

Fungicides registered in Latvia for apple scab control were effective used as mixture<br />

of protective/curative or strobilurine products, no alternately, except strobilurine Candit (Qo<br />

inhibitor), which was applied separately, because fungus resistance appeared in the 3rd season<br />

of Candit use. Efficacy of Candit/Effector mixture corresponded other treatments. Curative<br />

product Chorus did not lost its efficacy after 6 seasons of use, applied no more than 3 times<br />

per season. Nevertheless, further strategy of resistance preclusion has to be considered, what<br />

request minimal use of risky products separately. In all cases fungicide applications, even of<br />

Chorus/Dithane mixture, were more effective before infection. Weather forecast not always<br />

was precise; in such cases the number of necessary applications increased. Most frequently<br />

under Latvia conditions there are three or four severe scab infection periods during the total<br />

primary infection period, subsequently 3 or 4 fungicide applications were necessary in addition<br />

to the f<strong>ir</strong>st Champion treatment.<br />

Key words: apple scab, fungicides, mixtures, resistance, risk groups, use in alternation.<br />

Introduction. Development of pathogenic fungi resistance to several fungicides<br />

has become a considerable problem in plant protection, including apple scab (Venturia<br />

inaequalis (Cooke) Wint.) control in apple orchards. Fungicide Resistance Action<br />

Committee (FRAC) has developed fungicide resistance management guidelines to<br />

prolong the effectiveness of risky fungicides. The problem relates mainly to site-specific<br />

products disrupting single metabolic processes of definite fungus. In control of<br />

apple scab the most harmful products are demethylation inhibitors in sterol biosynt-<br />

57


hesis (SBI, DMI) (Scheinpflug, 1988; Szkolnik, 1981), strobilurins – quinone outside<br />

inhibitors (QoI) (Broniarek-Niemec, Bielenin, 2008; Turechek, Köller, 2004),<br />

and anilinop<strong>ir</strong>imidines (Dux et al., 2004; Köller, Wilcox et al., 2005). According<br />

to anti-resistance management strategies, risky products are used in mixtures or in<br />

alternation with protective low risk fungicides, e. g. mancozeb, also they are used in<br />

sufficiently high dosages, only when justified and mainly protectively (Köller, Parker<br />

et al., 2005; Köller, Wilcox, 2001, Staub, 1991). FRAC is developed fungicide Code<br />

List according to resistance risk level (FRAC Code List, 2007).<br />

In Latvia traditionally minimal amount of pesticides was used on horticultural<br />

crops. During the last decades, apple plantations quickly enlarged and growers intensified<br />

pesticide use to save yield quality. The choice of fungicides is poor. Therefore,<br />

recommendations of suitable anti-resistance plant protection strategy are important.<br />

From 2003 apple scab warning model RIMpro was tested in Latvian Plant<br />

Protection Research Centre for adoption under conditions of Latvia. In the f<strong>ir</strong>st years<br />

only curative fungicide Chorus 75 WG (a. i. cyprodinil, anilino pyrimidine group)<br />

was used shortly after RIMpro warning about risky infection. During the last years,<br />

FRAC (Fungicide Resistance Action Committee) baselines and recommendations about<br />

strategies to prevent fungus resistance were considered: use of fungicide mixtures with<br />

different modes of action or the<strong>ir</strong> use in alternation, as much as possible not several<br />

times in turn, use of protective products before forecasted infection as well as all applications<br />

before infection. There was little experience of fungicide mixtures efficacy<br />

in apple scab control in Latvia up till now. In 2007 and 2008 field trial was arranged<br />

to compare efficacy of different fungicide combinations in scab control taking into<br />

account RIMpro indices of risky infection.<br />

Object, methods and conditions. Field trial was carried out in peasant farm<br />

“Kalnanoras”, Ikskile, Ogre district in 2007–2008. There was investigated apple cultivar<br />

‘Spartan’, on dwarf rootstock B 396, planted in 2000. Trial plot: 6 trees, 4 replicates<br />

in randomized blocks. Untreated control plots located out of blocks. In the trial<br />

the mostly used fungicides registered for apple orchards in Latvia and recommended<br />

mixtures were employed (Table 1).<br />

Table 1. Fungicides used in trial<br />

1 lentelė. Bandyme panaudoti fungicidai<br />

Trade name<br />

Prekinis<br />

pavadinimas<br />

Active<br />

ingredient<br />

Aktyvi sudedamoji<br />

dalis<br />

g kg -1<br />

Chemical<br />

group<br />

Cheminė<br />

grupė<br />

Mode of action<br />

Poveikio būdas<br />

FRAC Resistance<br />

code risk<br />

FRAC Atsparumo<br />

kodas pavojus<br />

1 2 3 4 5 6 7<br />

Champion 50 SP Copper hydroxide 770 Copper Protecting<br />

M1 Low<br />

Vario hidroksidas Varis Apsauginis<br />

Mažas<br />

Dithane NT WG Mancozeb 750 Dithiocarbamate<br />

Protecting<br />

Apsauginis<br />

M3 Low<br />

Mažas<br />

Effector WG Dithianone 700 Quinone Protecting<br />

Apsauginis<br />

M9<br />

Low<br />

Mažas<br />

58


Table 1 continued<br />

1 lentelės tęsinys<br />

1 2 3 4 5 6 7<br />

Chorus 75 WG Cyprodinil 750 Anilinop<strong>ir</strong>imidine<br />

Systemic, post-infection<br />

Sisteminis, poinfekcinis<br />

9 Medium<br />

Vidutinis<br />

Candit WG Kresoxim-metyl 500 Strobilurin,<br />

QoI<br />

Locally systemic,<br />

mostly protecting<br />

Vietiškai sisteminis,<br />

daugiausia apsauginis<br />

11 High<br />

Didelis<br />

These are mostly all fungicides registered in Latvia for apple scab control with<br />

exception of Score 250 (a. i. difenoconazole, SBI, DMI), against which considerable<br />

fungus resistance was observed in trial orchard after 5 years of use.<br />

In anti-resistance management strategy the prophylaxis in advance of primary<br />

apple scab infection period at green tip stage of apple trees with protecting spray is<br />

recommended (Köller, Parker et al., 2005). In the trial this application was carried out<br />

with copper fungicide Champion 50 in all treatments.<br />

All products were used in maximal rates registered in Latvia: Champion<br />

4.0 (a. i. 3.08) kg ha -1 , Dithane 3.0 (a. i. 2.25), Effector 0.6 (a. i. 0.42), Chorus<br />

0.3 (a. i. 0.225), Candit 0.25 (a. i. 0.125) kg ha -1 . In mixture 75 % of each product was<br />

used. Water volume was 600 l ha -1 . The biggest attention was paid to primary scab<br />

infection control. If effectiveness of applications was insufficient, fungicide use was<br />

continued during secondary scab infection period.<br />

Real beginning, intensity and the end of ascospores release was determined on<br />

spore traps – glass slides placed on old apple leaf layer in trial orchard. Slides were<br />

collected after every rain and spores counted under microscope. Discharge of scab<br />

ascospores commonly is ending in the middle of June.<br />

In 2007 Champion was sprayed on 18.04. (GS 53, green tip) in all the treatments,<br />

except untreated control. The f<strong>ir</strong>st scab ascospores were released on 20.04.<br />

In 2007 the trial was carried out using systemic fungicide Chorus (alone, no<br />

more than 3 times per primary infection period), mixture of Chorus and protective<br />

Dithane 1–2 days after RIMpro showed risky infection level (above 70 RIM), as well<br />

as Dithane and Chorus in alternation accordingly shortly before and after infection.<br />

Before or shortly after infection (24 hours) protective Efector, mixture of Efector and<br />

strobilurine Candit, as well as Effector and Candit (2 times) in alternation were used<br />

(Table 2).<br />

RIMpro shown the amount of efficient residues (more than 25 %) after each<br />

application was taken in account too. Chorus in trial territory up till now was used for<br />

6 years 2–3 times per season without symptoms of efficacy decrease, Candit – for 3<br />

years with efficacy decrease symptoms.<br />

59


Table 2. Fungicide combinations for control of primary apple scab infection,<br />

2007<br />

2 lentelė. Fungicidų deriniai p<strong>ir</strong>minės obelų rauplių infekcijos kontrolei, 2007 m.<br />

Dates of critical infection<br />

periods<br />

Kritinių infekcijos<br />

laikotarpių datos<br />

RIM risk values per day in<br />

average<br />

Vidutinės RIM rizikos vertės per<br />

dieną<br />

Precipitation sum<br />

Kritulių suma (mm)<br />

Dates of fungicide applications<br />

Fungicido panaudojimo datos<br />

Apple growth stages (GS),<br />

BBCH<br />

Obelų augimo tarpsniai (AT)<br />

Treatments<br />

Variantai<br />

Control – untreated<br />

Kontrolė – neapdorota<br />

Chorus (Ch) after infection<br />

Chorus (Ch) po infekcijos<br />

Dithane (D) before, Chorus after<br />

infection<br />

Dithane (D) prieš, Chorus po<br />

infekcijos<br />

Dithane / Chorus mixture after<br />

infection<br />

Dithane / Chorus mišinys po infekcijos<br />

Effector (E) before forecasted or<br />

shortly after infection<br />

Effector (E) prieš numatytą infekciją<br />

arba tuoj po jos<br />

Effector / Candit mixture for<br />

3 times<br />

Effector / Candit mišinys 3 kartus<br />

Effector in turn with Candit (Ca)<br />

Effector pakaitomis su Candit (Ca)<br />

09–10.05 15.05 26–<strong>28</strong>.05 01.06<br />

832 337 652 117<br />

17.0 13.2 27.4 1.4<br />

27.04 10.05 16.05 24.05 <strong>28</strong>.05 30.05<br />

55<br />

(mouseear)<br />

(žiediniai<br />

pumpurai<br />

dar<br />

uždari)<br />

57<br />

(red<br />

buds)<br />

(raudoni<br />

pumpurai)<br />

59<br />

(ballon<br />

stage)<br />

(dauguma<br />

žiedų su<br />

vainiklapiais)<br />

65<br />

(full<br />

flowering)<br />

(visiškas<br />

žydėjimas)<br />

67<br />

(end of<br />

flowering)<br />

(žiedai<br />

vysta)<br />

69<br />

(end of<br />

flowering)<br />

(žydėjimo<br />

pabaiga)<br />

- - - - - -<br />

- Ch Ch - Ch -<br />

D Ch Ch - Ch -<br />

- D/Ch D/Ch - D/Ch -<br />

E E - E - E<br />

E/Ca E/Ca - E/Ca - E<br />

E Ca - Ca - E<br />

Weather conditions during May were rainy, especially in the 3rd 10-day period,<br />

when precipitation sum was 49.8 mm, 293 % from normal, and mean temperature<br />

60


19.4° C, 6.7 °C above normal, being the warmest period in Latvia during 84 years.<br />

Such conditions promoted primary scab infection. Rainy period started again from<br />

the middle of June and July and additional fungicide application during secondary<br />

infection period was necessary. Additional applications with Effector were carried out<br />

on 19.06 and 12.07 in the 7 th treatment where Candit alone 2 times was used, and on<br />

27.07 in all treatments. It is permitted to use the low resistance risk product Effector<br />

for 6 times per season in Latvia.<br />

In 2008 all fungicide combination schedules were repeated, except 7 th treatment,<br />

where clearly appeared efficacy loss; strobilurine Candit was used alone for 2 times.<br />

Following to FRAC recommendations, all fungicide treatments were carried out before<br />

forecasted precipitation and scab infection (Table 3).<br />

Table 3. Fungicide combinations for control of primary apple scab infection,<br />

2008<br />

3 lentelė. Fungicidų deriniai p<strong>ir</strong>minės obelų rauplių infekcijos kontrolei, 2008 m.<br />

Dates of precipitation<br />

periods<br />

Kritulių laikotarpių datos<br />

Precipitation sum<br />

Kritulių suma (mm)<br />

Dates of fungicide applications<br />

Fungicido panaudojimo<br />

datos<br />

Apple growth stages<br />

(GS), BBCH<br />

Obelų augimo tarpsniai<br />

(AT)<br />

02–05.05 08, 12.05 15–18.05 11–20.06<br />

2.2 0.4 14.2 26.8<br />

29.04 09.05 13.05 10.06<br />

56<br />

(green buds /<br />

žali<br />

pumpurai)<br />

58<br />

(pink buds /<br />

rausvi<br />

pumpurai)<br />

61<br />

61<br />

(beginning of<br />

flowering /<br />

žydėjimo pradžia)<br />

71<br />

(fruits of 10 mm in<br />

diameter /<br />

10 mm skersmens<br />

vaisiai)<br />

Treatments<br />

Variantai<br />

Control – untreated<br />

- - - -<br />

Kontrolė – neapdorota<br />

Chorus (Ch) Ch - Ch Ch<br />

Dithane (D) in turn with D Ch - D<br />

Chorus<br />

Dithane (D) kartu su<br />

Chorus<br />

Dithane / Chorus mixture D/Ch D/Ch - D/Ch<br />

Dithane / Chorus mišinys<br />

Effector (E) E E - E<br />

Effector/ Candit mixture E/Ca E/Ca - E/Ca<br />

Effector/ Candit mišinys<br />

In 2008 Champion was sprayed on 16.04. (GS 53) in all treatments including<br />

untreated control for partly decrease of high scab infection level in control plots. The<br />

f<strong>ir</strong>st scab ascospores were released on 17.04.


Weather conditions in May were comparably dry and cool; some days it rained,<br />

noteworthy that on 18.05 it rained 12.2 mm and the mean temperature in the 2 nd 10-day<br />

period was 10 °C. The 3 rd 10-day period of May and the 1 st of June were completely<br />

without precipitation. Rainy period lasted from June 11 th until the middle of July.<br />

Apple scab widely spread in unprotected areas. In treated plots no fungicide applications<br />

were carried out during secondary infection period. For weather forecast data<br />

of Latvian Env<strong>ir</strong>onment, Geology & Meteorology Agency (LEGMA) and web page<br />

www.gismeteo.ru was employed.<br />

Apple growth stages are characterized according to BBCH scale.<br />

Scab incidence and extent level was assessed on 100 leaves and fruits per plot<br />

from the beginning of disease appearance in control treatment, before each fungicide<br />

application and further after rainy periods, on leaves – till the end of July, on fruits – until<br />

harvesting. Disease extent was evaluated according to % scale of damaged surface.<br />

The data were subjected to analysis of variance. Significant differences at the<br />

probability of 95 % are shown in the tables by letters. Data of control treatment are<br />

not included in processing.<br />

Results. In 2007 there were four noteworthy critical primary apple scab infection<br />

periods. At the end of April – beginning of May precipitation appeared later than<br />

forecasted, subsequently the f<strong>ir</strong>st test treatment was carried out too early in schedules<br />

with planned fungicide application shortly before infection (see Table 2). As a result,<br />

according to the schedule of planned applications, before infection four treatments<br />

were carried out and after infection – three fungicide treatments during primary apple<br />

scab infection period.<br />

Five tested schedules significantly decreased scab infection level on the leaves<br />

without significant difference among them, but in the 7 th treatment, where 2 times<br />

strobilurine Candit was used, there was clearly visible the loss of effectiveness, what<br />

indicated fungus resistance development. After two additional Effector sprays on<br />

19.06 and 12.07, scab infection leveled with other treatments until the end of July<br />

(Table 4).<br />

Table 4. Apple scab incidence on apple leaves using different fungicide combinations,<br />

Latvia, 2007<br />

4 lentelė. Obelų rauplių paplitimas ant obelų lapų naudojant sk<strong>ir</strong>tingus fungicidų derinius,<br />

Latvija, 2007 m.<br />

Dates of assessments<br />

Apskaitų datos<br />

Treatments<br />

24.05 19.06 06.07 27.07<br />

Apdorojimai<br />

scab incidence (amount of infected leaves)<br />

rauplių paplitimas (pažeistų lapų kiekis) (%)<br />

1 2 3 4 5<br />

Untreated control<br />

0.2 25.3 38.7 55.2<br />

Neapdorota kontrolė<br />

All schedules, except treatment with Candit<br />

Visos schemos, išskyrus apdorojimą su Candit<br />

0 0.60 a 0.55 a 3.35 a<br />

62


Table 4 continued<br />

4 lentelės tęsinys<br />

1 2 3 4 5<br />

Candit for 2 times separately in alternation 0 2.75 b 5.00 b 5.00 a<br />

with Effector<br />

Candit 2 kartus atsk<strong>ir</strong>ai, kaitaliojant su Effector<br />

LSD 95<br />

/ R 95<br />

- 1.52 2.12 4.22<br />

According to fruit infection extension, the same tendency appeared as on the leaves:<br />

after the schedule of two sprays with Candit alone there was significantly higher<br />

scab infection level in the beginning of July in comparison with other schedules. There<br />

was also tendency of higher fruit infection in the treatment with Dithane/Chorus mixture<br />

for 3 times after primary infection periods, though on leaves, as infection source,<br />

such tendency did not appear. Possibly mixture with Dithane could be used before<br />

primary infection period. After additional fungicide applications during secondary<br />

scab infection period until the harvest time fruit infection leveled without significant<br />

difference between treatments. There remained the tendency of higher infection in<br />

Dithane/Chorus mixture treatment. The decrease of infection in Candit treatment was<br />

due to dropping of more damaged fruits (Table 5).<br />

Table 5. Apple scab incidence on apple fruits using different fungicide combinations,<br />

Latvia, 2007<br />

5 lentelė. Obelų rauplių paplitimas ant obuolių naudojant sk<strong>ir</strong>tingus fungicidų derinius,<br />

Latvija, 2007 m.<br />

Treatments<br />

Variantai<br />

Dates of assessments<br />

Apskaitų datos<br />

19.06 06.07 27.07 24.09<br />

scab incidence (amount of infected fruits)<br />

rauplių paplitimas (pažeistų vaisių kiekis) (%)<br />

29.0 35.0 59.9 82.3<br />

Untreated control<br />

Neapdorota kontrolė<br />

All schedules, except treatment with Candit 0 1.62 a 3.75 a 6.0 a<br />

use and Dithane/Chorus mixture<br />

Visos schemos, išskyrus apdorojimą su Candit<br />

<strong>ir</strong> Dithane/Chorus mišinį<br />

Dithane/Chorus mixture for 3 times<br />

0 2.5 ab 6.25 b 8.0 a<br />

Dithane/Chorus mišinys 3 kartus<br />

Candit for 2 times separately in alternation 0 5.0 b 5.25 ab 3.75 a<br />

with Effector<br />

Candit 2 kartus atsk<strong>ir</strong>ai, kaitaliojant su Effector<br />

LSD 95<br />

/ R 95<br />

- 3.09 2.24 4.63<br />

In the tables there are shown only more characteristic results of 10 assessments.<br />

The extent of damaged leaf surface showed the same tendency as the amount of damaged<br />

fruits.<br />

63


In 2008 there were 4 noteworthy precipitation periods during primary scab infection<br />

period, like in 2007. Applying all fungicides 1–4 days before forecasted rain<br />

period effectiveness of all treatments was similar to scab infection control on the<br />

leaves in total. There was some significant difference between treatments in separate<br />

assessments, but the tendency did not maintain during assessment period. At the end<br />

of July there was no significant difference of leaf infection level between treatments<br />

(Table 6). Decrease of leaf infection level on 11.07 in comparison with previous assessment<br />

was due to forming young uninfected leaves.<br />

Table 6. Apple scab incidence on apple leaves using different fungicide combinations<br />

for 3 times before forecasted primary infection, 2008, Latvia<br />

6 lentelė. Obelų rauplių paplitimas ant obelų lapų naudojant sk<strong>ir</strong>tingus fungicidų derinius<br />

po 3 kartus prieš numatytą p<strong>ir</strong>minę infekciją, Latvija, 2008 m.<br />

Treatments<br />

Apdorojimai<br />

Dates of assessmentsApskaitų datos<br />

10.06 04.07 11.07 31.07<br />

Scab incidence (amount of infected leaves)<br />

rauplių paplitimas (pažeistų lapų kiekis) (%)<br />

11.8 27.5 40.75 35.0<br />

Untreated control<br />

Neapdorota kontrolė<br />

Chorus 75 separately<br />

0 3.50 a 3.50 a 4.75 a<br />

Chorus 75 atsk<strong>ir</strong>ai<br />

Dithane NT for 2 times, Chorus 1 time 0 3.25 a 2.75 ab 5.25 a<br />

Dithane NT 2 kartus, Chorus 1 kartą<br />

Mixture of Dithane/ Chorus<br />

0 4.25 ab 1.75 b 5.75 a<br />

Dithane/Chorus mišinys<br />

Effector separately<br />

0 5.50 b 2.50 ab 5.75 a<br />

Effector atsk<strong>ir</strong>ai<br />

Mixture of Effector/ Candit<br />

0 4.00 ab 1.75 b 3.50 a<br />

Effector/Candit mišinys<br />

LSD 95<br />

/ R 95<br />

- 1.65 1.44 2.81<br />

For control of fruit infection the use of Chorus alone during primary scab infection<br />

period was significantly less effective. Such results did not indicate the appearance of<br />

fungus resistance because this schedule effectively controlled leaf infection, but postactivity<br />

of systemic product was too short to protect fruits until harvest (Table 7).<br />

64


Table 7. Apple scab incidence on apple fruits using different fungicide combinations,<br />

2008, Latvia<br />

7 lentelė. Obelų rauplių paplitimas ant obuolių naudojant sk<strong>ir</strong>tingus fungicidų derinius,<br />

Latvija, 2008 m.<br />

Treatments<br />

Variantai<br />

Dates of assessments<br />

Įvertinimo datos<br />

11.07 31.07 05.09 30.09<br />

scab incidence (amount of infected fruits)<br />

rauplių paplitimas (pažeistų vaisių kiekis) (%)<br />

12.5 21.0 63.5 76.8<br />

Untreated control<br />

Neapdorota kontrolė<br />

Chorus 75 separately<br />

0 0.75 a 5.25 a 7.50 a<br />

Chorus 75 atsk<strong>ir</strong>ai<br />

Dithane/Chorus in alternation and<br />

0 0.25 b 4.50 a 3.88 b<br />

Mixture of Effector/Candit<br />

Dithane/Chorus pakaitomis <strong>ir</strong> Effector/Candit<br />

mišinys<br />

Mixture of Dithane/Chorus and Effector 0 0.12 b 2.75 b 4.38 b<br />

separately<br />

Dithane/Chorus mišinys <strong>ir</strong> Effector pakaitomis<br />

LSD 95<br />

/ R 95<br />

- 0.49 1.65 1.80<br />

Discussion. The use of protecting and risky fungicide mixtures during the primary<br />

scab infection period, according to the results of several authors, is the most effective<br />

component in apple scab protection schedules. Mixture of anilinopyrimidine with<br />

mancozeb has been more effective in comparison with mancozeb alone and especially<br />

anilinopyrimidine alone that provided unacceptable level of scab control (Köller,<br />

Wilcox et al., 2005; Köller, Parker et al., 2005). Such resolution agreed with our research<br />

results, by comparison of effectiveness of Dithane/ Chorus mixture and Chorus<br />

alone. According to strobilurins, several trial results showed that before resistance<br />

emergence strobilurin products alone in higher registered dosage were more effective<br />

in comparison with strobin/ mancozeb mixture and mancozeb alone (Turechek, Köller,<br />

2004). However, if the symptoms of resistance are observed, strobilurins will have<br />

to be used only in mixture with another scab fungicide (Köller, Parker et al., 2005).<br />

Protecting product dithianon (Effector WG registered in Latvia) is recommended for<br />

the mixture with krezoxym-metyl products by manufacturer company BASF. Therefore,<br />

this mixture was tested in our trial and although the decreased effect of separately<br />

used krezoxym-metyl (Candit WG) appeared already in the trial orchard the use of<br />

Effector/Candit in protection schedule had similar effectiveness in comparison with<br />

other schedules.<br />

Conclusions. 1. The use of protecting, low resistance risk fungicide Dithane<br />

NT (a. i. mancozeb) 1–4 days before primary apple scab infection in alternation with<br />

systemic, medium risky product Chorus 75 (a. i. cyprodinil) shortly before or after<br />

infection, as well as the use of Dithane/ Chorus mixture at dosage of 75 % from full<br />

rate of each product before infection in resistance preventive protection schedule<br />

similarly effectively controlled apple scab infection on leaves and fruits.<br />

65


2. High resistance risk strobilurin fungicide Candit (a. i. krezoxym-metyl) showed<br />

clearly visible loss of effectiveness used the 4th season for 2 times separately in<br />

alternation with Effector, while the use of Effector/Candit mixture for 3 times shortly<br />

before or after infection at dosage of 75 % from full rate of each product was similarly<br />

effective in comparison with other resistance preventive protection schedules.<br />

3. Medium risky product Chorus 75, used the 7 th and 8th season for 3 times by<br />

turns during primary scab infection period was similarly effective in resistance preventive<br />

schedules controling apple leaf infection, but lost the effect of fruit infection<br />

control during secondary scab infection period. Such schedule is not recommended<br />

in integrated plant protection.<br />

4. Low risk protecting fungicide Effector (a. i. dithianone) used for 3 times by<br />

turns shortly before or after primary scab infection was similarly effective with other<br />

resistance preventive schedules, but such schedule is not recommended in integrated<br />

plant protection.<br />

5. Planning fungicide treatments before infection can increase the number of<br />

sprays if weather forecast is not precise.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 29<br />

References<br />

1. Broniarek-Niemec A., Bielenin A. 2008. Resistance of Venturia inaequalis<br />

to strobilurin and dodine fungicides in Polish apple orchards. Zemd<strong>ir</strong>byste-<br />

Agriculture, 95(3): 366–372.<br />

2. Dux H., Sierotzki H., Gisi U. 2004. Sensitivity of Venturia inaequalis populations<br />

to anilinopyrimidyne, DMI and QoI fungicides. Abstracts14th International<br />

Reinhardsbrunn Symposium “Modern fungicides and antifungal compounds”,<br />

25–29 April, 2004, Germany, 40–41.<br />

3. FRAC Code List 2007: Fungicides sorted by mode of action (including FRAC<br />

Code numbering) (http://www. Frac.info/frac/publication)<br />

4. Köller W., Wilcox W. F. 2001. Evidence for predisposition of fungicide-resistant<br />

isolates of Venturia inaequalis to a preferential selection for resistance to other<br />

fungicides. Phytopathology, 91: 776–781.<br />

5. Köller W., Parker D., Turechek W., Rosenberger D., Wilcox W., Caroll J.,<br />

Agnello A., Reissig H. 2005. Fungicide resistance of apple scab: status Quo and<br />

management options. New York Fruit Quarterly, 13(1): 9–17.<br />

6. Köller W., Wilcox W. F., Parker D. M. 2005. Sensitivity of Venturia inaequalis<br />

populations to anilinopyrimidine fungicides and the<strong>ir</strong> contribution to scab management<br />

in New York. Plant Disease, 89 (4): 357–365.<br />

7. Scheinpflug H. 1988. Resistance management strategies for using DMI fungicides.<br />

In: Fungicide resistance in North America C. J. Delp, ed. APS Press, St.<br />

Paul, MN, 93–94.<br />

66


8. Staub T. 1991. Fungicide resistance: Practical experience with ant<strong>ir</strong>esistance<br />

strategies and the role of integrated use. Annual Review of Phytopathology, 29:<br />

421–442.<br />

9. Szkolnik M. 1981. Physical modes of action of sterol-inhibiting fungicides<br />

against apple diseases. Plant Disease, 65: 981–985.<br />

10. Turechek W. W., Köller W. 2004. Managing resistance of Venturia inaequalis<br />

to the strobilurin fungicides (www.plantmanegementnetwork.org/pub/php/<br />

research/2004/strobilurin).<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Įva<strong>ir</strong>ūs fungicidų deriniai nuo obelų rauplių, padedantys išvengti<br />

rauplėgrybio atsparumo<br />

M. Eihe, R. Rancane, L. Vilka<br />

Santrauka<br />

Auginant vaisius integruotai, jų produkcijai taikomos IOBC nuorodos rekomenduoja<br />

augalų apsaugai naudoti prognozavimo sistemas. Latvijoje, Augalų apsaugos tyrimų centre,<br />

nuo 2003 metų buvo t<strong>ir</strong>tas RIMpro modelis obelų rauplių (Venturia inaequalis) kontrolei.<br />

Pagal FRAC nuorodas, siekiant sumažinti rauplėgrybio atsparumo išsivystymo pavojų, nuo<br />

2007 metų buvo t<strong>ir</strong>tas fungicidų mišinių (Chorus, a. i. cyprodinil + Dithane NT, a. i. mancoceb;<br />

Effector, a. i. dithianon + Candit, a. i. krezoxym-methyl) <strong>ir</strong> pakaitomis naudojamų<br />

gydomojo arba strobilurino – apsauginio fungicido veiksmingumas. Visais atvejais p<strong>ir</strong>masis<br />

apsauginis apdorojimas prieš rauplių askosporų pas<strong>ir</strong>odymą buvo atliktas su Cu produktu<br />

Champion 50. Esant reikalui, antrinės rauplių infekcijos laikotarpiu naudotas Effector.<br />

Latvijoje registruoti fungicidai nuo obelų rauplių buvo veiksmingi naudojami ne pakaitomis,<br />

o kaip apsauginių / gydomųjų arba strobilurino produktų mišinys, išskyrus strobiluriną<br />

Candit (Qo inhibitorių), kuris buvo naudojamas atsk<strong>ir</strong>ai, nes trečiuoju Candit naudojimo sezonu<br />

atsidaro atsparumas rauplėgrybiams. Candit / Effector mišinio veiksmingumas buvo toks pat<br />

kaip <strong>ir</strong> kitų fungicidų. Gydomasis produktas Chorus po šešių naudojimo sezonų neprarado savo<br />

veiksmingumo, jei buvo panaudotas ne daugiau kaip 3 kartus per sezoną. Vis dėlto reikia apsvarstyti<br />

tolimesnę strategiją, kaip užk<strong>ir</strong>sti kelią atsparumo išsivystymui, t. y. kaip minimaliai naudoti<br />

pavojingus produktus atsk<strong>ir</strong>ai. Visais atvejais fungicidai, net Chorus/Dithane mišinys, buvo<br />

veiksmingesni prieš infekciją. Orų prognozės ne visada pasitv<strong>ir</strong>tindavo – tada fungicidus tekdavo<br />

naudoti dažniau. Latvijos sąlygomis bendru p<strong>ir</strong>minės infekcijos laikotarpiu būna trys ar keturios<br />

stiprios infekcijos, taigi, be p<strong>ir</strong>mojo apdorojimo su Champion, reikėjo naudoti dar 3–4 fungicidus.<br />

Reikšminiai žodžiai: atsparumas, fungicidai, mišiniai, naudojimas pakaitomis, obelų<br />

rauplės, rizikos grupės, .<br />

67


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Influence of growth regulators on seed germination<br />

energy and biometrical parameters of vegetables<br />

Julė Jankauskienė, Elena Survilienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail j.jankauskiene@lsdi.lt<br />

Influence of growth regulators on seed germination energy and biometrical parameters<br />

of vegetables was investigated at the Lithuanian Institute of Horticulture in 2007. The seeds of<br />

cucumber ‘Krukiai’ F1, red beet ‘Joniai’, radish ‘Babtų žara’, tomato ‘Arvaisa’ F1 were soaked<br />

in the solutions of growth regulators Biojodis, Biokal 01, Bioforce, Agronom effect, Inzar,<br />

Oksichumat, Penergetic p. Control – the seeds soaked in water. After soaking seeds were sown<br />

into multicell flats, in which plants were grown for 30 days in greenhouse. It was established<br />

seed germination energy and seedling biometrical measurements (plant height, weight, leaf<br />

number, leaf area) were carried out. Plant growth regulators Oksichumat, Agronom effect,<br />

Bioforce, Penergetic p positively influenced seed germination energy of radish, tomato and<br />

the growth and development of cucumber, red beet, tomato and radish seedlings.<br />

Key words: biometrical parameters, cucumber, germination energy, growth regulator,<br />

radish, red beet, seedlings, seed soak, tomato.<br />

Introduction. Plant growth regulators are widely applied in the integrated plant<br />

growing for seed soaking. In vegetable growing, growth regulators also became<br />

more popular: for seed soaking, inflorescences spraying, shoot and plant watering<br />

or spraying through leaves. Growth regulators improve seed germination power, increase<br />

yield, plants become resistant to diseases and unfavourable growth conditions,<br />

produce yield earlyer, the yield becomes more qualitative (Halter et al., 2005; Kad<strong>ir</strong>i<br />

et al., 1997; Papadopoulos et al., 2006; Saglam et al., 2002; Гущина, Къдрев, 1987).<br />

There are a lot of various growth regulators: Ivin, Natrium gumat, Uetinas, Ambiol,<br />

Biozin, Gibersib, Epin, Silk, ЭБФ-5, Oxydat, Penergetic p. They are of natural orign<br />

or synthetic. Kad<strong>ir</strong>i et at. (1997) investigated the influence of natural growth regulators<br />

Indole-3-acetic, Gibberellic acid and Coconut milk on plant height, yield and the<br />

amount of vitamin C in fruits. It was established that applying these growth regulators<br />

plants were higher and the yield increased (Kad<strong>ir</strong>i et al., 1997). According to the<br />

data of investigations, growth regulator Atonic not only increased the yield of sweet<br />

pepper, but also improved seed quality (Panajotov, 1997).<br />

Plant growth regulators are being used in greenhouses too. It was established that<br />

spraying tomatoes with Ruvit for three times during vegetation they started earlyer<br />

69


produce yield, the early and total yield increased (Гущина, Къдрев, 1987). In greenhouse<br />

spaying plants with Kinetin, the yield becomes more abundant and fruits – bigger<br />

(Papadopoulos et al., 2006). According to the data of the other investigators, the<br />

application of various biostimulators on cucumber in greenhouses positively influences<br />

plant growth (Boehme et al., 2005). There was investigated the influence of growth<br />

regulators mixed into fertilizator solution on plant productivity (Bugbee, White, 1984;<br />

Lopez-Elias et al., 2005). Moreover, there was investigated the influence of different<br />

growth regulators and the<strong>ir</strong> mixtures on plant productivity (Brocklehurst et al., 1982).<br />

Besides, growth regulators are being widely used for vegetable and flower seed soaking<br />

(Brigard et al., 2006; Magnitskiy et al., 2006; Pasian, Bennett, 1999).<br />

The aim of the study – to establish the influence of various natural growth regulators<br />

on vegetable seed germination power and shoot development.<br />

Object, methods and conditions. Investigations were carried out at the Lithuanian<br />

Institute of Horticulture, in greenhouse covered with double polymeric film in<br />

2007. The object of investigation – vegetable seeds: cucumber ‘Krukiai’ F 1<br />

, red beet<br />

‘Joniai’, radish ‘Babtų žara’, and tomato ‘Arvaisa’ F 1<br />

. For seed soaking these organic<br />

praparations were used: Biojodis, Biokal 01, Bioforce, Agronom effect, Inzar, Oksichumat,<br />

Penergetic p. Control – seeds soaked in water. Biojodis – preparation made<br />

on the basis of biohumus water extract, enriched with biologically active iodine,<br />

biotransformators and microelements. Biokal 01– fertilizer made out of medicinal<br />

herbs (57 %), biohumus extracts (38 %), mineral water, essential oils, macro- and microelements<br />

(5 %). Oksichumat – 10 % solution of huminic acids obtained out of peat<br />

or brown carbon. Penergetic-p – bioactivator, which activates plant cells participating<br />

in metabolism. Bioforce – extract out of Ascophyllum nodosum sea herbs. Agronom<br />

effect – plant growth stimulator, in the composition of which there is not less than<br />

700 g kg -1 of huminic acids salt, also silicon salt and microelements. Inzar – growth<br />

regulator, in the composition of which there is not less than 100 g 1 -1 of Maidenha<strong>ir</strong><br />

tree (Ginkgo biloba) extract.<br />

P r e p a r a t i o n o f s o l u t i o n s f o r s e e d s o a k i n g a n d d u r a t i o n<br />

o f s e e d s o a k i n g. 0.5 g of Agronom effect preparation was dissolved in 2 l of<br />

water and seeds were soaked in this solution for 6 h. 1 ml of Oksichumat was purred<br />

into 1 l of water and seeds were soaked in this solution for 10 h. Biokal 01 solution was<br />

prepared as follows: 3 parts of Biokal 01 solution + 10 parts of water. In this solution<br />

seeds were soaked for 48 h. 2 g of Penergetic p were solved in 1 liter of water and in<br />

this solution seeds were soaked for 10 h. In Biojodis solution seeds were soaked for<br />

10 h. 0.8 ml of Bioforce was purred into 1 l of water and seeds were soaked in this<br />

solution for 8 h. 1 ml of Inzar was purred into 0.5 l of water and seeds were soaked<br />

in this solution for 8 h.<br />

There was established germination energy of seeds soaked in the investigated<br />

solutions. Seeds were put into Petri plates (10 seeds per each) and moistened with<br />

the prepared solutions. After five days there were calculated germinated seeds. Seed<br />

germination energy was expressed in percents. After soaking the remained seeds were<br />

dried. Multicell flats (cup volume – 60 ml, in the flat – 64 cups) were filled with the<br />

prepared peat substratum (deacidified pH 5.5–6.5with fertilizers) and vegetable seeds<br />

soaked in various solutions were sown in them. Plants were grown in flats for 3 weeks.<br />

Then there was measured plant height, leaf assimilation area; there were calculated<br />

70


leaves and plant fresh weight established (weighting them). Leaf assimilation area was<br />

measured with leaf area measurer Win DIAS (Delta-T Devices, England). There were<br />

measured 10 plants per each variant. Experiment was carried out in three replications.<br />

Data processed by statistical methods (Tarakanovas, Raudonius, 2003).<br />

Results. Plant growth regulators didn’t influence positively germination energy<br />

of cucumber ‘Krukiai’ F 1<br />

and tomato ‘Arvaisa’ F 1<br />

seeds (Table 1). Nevertheless,<br />

germination energy of radish seeds soaked in plant growth regulator solutions was<br />

better than this of seeds soaked in water. Radish seeds soaked in solutions Bioforce,<br />

Biokal, and Penergetic p were distinguished for faster germination energy than seeds<br />

soaked in water.<br />

Table 1. Germination energy of vegetable seeds soaked in growth regulator solutions<br />

(%)<br />

1 lentelė. Daržovių sėklų, m<strong>ir</strong>kytų įva<strong>ir</strong>iuose augimo reguliatoriuose, dygimo energija,<br />

%<br />

Growth regulator<br />

Augimo reguliatorius<br />

Cucumber<br />

Agurkai<br />

‘Krukiai’ F 1<br />

Red beet<br />

Raudonieji burokėliai<br />

‘Joniai’<br />

Radish<br />

Ridikėliai<br />

‘Babtų žara’<br />

Tomato<br />

Pomidorai<br />

‘Arvaisa’ F 1<br />

Water<br />

100 90 70 100<br />

Vanduo<br />

Agronom effect 100 100 70 100<br />

Biojodis 100 100 100 100<br />

Bioforce 90 20 70 100<br />

Biokal 01 100 20 90 100<br />

Inzar 100 10 90 90<br />

Oksichumat<br />

90 70 80 40<br />

Oksigumatas<br />

Penergetic p 100 90 90 40<br />

Cucumber, which seeds were soaked in solutions Agronom effect, Biojodis,<br />

Bioforce, Inzar and Penergetic p, developed slightly faster than these, which seeds<br />

were soaked in water. They already had th<strong>ir</strong>d real leaf, while cucumber, which seeds<br />

were soaked in water, had only two real leaves. Growth regulators Agronom effect,<br />

Bioforce, Inzar and Penergetic p mostly influenced cucumber height, fresh weight<br />

and leaf assimilation area (Table 2). Cucumber shoots, which seeds were soaked in<br />

solution Agronom effect, were 33 % higher, the<strong>ir</strong> fresh weight was 43.4 % bigger, and<br />

leaf assimilation area was two times bigger than this of schoots, which seeds were<br />

soaked in water.<br />

Red beet, which seeds were soaked in solutions Agronom effect, Bioforce, Inzar<br />

and Penergetic p, were correspondingly 20.9 %, 32.9 %, 21.9 % and 14.2 % higher<br />

than shoots, which seeds were soaked in water (Table 2). The biggest fresh weight and<br />

leaf assimilation area was of shoots, which seeds were soaked in solutions Biojodis<br />

and Bioforce. It was correspondingly 31.9 and 10.8 %, 19.9 and 21.9 % bigger than<br />

this of shoots, which seeds were soaked in water. Red beet, which seeds were soaked<br />

in these solutions, developed faster: they already had th<strong>ir</strong>d real leaf, while other shoots<br />

had only two real leaves.<br />

71


Table 2. Biometrical data of seedlings, which seeds were soaked in growth regulator<br />

solutions<br />

2 lentelė. Daržovių daigų, kurių sėklos m<strong>ir</strong>kytos sk<strong>ir</strong>tinguose augalų augimo reguliatorių<br />

t<strong>ir</strong>paluose, biometrija<br />

Growth regulator<br />

Augalų augimo reguliatorius<br />

Plant height<br />

Augalo aukštis<br />

(cm)<br />

Fresh weight of plant<br />

Augalo žalioji masė<br />

(g)<br />

Leaf assimilation area<br />

Lapų asimiliacinis plotas<br />

(cm 2 )<br />

1 2 3 4<br />

Cucumber<br />

Agurkai ‘Krukiai’ F 1<br />

Water<br />

12.11 c* 4.22 c 51.80 c<br />

Vanduo<br />

Agronom effect 16.17 e 6.05 f 103.97 f<br />

Biojodis 9.69 b 3.76 b 53.70 c<br />

Bioforce 14.30 a 5.74 e 87.36 e<br />

Biokal 01 9.05 b 2.33 a 41.97 b<br />

Inzar 12.75 c 5.19 d 98.50 f<br />

Oksichumat<br />

5.92 a 1.53 a 24.70 a<br />

Oksigumatas<br />

Penergetic p 13.50 c d 5.73 e 68.40 d<br />

Red beet<br />

Raudonieji burokėliai ‘Joniai’<br />

Water<br />

12.75 b 1.66 c 35.08 d<br />

Vanduo<br />

Agronom effect 15.42 c 0.88 b 22.45 b<br />

Biojodis 13.05 b 2.19 e 38.88 de<br />

Bioforce 16.95 d 1.99 d 42.78 f<br />

Biokal 01 10.62 a 0.83 b 17.73 b<br />

Inzar 15.54 c 1.09 b 23.98 b<br />

Oksichumat<br />

9.67 a 0.59 a 13.51 a<br />

Oksigumatas<br />

Penergetic p 14.56 c 1.58 c <strong>28</strong>.42 c<br />

Radish<br />

Ridikėliai ‘Babtų žara’<br />

Water<br />

14.51 d 2.77 c 87.50 c<br />

Vanduo<br />

Agronom effect 14.49 cd 2.45 a 73.31 b<br />

Biojodis 14.27 cd 2.54 ab 80.83 c<br />

Bioforce 15.20 e 2.75 c 74.95 b<br />

Biokal 01 12.27 b 2.25 a 65.08 a<br />

Inzar 16.22 a 3.48 e 118.10 e<br />

Oksichumat<br />

13.65 c 3.25 d 126.60 e<br />

Oksigumatas<br />

Penergetic p 15.40 e 3.73 f 111.65 d<br />

72


1 2 3 4<br />

Tomato<br />

Pomidorai ‘Arvaisa’ F 1<br />

Water<br />

11.87 c 2.38 d 58.57 d<br />

Vanduo<br />

Agronom effect 14.85 f 2.42 d 57.01 d<br />

Biojodis 11.65 c 2.22 c 68.38 e<br />

Bioforce 13.40 e 2.48 de 57.85 d<br />

Biokal 01 7.80 b 1.06 b 42.81 b<br />

Inzar 12.75 d 2.45 e 42.09 b<br />

Oksichumat<br />

6.25 a 0.60 a 29.65 a<br />

Oksigumatas<br />

Penergetic p 12.42 d 2.11 c 51.69 c<br />

* Values indicated by the same letters within the columns are not statistically different at<br />

P ≤ 0.05<br />

* Ta pačia raide pažymėtos reikšmės statistiškai nesisk<strong>ir</strong>ia, kai P ≤ 0,05<br />

Radish, which seeds were soaked in the investigated plant growth regulator<br />

solutions, grew and developed equally in comparison with these, which seeds were<br />

soaked in water. Radish, which seeds were soaked in solutions Bioforce, Inzar and<br />

Penergetic p, were correspondingly 4.7 %, 11.8 % and 6.1 % higher than these, which<br />

seeds were soaked in water (Table 2).<br />

The biggest fresh weight was of the plants, which seeds were soaked in solution<br />

Penergetic p. The biggest rootcrop produces plants, which seeds were soaked in solutions<br />

Biojodis and Inzar (Fig.).<br />

It was correspondingly 15.1 % and 16.4 % bigger than this of plants, which seeds<br />

were soaked in water. The biggest leaf assimilation area was of plants, which seeds<br />

were soaked in solution Oksichumat. It was 44.7 % bigger than this of plants, which<br />

seeds were soaked in water.<br />

Agronom effect, Bioforce, Inzar, Penergetic p positively influenced shoot height<br />

and fresh weight of tomato ‘Arvaisa’ F 1<br />

, but the biggest leaf assimilation area was of<br />

tomato shoots, which seeds were soaked in Biojodis solution (Table 2). The height<br />

of shoots, which seeds were soaked in preparations Agronom effect, Bioforce, Inzar,<br />

was correspondingly 25.3 %, 13.1 %, 7.6 % and 4.8 % bigger than this of shoots,<br />

which seeds were soaked in water. Seed soaking in plant growth regulator solutions<br />

didn’t influence positively tomato leaf assimilation area: it was smaller than this of<br />

shoots, which seeds were soaked in water (with the exception of shoots, which seeds<br />

were soaked in Biojodis solution). Leaf assimilation area of shoots, which seeds were<br />

soaked in Biojodis solution, was 16.7 % bigger than this of shoots, which seeds were<br />

soaked in water.<br />

73


Fig. Root weight (g) of radish, which seeds were soaked in solution of growth regulator:<br />

1 – water; 2 – Agronom effect; 3 – Biojodis; 4 – Bioforce; 5 – Biokal 01; 6 – Inzar;<br />

7 – Oksichumat; 8 – Penergetic p.<br />

Pav. Ridikėlių, kurių sėklos m<strong>ir</strong>kytos įva<strong>ir</strong>iuose augalų<br />

augimo reguliatorių t<strong>ir</strong>paluose, šakniavaisio masė, g:<br />

1 – vanduo; 2 – Agronom effect; 3 – Biojodis; 4 – Bioforse;<br />

5 – Biokal 01; 6 – Inzar; 7 – Oksigumatas; 8 – Penergetic p.<br />

Discussion. In order vegetable seeds germinated as evenly and quickly as possible,<br />

it is necessary correspondingly to prepare them for the sowing. One of the<br />

methods of seed preparation for sowing is seed soaking. Seeds of some vegetables do<br />

not germinate for a long time and after soaking them in water they germinate sooner.<br />

In order to improve vegetable seed germination power and to increase yield, the<strong>ir</strong><br />

seeds are soaked in plant growth regulator solutions. It was established that soaking<br />

celery seeds in growth regulators, i. e. Giberelin and others, they germinate sooner<br />

(Brocklehurst et al., 1982). Tomato ant sweet pepper seeds processed with plant<br />

growth regulators also germinate sooner and more evenly (Andreoli, Khan, 1999).<br />

According to the data of Lada and other scientists (2005), when carrot seeds were<br />

soaked in the solutions of Ambiol, Glycinebetaine and Bioprotect 2 growth regulators<br />

the<strong>ir</strong> germination power increased significantly. The data of our investigation showed<br />

that not all the investigated plant growth regulators positively influenced vegetable<br />

seed germination power. Out of the investigated growth regulators, growth regulator<br />

Bioforce had the the biggest positive influence on seed germination power. When<br />

seeds were soaked in it germination energy of red beet and raddish seeds increased<br />

10–30 %.<br />

Seed soaking in plant growth regulator solutions not only improves the<strong>ir</strong> germination<br />

power, but also shoots became more luxurant, had stronger roots. Plant growth<br />

74


egulators influence shoot biometrical parameters (Passian, Bennett, 1999). It was<br />

established that after seed soaking in growth regulator solution or the<strong>ir</strong> mixtures, seeds<br />

not only germinated sooner, but plant overground weight was bigger (Brocklehurst<br />

et al., 1982). According to the data of Ugur and Kavak (2007), tomato shoots, which<br />

seeds were soaked in the solutions PP 333 and CCC, were lower. Our investigations<br />

revealed that not all the growth regulators positively influenced shoot height, leaf<br />

assimilation area and fresh weight. Some growth regulators positively influenced<br />

plant height, but didn’t increase plant fresh weight. Agronom effect increased plant<br />

height and fresh weight of cucumber hybrid ‘Krukiai’ and tomato hybrid ‘Arvaisa’.<br />

The same regulator increased cucumber shoot leaf assimilation area. Plant growth<br />

regulator Bioforce increased plant height and fresh weight of red beet and tomato<br />

hybrid. Biojodis increased red beet plant height and fresh weight.<br />

Seed soaking in Agronom effect, Bioforce and Penergetic p solutions had the<br />

biggest influence on cucumber, red beet, tomato and raddish shoot growth and development.<br />

Conclusions. 1. Plant growth regulator Bioforce had the biggest positive influence<br />

on red beet and radich seed germination energy. After seed soaking in this regulator,<br />

germination energy of these vegetable seeds increased 10–30 %.<br />

2. Cucumber, red beet, tomato and radish seed soaking in Agronom effect, Bioforce<br />

and Penergetic p solutions had the biggest influence on the growth and development of<br />

these shoots: Agronom effect increased shoot height and fresh weight of cucumber and<br />

tomato hybrids and cucumber shoot leaf assimilation area, Bioforce increased shoot<br />

height and fresh weight of red beet and tomato, Penergetic p increased the height of<br />

cucumber, radish and red beet and fresh weight of radish was the biggest one.<br />

Acknowledgement. The research was supported by the Lithuanian State Science<br />

and Studies Foundation.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 12<br />

References<br />

1. Andreoli C., Khan A. 1999. Matriconditioning integrated with gibberellic acid to<br />

hasten seed germination and improve stand establishment of pepper and tomato.<br />

Pesquisa Agropecuária Brasile<strong>ir</strong>a, 34(10): 1 953–1 958.<br />

2. Boehme M., Schevtschenko J., Pinker I. 2005. Effect of biostimulators on growth<br />

of vegetables in hydroponical systems. Acta Horticulturae, 697: 337–344.<br />

3. Brigard J. P., Harkess R. L., Baldwin B. S. 2006. Tomato early seedling height<br />

control using a paclobutrazol seed soak. HortScience, 41(3): 768–772.<br />

4. Brocklehurst P. A., Rankin W. E. F., Thomas T. H. 1982. Stimulation of celery<br />

seed germination and seedling growth with combined ethephon, gibberellin and<br />

polyethylene glycol seed treatments. Plant Growth Regulation, 1(3): 195–202.<br />

75


5. Bugbee B., White J. W. 1984. Tomato growth as affected by root-zone temperature<br />

and the addition of gibberellic acid and kinetin to nutrient solutions. Journal<br />

of the American Society for Horticultural Science, 109: 121–125.<br />

6. Halter L., Habegger R., Schnitzler W. H. 2005. Gibberellic acid on artichokes<br />

(Cynara scolymus L.) cultivated in Germany to promote earliness and to increase<br />

productivity. Acta Horticulturae, 681: 75–82.<br />

7. Kad<strong>ir</strong>i M., Mukhtar F., Agboola D. A. 1997. Responses of some Nigerian vegetables<br />

of plant growth regulator treatments. Revista de biologia tropical, 23–<strong>28</strong>.<br />

8. Lada R. R., Stiles A., Blake T. J. 2005. The effects of natural and synthetic seed<br />

preconditioning agents (SPAs) in hastening seedling emergence and enhancing<br />

yield and quality of processing carrots. Scientia Horticulturae, 106(1): 25–37.<br />

9. Lopez-Elias J., Salas M. C., Urrestarazu M. Application of indole-3-butyric acid<br />

by fertigation on pepper plants in soilless culture grown in a greenhouse. Acta<br />

Horticulturae, 697: 475–479.<br />

10. Magnitskiy S. V., Pasian C. C., Bennett M. A., Metzger J. D. 2006. Effects of<br />

soaking cucumber and tomato seeds in paclobutrazol solutions on fruit weight,<br />

fruit size, and paclobutrazol level in fruits. HortScience, 41 (6): 1 446–1 448.<br />

11. Panajotov N. D. 1997. The effect of plant growth regulator atonic on the yield<br />

and quality of the reproduced seeds of sweet pepper. Acta Horticulturae, 462:<br />

757–762.<br />

12. Papadopoulos A. P., Saha U., Hao X., Khosla S. 2006. Response of rockwool-grown<br />

greenhouse cucumber, tomato, and pepper to kinetin foliar sprays.<br />

HortTechnology, 16(3): 32–35.<br />

13. Pasian C. C., Bennett M. A. 1999. Seed coats as plant growth regulator carriers<br />

in bedding plant production. Acta Horticulturae, 504: 93–98.<br />

14. Saglam N., Gebologlu N., Yilmaz E., Brohi A. 2002. The effects of different<br />

plant growth regulators and foliar fertilizers on yield and quality of crisp lettuce,<br />

spinach and pole bean. Acta Horticulturae, 579: 619–623.<br />

15. Tarakanovas P., Raudonius S. 2003. Agronominių tyrimų duomenų statistinė<br />

analizė taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo<br />

SELEKCIJA <strong>ir</strong> IRRISTAT. Akademija. Kėdainių r.<br />

16. Ugur A., Kavak S. 2007. The effects of PP 333 and CCC on seed germination<br />

and seedling height control of tomato. Acta Horticulturae, 729: 205–208.<br />

17. Гущина Л., Къдрев Е. 1987. Ускоряване на узряването и добива на ранни<br />

домати. Физиология растений, 13(2): 82–87.<br />

76


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Augimo reguliatorių įtaka daržovių sėklų dygimo energijai <strong>ir</strong><br />

daigų vystymuisi<br />

J. Jankauskienė, E. Survilienė<br />

Summary<br />

2007 metais Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute t<strong>ir</strong>ta augalų augimo reguliatorių<br />

įtaka daržovių sėklų dygimo energijai <strong>ir</strong> biometrijai. Agurkų ‘Krukiai’ F 1<br />

, burokėlių ‘Joniai’,<br />

ridikėlių ‘Babtų žara’ <strong>ir</strong> pomidorų ‘Arvaisa’ F 1<br />

sėklos m<strong>ir</strong>kytos augimo reguliatorių Biojodis,<br />

Biokal 01, Bioforse, Agronom effect, Inzar, Oksigumatas, Penergetic p t<strong>ir</strong>paluose. Kontroliniame<br />

variante sėklos m<strong>ir</strong>kytos vandenyje. Po m<strong>ir</strong>kymo sėklos pasėtos į polimerines kasetes, kuriose<br />

augalai auginti 30 dienų šiltnamyje. Nustatyta sėklų dygimo energija, atlikti daigų biometriniai<br />

matavimai (augalų aukštis, masė, lapų skaičius, asimiliacinis plotas). Augalų augimo reguliatoriai<br />

Oksigumatas, Agronom effect, Bioforse bei Penergetic p darė teigiamą įtaką ridikėlių, pomidorų<br />

sėklų dygimo energijai bei agurkų, burokėlių, pomidorų <strong>ir</strong> ridikėlių daigų augimui bei vystymuisi.<br />

Reikšminiai žodžiai: agurkai, augimo reguliatoriai, biometrija, burokėliai, daigai, dygimo<br />

energija, pomidorai, ridikėliai.<br />

77


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Powdery mildew of strawberries in Latvia under field<br />

conditions<br />

Svetlana Jarmoliča, B<strong>ir</strong>uta Bankina<br />

Institute of Soil and Plant Sciences, Latvia University of Agriculture, Liela Street 2,<br />

Jelgava, LV-3004, e-mail: B<strong>ir</strong>uta.Bankina@llu.lv; lanasvet2@inbox.lv<br />

Mildew of strawberries is a widespread disease over the world, but it was not detected<br />

in Latvia under open field conditions. Mildew of strawberries was noted f<strong>ir</strong>st in open field in<br />

Latvia in 2007, but regular observations were started in Research and Study farm “Vecauce”<br />

of LLU in 2008.<br />

Observations were carried out in different varieties in strawberry plantations of different<br />

age.<br />

Mildew was determined only in two varieties – ‘Zefyr’ and ‘Kokinskaja rannaja’.<br />

Incidence of the disease fluctuated from 9–15 % depending on the age of a strawberry plantation<br />

and was higher in 3-year-old plantations. Severity of the disease was not high and did not<br />

reach 1 point (evaluation scale 0–5 points).<br />

Morphological properties of Podosphaera (chasmothecia and conidia) were described.<br />

We suggest, that mildew of strawberries in Latvia was caused by fungus from the genera<br />

Podosphaera (former Sphaerotheca), but more detailed investigations are necessary. The<br />

main aim of the research was to estimate harmfulness of strawberry powdery mildew and to<br />

clarify life cycle of pathogen in Latvia under field conditions.<br />

Key words: diagnostic, diseases, Podosphaera, Sphaerotheca.<br />

Introduction. Mildew of strawberries is a widespread disease over the world.<br />

Powdery mildew of strawberries was noted only in glasshouses, but was not detected<br />

in Latvia under field conditions. There are some possible reasons for emergence of<br />

powdery mildew: new varieties and climatic changes. Milder winters might allow<br />

overwintering of Podosphaera spp. and hot summers increase rate of disease progress<br />

(Boland et al., 2004).<br />

The disease damages all aerial plant tissues, including fruits (Maas, 1998).<br />

Systematic of powdery mildew causal agents sharply changed during the last years<br />

(Glawe, 2008). The taxonomy of Erysiphales recently was revised basing on DNA<br />

sequence data. Identification pathogens from Erysiphales now requ<strong>ir</strong>e morphology<br />

peculiarities of teleomorph and anamorph, incorporates characteristics to the whole<br />

79


fungus (anamorph plus teleomorph, i. e. the holomorph). Powdery mildew genera are<br />

now grouped into five tribes (Heffer et al., 2006).<br />

Podosphaera aphanis and Podosphaera macularis were described as causal agents<br />

of powdery mildew. Formerly Sphaerotheca macularis was thought to be pathogen<br />

of strawberries.<br />

Earlier literature findings do not distinguish clearly between the P. aphanis and<br />

P. macularis, but P. aphanis is the most important causal agent of powdery mildew<br />

in UK (Hal et al., 2008).<br />

DNA analyses of an isolate of the synonymous species Sphaerotheca aphanis<br />

from strawberry were 100 % identical to P. aphanis (Pertot et al., 2007).<br />

Severity of powdery mildew development depends on meteorological factors:<br />

temperature (the optimum 15–25 °C) and high relative humidity – higher than 75 %,<br />

but less than 98 % (Amsalem et al., 2006). Developing of mycelia in green tissue was<br />

observed under all conditions, where the pathogen survived <strong>ir</strong>respective of visible<br />

symptoms, but sporulation was observed from 5–30 °C (Miller et al., 2003).<br />

The main source of infection is chasmothecia (formerly cleistothecia), and time<br />

of ripening and liberation of ascospores is important to development of integrated<br />

control of powdery mildew. Viable ascospores in the chasmothecia were found from<br />

April till June in Norway (Gadoury et al., 2007).<br />

The central aim of research was to estimate harmfulness of strawberry powdery<br />

mildew and clarify life cycle of pathogen in Latvia under field conditions.<br />

Object, methods and conditions. Regular observations were carried out in Research<br />

and Study farm “Vecauce” of LLU in 2008.<br />

Different strawberry varieties (‘Fratina’, ‘Pegasus’, ‘Polka’, ‘Pandora’, ‘Zefyr’,<br />

‘Honeoye’, ‘Kokinskaja rannaja’), 2-year and 3-year old plantations were evaluated.<br />

Incidence and the severity of powdery mildew were noted in autumn. Incidence<br />

of the disease was expressed in percent, but severity in points. A scale of 0–5 was<br />

developed to evaluate the severity of mildew: 0 – healthy plant; 1 – f<strong>ir</strong>st symptoms of<br />

the disease; 2 – infected 2–3 leaves; 3 – infected 4–5 leaves; 4 – infected more than<br />

5 leaves; infected all plant.<br />

Morphological peculiarities of fruit bodies of pathogen were studied and described<br />

under microscope at the Institute of Soil and Plant Sciences. Identification of causal<br />

agent of strawberry powdery mildew was performed.<br />

Results. Powdery mildew was determined only in two varieties – ‘Zefyr’ and<br />

‘Kokinskaja rannaja’ – in the autumn of 2008.<br />

Incidence of the disease fluctuated from 9–15 %, depending on the age of strawberry<br />

plantation, being higher in 3-year-old plantation (Fig. 1). However, severity of<br />

the disease was not high and did not achieve 1 point.<br />

80


Fig. 1. Incidence of powdery mildew depending on variety and age of plantation<br />

1 pav. Netikrosios miltligės paplitimas, priklausomai nuo veislės <strong>ir</strong> plantacijos amžiaus<br />

Morphological properties of chasmothecia (former cleistothecium) and conidia<br />

were described in the autumn of 2008 (Figs. 2 and 3). We suggest that powdery mildew<br />

of strawberries in Latvia was caused by fungus from the genera Podosphaera (former<br />

Sphaerotheca).<br />

Fig. 2. Chasmothecia with ascus and asco spores of Podosphaera spp.<br />

2 pav. Chasmothecia su Podosphaera spp. askosporomis <strong>ir</strong> askais<br />

Fig. 3. True conidia chains of pathogen<br />

3 pav. Tikrosios ligos sukėlėjo konidijų grandinės<br />

81


Discussion. In Latvia, powdery mildew of strawberries was for the f<strong>ir</strong>st time<br />

noted in field in 2007, but this disease has been described all over the world. There<br />

are no data available with regard to resistance of strawberry varieties under conditions<br />

of Latvia, but different level of resistance was observed.<br />

Identification of species was not done now; more detailed investigations are necessary.<br />

Genera Podosphaera were established as causal agent of strawberry mildew,<br />

related with a new system of pathogen systematic, but most of authors used previous<br />

name Sphaerotheca.<br />

Chasmothecia is a spherical fruiting body without natural opening. Morphological<br />

peculiarities of chasmothecia appendages, number of asci and production of conidia (a<br />

single conidium, true chain or pseudochain) are the most important factors for identification<br />

of causal agent of mildew. Chasmothecia of Podosphaera contain one single<br />

ascus, appendages are hypha-like or branched and conidia form true chains (Heffer<br />

et al., 2006). Conidia in chains are ellipsoidal to barrel-shaped as reported by others<br />

researchers (Santos et al., 2002). Fig. 2 and Fig. 3 show chasmothecia with a single<br />

ascus, hypha-like appendages and true chains of conidia.<br />

Investigation of peculiarities of the disease life cycle is a very important task.<br />

Control scheme of mildew could be based on incidence of chasmothecia (Berrie et al.,<br />

2002). Viable asco spores were detected in Latvia in autumn; investigations are continued.<br />

Similar investigations were carried out in Norway, asco spores were found in<br />

spring (Gadoury et al., 2007). It means that the same situation is possible in Latvia.<br />

However, season most favourable for infection is unclear in Latvia yet.<br />

Conclusions. Powdery mildew of strawberries was f<strong>ir</strong>st described in Latvia in<br />

the autumn of 2008; genera of causal agent were identified as Podosphaera.<br />

Further investigations are necessary for precise identification of causal agent and<br />

clarification of pathogen life cycle under conditions of Latvia.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 13<br />

References<br />

1. Amsalem L., Freeman S., Rav-David D., Nitzani J., Sztejnberg A., Pertot I.,<br />

Elad Y. 2006. Effect of Climatic Factors on Powdery Mildew Caused by<br />

Sphaerotheca macularis f. sp. Fragariae on Strawberry. European Journal of<br />

Plant Pathology, 114(3): <strong>28</strong>3–292.<br />

2. Berrie A. M., Harris D. C., Xu X. M. 2002. A potential system for managing<br />

Botrytis and powdery mildew in main season strawberries. Acta Horticulture,<br />

567: 647–649.<br />

3. Boland G. J., Melzer M. S., Hopkin A., Higgins V., Nassuth A. 2004. Climate<br />

change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26:<br />

335–350.<br />

82


4. Gadoury D. M., Stensvand A., Seem R. C., Heidenreich C., Herrero M. L.,<br />

Welser M. 2007. Overwinter survival of cleistothecia, ascospore release, and<br />

infection of strawberry by Podosphaera macularis in New York and Norway.<br />

Phytopathology, 97: S38.<br />

5. Glawe A. 2008. The Powdery Mildews: A Review of the World’s Most Familiar<br />

(Yet Poorly Known) Plant Pathogens. Annual Review of Phytopathology, 46:<br />

27–51.<br />

6. Hall A. M., Dodgson J. L. A., Farooq M. 2008. Comparison of Podosphaera<br />

macularis and P. aphanis and the role of chasmothecia on strawberries. Journal<br />

of Plant Pathology, 90(2): S2.161.<br />

7. Heffer V., Johnson K. B., Powelson M. L., Shishkoff N. 2006. Identification of<br />

powdery mildew fungi. The Plant Health Instructor. DOI:10.1094/PHI-I-2006-<br />

0706-01<br />

8. Maas J. L. 1998. Compendium of strawberry diseases. 2 nd ed. American<br />

Phytopathological Society Press, St. Paul. Minn.<br />

9. Miller T. V., Gubler W. D., Geng S., Rizzo D. M. 2003. Effects of temperature<br />

and water vapor pressure on conidial germination and lesion expansion of<br />

Sphaerotheca macularis f. sp. fragariae. Plant diseases, 87(5): 484–492.<br />

10. Pertot I., Fiamingo F., Amsalem L., Maymon M., Freeman S., Gobbin D., Elad<br />

Y. 2007. Sensitivity of two Podosphaera aphanis populations to disease control<br />

agents. Journal of Plant Pathology, 89(1): 85–96.<br />

11. Santos B., Blanco C., Porras M., Barrau C., Romero F. 2002. F<strong>ir</strong>st Conf<strong>ir</strong>mation<br />

of Sphaerotheca macularis on Strawberry Plants in Southwestern Spain. Plant<br />

Disease, 86(9): 1 049.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Braškių netikroji miltligė Latvijoje lauko sąlygomis<br />

S. Jarmoliča, B. Bankina<br />

Santrauka<br />

Braškių miltligė – visame pasaulyje paplitusi liga, tačiau Latvijoje lauko sąlygomis ji dar<br />

nebuvo aptikta. P<strong>ir</strong>mą kartą atv<strong>ir</strong>ame lauke Latvijoje ji pastebėta 2007 metais, o reguliarūs<br />

stebėjimai pradėti LLU tyrimų <strong>ir</strong> studijų ūkyje “Vecauce” 2008 metais.<br />

Stebėtos sk<strong>ir</strong>tingos braškių veislės įva<strong>ir</strong>aus amžiaus plantacijose. Miltligė aptikta tik<br />

dviejose veislėse – ‘Zefyr’ <strong>ir</strong> ‘Kokinskaja rannaja’. Ligos paplitimas svyravo 9–15 %, priklausomai<br />

nuo braškių plantacijos amžiaus, <strong>ir</strong> buvo didesnis 3 metų amžiaus plantacijose. Ligos<br />

žalingumas nebuvo didelis <strong>ir</strong> nesiekė 1 balo (vertinant pagal 0–5 balų skalę).<br />

Buvo apibūdintos morfologinės savybės Podosphaera (chasmothecia <strong>ir</strong> konidijų). Spėjame,<br />

kad braškių miltligę Latvijoje sukėlė Podosphaera (buvusios Sphaerotheca) genties grybas,<br />

tačiau tam patv<strong>ir</strong>tinti reikalingi nuodugnesni tyrimai. Pagrindinis šių tyrimų tikslas buvo<br />

įvertinti braškių netikrosios miltligės kenksmingumą <strong>ir</strong> išsiaiškinti ligos sukėlėjo vystimosi<br />

ciklą Latvijoje lauko sąlygomis.<br />

Reikšminiai žodžiai: ligos, nustatymas, Podosphaera, Sphaerotheca.<br />

83


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Influence of neemazal-T/S on Mamestra brassicae L.<br />

Katrin Jõgar*, Luule Metspalu, Külli Hiiesaar, Liina Loorits,<br />

Angela Ploomi, Aare Kuusik and Anne Luik<br />

Institute of Agricultural and Env<strong>ir</strong>onmental Sciences, Estonian University of Life<br />

Sciences, 1 Kreutzwaldi St., 51014 Tartu, Estonia, e-mail katrin.jogar@emu.ee<br />

The aim of this study was to explore the effects of the botanical insecticide NeemAzal-<br />

T/S on Mamestra brassicae, known an important cabbage pest. The experiments were carried<br />

out in the experimental garden of the Estonian University of Life Sciences in the summer<br />

of 2006. During the experiment the effect of different concentrations and treating methods<br />

of the preparation (0.03 % and 0.3 % solution spraying and 0.3 % solution watering) were<br />

monitored.<br />

During the observation period M. brassicae were found in lower numbers from treated<br />

plants than from untreated plants. A comparison of treated variants with control revealed<br />

statistically significant differences in the number of M. brassicae. There were no significant<br />

differences between the treated variants. Seasonal dynamics of M. brassicae showed that the<br />

population peak was in the beginning of July and after that the number of pests started to<br />

decrease. Spraying the cabbage with NeemAzal-T/S 0.3 % solution decreased the inhabitation<br />

by cabbage moth. The effect was not as clear in the other treatments. NeemAzal-T/S acted on<br />

cabbage moth females as a weak repellent and oviposition deterrent. According to our results,<br />

0.3 % concentration of NeemAzal-T/S was most effective against cabbage moth and spraying<br />

was found to be more effective than watering.<br />

Key words: biopesticide, Mamestra brassicae, oviposition preference.<br />

Introduction. Cabbage moth, Mamestra brassicae L. is a highly polyphagous<br />

species, particularly associated with cruciferous crops (Bretherton et al., 1979), but<br />

also feeding on a wide range of other plant species (Turnock, Carl, 1995). In Estonia<br />

M. brassicae is one of the most significant pests of cruciferous crops, but is also<br />

widely known pest throughout North West Europe. In various climatic zones cabbage<br />

moth can produce a number of generations during summer; in Estonia it is mainly a<br />

univoltine species, hibernating as diapausing pupae in the soil. Under our conditions<br />

synthetic insecticides are dominant in plant protection strategies against cabbage<br />

moth and botanical insecticides are not very common in practice.<br />

Botanical insecticides are useful and des<strong>ir</strong>able tools in most pest management<br />

programs because they can be effective and often complement the actions of natural enemies<br />

(Ascher, 1993; Schmutterer, 1995). The main advantages of using bioinsecticide<br />

85


are reduced toxicity to humans, rapid and complete degradation in the env<strong>ir</strong>onment,<br />

low risk for resistance and selective properties for non-target organisms, including<br />

natural enemies of pest and insects-pollinators (Hoelmer et al., 1990; McCloskey et al.,<br />

1993; Nauman et al., 1994; Schmutterer, 1995).<br />

Botanical insecticides are less harmful than synthetic ones and affect many insects<br />

in different ways (Schmutterer, 1995; Villanueva-Jiménez et al., 2000; Metspalu et al.,<br />

2001; Durmusoglu et al., 2003). Among natural pesticides the compounds from neem<br />

tree (Azad<strong>ir</strong>achta indica A. Juss, Meliaceae) have a number of properties useful for<br />

insect pest management. Neem extracts are widely used around the world either singly<br />

in Integrated Pest Management or in conjunction with synthetic pesticides (for review<br />

see Mordue (Luntz), Nisbet, 2000). Neem-based insecticides containing different<br />

compounds have been reported to control more than 400 species of insects, including<br />

important pests, such as leafminers, aphids and whiteflies (Isman, 1999; Walter, 1999).<br />

Azad<strong>ir</strong>achtin, a steroid-like tetranortriterpenoid derived from neem trees, is a strong<br />

anti-feedant, repellent, growth regulator, molting inhibitor, sterilant and oviposition<br />

deterrent for a wide variety of phytophagous insects (Koul, 1992; Schmutterer, 1995;<br />

Mordue (Luntz), 2004). Azad<strong>ir</strong>achtin has also shown d<strong>ir</strong>ect detrimental and histopatological<br />

effects on most insect tissues, e. g. muscles, body fat, and gut epithelial cells<br />

(Mordue (Luntz), 2004).<br />

The action of neem depends on the pest species, the time of application, treating<br />

methods and the concentration used. It is also important to determine the efficacy of<br />

neem in different regions of the world. One preparation may act differently with different<br />

populations. The aim of this study was to elucidate the actions and efficiency<br />

of different concentrations of commercial botanical insecticide NeemAzal-T/S on the<br />

cabbage moth, Mamestra brassicae, under field conditions in Estonia.<br />

Object, methods and conditions. The experiments were carried out in the experimental<br />

garden of the Estonian University of Life Sciences in the summer of 2006. In<br />

the present experiments NeemAzal-T/S (1 % Azad<strong>ir</strong>achtin) (from Trifolio-M GmbH,<br />

Germany), was used. There were four variants: two different concentrations of NeemAzal-T/S<br />

– 0.03 % and 0.3 % were used for spraying and 0.3 % concentration of<br />

Neem Azal T/S was used for watering of testing plots.<br />

White cabbage (Brassica oleracea (L.) var. capitata f. alba) plants were grown<br />

from seed, kept in glasshouse until they reached the 3 true leaf stage. In mid-May<br />

plants were replanted to the experimental field. Each variant consisted of 9 plants per<br />

plot (three rows of three plants spaced at 70 cm intervals). All variants had three replications.<br />

To prevent larvae from leaving the plots, a 20 cm wide strip of dill (Anethum<br />

graveolens L.), which is not a food plant of M. brassicae larvae, was sown around<br />

each plot. Larvae of M. brassicae on all the plots were sampled at 7-day intervals from<br />

4 July to 12 September. Eggs and larvae were removed from plants by hand picking,<br />

to avoid repeated counting. The f<strong>ir</strong>st spraying and watering with NeemAzal-T/S was<br />

made after the f<strong>ir</strong>st counting (4 July) of M. brassicae eggs and larvae. The treatments<br />

were applied at weekly intervals during the ent<strong>ir</strong>e observing period.<br />

Tests were performed using the statistic package StatSoft ver. 7, Inc./USA. Data<br />

have been presented as mean ± standard error. Statistical comparisons were performed<br />

with repeated measures ANOVA by the Ficher LSD test. All means were considered<br />

significantly different at the p < 0.05 level.<br />

86


Results. A comparison of treated variants with control revealed statistically significant<br />

differences in the number of M. brassicae larvae (ANOVA F 3,18<br />

=12.30;<br />

df = 3; p < 0.05; LSD test p < 0.05). The number of M. brassicae was reliably lower<br />

in all treated variant (p < 0.05) (Fig. 1) during the whole observation period. Our results<br />

showed that butterflies preferred the untreated plants as the site for oviposition,<br />

37.8 % of caterpillars counted during the whole observation period were gathered<br />

from this variant.<br />

Fig. 1. Mean number of cabbage moth (Mamestra brassicae L.)<br />

individuals on NeemAzal-T/S treated variants. Columns with different letters are<br />

significantly different (Ficher LSD test p < 0.05).<br />

1 pav. Kopūstinio pelėdgalvio (Mamestra brassicae L.) vidutinis gausumas<br />

nimazaliu apdorotuose variantuose. Stulpeliai pažymėti sk<strong>ir</strong>tingomis<br />

raidėmis patikimai sk<strong>ir</strong>iasi (Fišerio testas, kai p < 0,05).<br />

Statistical analysis of the results indicated that there were no significant differences<br />

between the treated variants (LSD test, p > 0.05), although there existed a considerable<br />

tendency in the d<strong>ir</strong>ection of lower number of M. brassicae in the variant treated<br />

with 0.3 % neem. The comparison of the differently treated variants revealed that the<br />

cabbage moth selected least the plots sprayed with 0.3 % neem preparation (16.7 %),<br />

followed by sprayed with 0.03 % neem (21.2 %) as the site for oviposition and the<br />

th<strong>ir</strong>d choice was watered variant (24.3 %).<br />

The f<strong>ir</strong>st observation before treatments revealed high infestation of cabbage moth<br />

in all variants; there were no significant differences between variants (Fig. 2). One<br />

week after treatments (11.07) the number larvae fall drastically in all treated variants;<br />

the lowest number of larvae was found on plots sprayed with 0.3 % neem preparation.<br />

Comparison of number of M. brassicae in all test variants revealed significant<br />

difference with control (p = 0.02), but there were no differences between treatments<br />

(p > 0.05; Fig. 2).<br />

87


Fig. 2. Seasonal abundance of Mamestra brassicae on differently NeemAzal-T/S<br />

treated variants (mean ± SE). Columns with asterisks are significantly different<br />

from control (Tukey test p < 0.05).<br />

2 pav. Mamestra brassicae sezoninis gausumas sk<strong>ir</strong>tingai nimazaliu apdorotuose<br />

variantuose (vidurkis ± SE). Stulpeliai, pažymėti žvaigždutėmis,<br />

patikimai sk<strong>ir</strong>iasi nuo kontrolinio varianto (Tukey testas p < 0,05).<br />

Only few larvae were found at the th<strong>ir</strong>d observation (18.07) on 0.3 % sprayed<br />

variant; somewhat more – on sprayed with 0.03 %, followed by watered variant. In<br />

control the number of pest was declined slightly. The same trend continued in all<br />

variants till the end of observations.<br />

Discussion. Cabbage moth mainly selects an oviposition site by odour cue, whereas<br />

the search process is, to some extent, influenced by visual cues (Rojas et al.,<br />

2000). Data from literature reveal that neem is useful as an ovipositional repellent for<br />

polyphagous pests (Larew, 1990; Liu, Stansly, 1995). According to Metspalu et al.,<br />

(2001) results NeemAzal-T/S had a repellent effect on the adults of large white butterfly<br />

(Pieris brassicae). Similar results were found in Facknath (1998) – different<br />

neem preparations had a repellent effect on Plutella xylostella adults. Meadow et al.,<br />

(2001) found a repellent effect of neem on oviposition of turnip root fly (Delia floralis)<br />

and cabbage moth. Our data showed that cabbage moth oviposition was reduced<br />

on cabbage treated with NeemAzal-T/S in comparisson with control. Probably the<br />

neem-treating misinformed the M. brassicae adults and they did not find the plants<br />

or they were not able to lay the eggs. Especially decreased the inhabitation by the<br />

88


cabbage moth in variant with 0.3 % concentration. Similarly to our observations,<br />

the repellent effect of neem extracts against M. brassicae oviposition was found in<br />

a study by Seljasen and Meadow (2006). Naumann and Isman (1995) found a similar<br />

reduction in oviposition by the noctuid moth Spodoptera litura on neem-treated<br />

plants. Neem-based insecticides deter oviposition by some other lepidopteran, and<br />

some homopteran, coleopteran and dipteran pests (Saxena, 1989; Schmutterer, 1995;<br />

Butler et al., 1991; Singh, Singh, 1998; Akey, Henneberry, 1999).<br />

The present research showed that d<strong>ir</strong>ect contact with the Neem Azal T/S decreased<br />

M. brassicae egg survival and larvae that fed on neem treated leaves had lower<br />

survivorship. During the observation we found both dead egg clusters and larvae from<br />

neem-treated plants. According to Liang et al. (2003) results Agroneem, Ecozin and<br />

Neemix had lethal effects on the diamondback moth larvae, and neem oil reduced egg<br />

hatching and larval survival in larvae of Helicoverpa armigera (Ma et al., 2000).<br />

Our tests showed that the lower number of M. brassicae on neem treated plants;<br />

that could have resulted from d<strong>ir</strong>ect toxicity of the neem extract. Respectively to<br />

Mancebo et al. (2002) data, Azatin, neem seed extract containing 3 % azad<strong>ir</strong>achtin,<br />

has been reported to cause quick d<strong>ir</strong>ect toxicity in the mahogany shootborer, Hypsipyla<br />

grandella larvae.<br />

According to our results, 0.3 % concentration of NeemAzal-T/S was most effective<br />

against cabbage moth and spraying was found to be more effective than watering.<br />

Systemic transport of neem in plants and controlling effects are also documented for<br />

the cabbage pest P. brassica (Osman, Port, 1990) and Plutella xylostella (Wendorf,<br />

Shüler, 1992). Our results conf<strong>ir</strong>m previous statements.<br />

Conclusion. From our results it can be concluded that under our conditions it is<br />

possible to control M. brassicae with NeemAzal-T/S.<br />

Acknowledgements. This research was supported by Grants No 6722 and 7130<br />

of the Estonian Science Foundation, and Estonian Ministry of Education and Research<br />

targeted financing project No. SF 0170057s09.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 27<br />

References<br />

1. Akey D. H., Henneberry T. J. 1999. Control of silverleaf whitefly with neem<br />

product azad<strong>ir</strong>achtin as Bollwhip TM in upland cotton in Arizona. Proceedings of<br />

Beltwide Cotton Conferences, National Cotton Council of America, Memphis,<br />

TN, 914–917.<br />

2. Ascher K. R. S. 1993. Nonconventional insecticidal effects of pesticides available<br />

from the neem tree, Azad<strong>ir</strong>achta indica. Archives of Insect Biochemistry and<br />

Physiology, 22: 433–449.<br />

89


3. Bretherton R. F., Goater B., Lorime R. I. 1979. Noctuidae. In: J. Heath and<br />

A. M. Emmet (eds.) The Moths and Butterflies of Great Britain and Ireland.<br />

Curwen Booka, London, 120–278.<br />

4. Butler G. D. Jr., Puri S. N., Henneberry T. J. 1991. Plant-derived oil and detergents<br />

solutions as control agents for Bemisia tabaci and Aphis gossypii on<br />

cotton. Southwestern Entomologist, 16: 331–337.<br />

5. Durmusoglu E., Karsavuran Y., Ozgen I., Guncan A. 2003. Effects of two different<br />

neem products on different stages of Nezara v<strong>ir</strong>idula (L.) (Heteroptera,<br />

Pentatomidae). Journal of Pest Science, 76: 151–154.<br />

6. Facknath S. 1998. Integrated pest management of Plutella xylostella an important<br />

pest of crucifers in Mauritius. (www.uom.ac.mu/Faculties/foa/AIS/<br />

SIROIWEBUK/maurice/farc/amas97/p13txt.htm)<br />

7. Hoelmer K. A., Obsorne L. S., Yokomi R. K. 1990. Effects of neem extracts on<br />

beneficial insects in greenhouse culture. In: J. C. Lovke and R. H. Lawson (eds.)<br />

Neem-potential in pest management programs. USDA Agricultural Research<br />

Service, 86, 100–105.<br />

8. Isman M. B. 1999. Neem and related natural products. In: F. R. Hall and<br />

J. J. Menn (eds.) Biopesticides: Use and Delivery. Humana Press, Totowa, NJ.<br />

139–154.<br />

9. Koul O. 1992. Neem alleochemicals and insect control. In: Rizvi, R. S. J. H. and<br />

Rizvi, R.H. (eds.) Allelopathy; basic and applied aspects, 86, 100–105.<br />

10. Larew H. G. 1990. Activity of neem seed oil against greenhouse pests. In UCDA<br />

Neem Workshop, USDA-ARG 86, 1<strong>28</strong>–131.<br />

11. Liang G. M., Chen W., Liu T. X. 2003. Effects of tree neem-based insecticides on<br />

diamondback moth (Lepidoptera: Plutellidae). Crop Protection, 22: 333–340.<br />

12. Liu T. X., Stansly P. A. 1995. Toxicity and repellency of some biorational<br />

Insecticides to Bemisia argentifolii on tomato plants. Entomologia Expermentalis<br />

et Applicata, 74: 137–143.<br />

13. Ma D. L., Gordh G., Zalucki M. P. 2000. Biological effects of azad<strong>ir</strong>achtin on<br />

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial<br />

diet. Australian Journal of Entomology, 39: 301–304.<br />

14. Mancebo F., Hilje G. A. M., Salazar R. 2002. Biological activity of two neem<br />

(Azad<strong>ir</strong>achta indica (A. Juss., Meliaceae) products on Hypsipyla grandella<br />

(Lepidoptera: Pyralidae) larvae. Crop Protection, 21: 107–112.<br />

15. McCloskey C., Arnason J., Donskov N., Chenier R., Kaminski J., Philogene B.<br />

J. R. 1993. Th<strong>ir</strong>d troffic level effects of azad<strong>ir</strong>achtin. Canadian Entomologist,<br />

125: 163–165.<br />

16. Meadow R., Seljasen R., Brynildsen P. 2001. The effects of neem extracts on the<br />

turnip root fly and the cabbage moth. Practice oriented results of the use of plant<br />

extracts and pheromones in pest control. Proceedings of the IX Workshop, (eds.<br />

H. Kleeberg & C. P. W. Zebitz), 53–60.<br />

17. Metspalu L., Luik A., Hiiesaar K., Kuusik A., Sibul, I. 2001. On the influence<br />

of Neem Preparations on some agricultural and Forest Pests. Practice oriented<br />

results of the use of plant extracts and pheromones in pest control. Proceedings<br />

of the IX Workshop, (eds. Kleeberg, H. & Zebitz, C. P. W.), 95–103.<br />

90


18. Mordue (Luntz) A. J. 2004. Present Concepts of the Mode of Action of<br />

Azad<strong>ir</strong>achtin from Neem. Neem: Today and in the New Millennium. (eds.<br />

O. Koul & S. Wahab) Kluwer Academic Publishers, London, 229–243.<br />

19. Mordue (Luntz) A. J., Nisbet A .J. 2000. Azad<strong>ir</strong>achtin from the neem tree A. indica:<br />

its action against insects. Anais da Sociedate Entomologica do Brasil, 29(4):<br />

615–632.<br />

20. Nauman K., Currie R. W., Isman B. M. 1994. Evaluation of the repellent effect<br />

of a neem insecticide on foraging honey bees and other pollinators. Canadian<br />

Entomologist, 126: 225–230.<br />

21. Naumann K., Isman M. B. 1995. Evaluation of neem Azad<strong>ir</strong>achta indica seed<br />

extracts and oils as oviposition deterrents to noctuid moths. Entomologia<br />

Expermentalis et Applicata, 76: 115–120.<br />

22. Osman M. Z., Port R. G. 1990. Systemic action of neem seed substances against<br />

Pieris brassica. Entomologia Expermentalis et Applicata, 54: 297–300.<br />

23. Rojas J. C., Wyatt T. D., B<strong>ir</strong>ch M. C. 2000. Flight and oviposition behaviour<br />

toward different host plant species by the cabbage moth, Mamestra brassicae<br />

(L.) (Lepidoptera: Noctuidae). Journal of Insect Behavior, 13(2): 297–300.<br />

24. Saxena R. C. 1989. Insecticides from neem. In: J. T. Arnason, B. J. R. Philogene,<br />

P. Morand (eds.). Insecticides of Plant Origin, American Chemical Society,<br />

Washington, DC, 110–135.<br />

25. Schmutterer H. 1995. The neem tree: source of unique natural products for<br />

integrated pest management, medicine, industry and other purposes. VCH<br />

Publications, Weinheim, Germany.<br />

26. Seljasen R., Meadow R. 2006. Effects of neem on oviposition and egg and larval<br />

development of Mamestra brassicae L.: Dose response, residual activity,<br />

repellent effect and systemic activity in cabbage plants. Crop Protecion, 25:<br />

338–345.<br />

27. Singh S., Singh R. P. 1998. Neem (Azad<strong>ir</strong>achta indica) seed kernel extracts and<br />

azad<strong>ir</strong>achtin as oviposition deterrents against the melon fly (Bactrocera cucurbitae)<br />

and oriental fruit fly (Bactrocera dorsalis). Phytoparasitica, 26: 1–7.<br />

<strong>28</strong>. Turnock W. J., Carl K. P. 1995. Evaluation of palearctic Eurithia consobrina<br />

(Diptera: Tachinidae) as a potential biocontrol agent for Mamestra configurata<br />

(Lepidoptera, Noctuidae) in Canada. Biocontrol Science and Technology,<br />

5: 55–67.<br />

29. Villanueva-Jiménez J. A., Hoy M. A., Davies F. S. 2000. Field evaluation of<br />

integrated pest management-compatible pesticides for the citrus leafminer<br />

Phyllocnistis citrella (Lepidoptera: Gracillariidae) and its parasitoid Ageniaspis<br />

citricola (Hymenoptera: Encyrtidae). Journal of Economic Entomology, 93:<br />

357–367.<br />

30. Walter J. F. 1999. Commercial experience with neem products. In: F. R. Hall,<br />

J. J. Menn (eds.) Biopesticides: Use and delivery. Humana Press, Totowa, NJ,<br />

139–154.<br />

91


31. Wendorf M., Shüler C. 1992. Versuch über die systemische W<strong>ir</strong>kung von<br />

Neemenextracten auf Plutella xylostella. Proceedings of the F<strong>ir</strong>st Workshop:<br />

Practise Oriented Results on Use and Production of Neem-Ingredients (ed.<br />

H. Kleeberg). 19 th –20 th June 1992. Wetzlar, Germany, Trifolio-M-GmbH,<br />

Lahnau, 45–51.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Nimazalio T/S poveikis Mamestra brassicae L.<br />

K. Jõgar*, L. Metspalu, K. Hiiesaar, L. Loorits, A. Ploomi,<br />

A. Kuusik, A. Luik<br />

Santrauka<br />

Tyrimo tikslas buvo išt<strong>ir</strong>ti botaninio insekticido nimazalio T/S poveikį žalingam<br />

kopūstų kenkėjui Mamestra brassicae. Tyrimai buvo atlikti Estijos gamtos mokslų universiteto<br />

ekspermentiniame darže 2006 m. vasarą. Buvo t<strong>ir</strong>tas preparato sk<strong>ir</strong>tingų koncentracijų<br />

<strong>ir</strong> apdorojimo būdų (0,03 % <strong>ir</strong> 0,3 % t<strong>ir</strong>palo purškimo <strong>ir</strong> 0,3 % t<strong>ir</strong>palo laistymo) poveikis.<br />

Stebėjimo metu mažiau M. brassicae buvo ant apdorotų augalų nei ant neapdorotų.<br />

Variantų palyginimas parodė patikimus M. brassicae sk<strong>ir</strong>tumus tarp apdorotų variantų<br />

<strong>ir</strong> kontrolės. Tarp apdorotų variantų patikimų sk<strong>ir</strong>tumų nerasta. Sezoninis M. brassicae<br />

kitimas rodo, kad gausiausiai šių kenkėjų buvo liepos pradžioje, po to jų skaičius<br />

pradėjo mažėti. Purškiant kenkėjus nimazalio T/S 0,3 % t<strong>ir</strong>palu sumažėjo kopūstinių<br />

pelėdgalvių gyvenimo trukmė. Poveikis kituose variantuose nebuvo ryškus. Nimazalis T/S<br />

veikė kopūstinių pelėdgalvių pateles kaip silpnas repelentas <strong>ir</strong> šiek tiek atbaidydavo nuo<br />

kiaušinių dėjimo. Remiantis mūsų rezultatais, 0,3 % nimazalio T/S koncentracija buvo<br />

efektyviausia nuo kopūstinių pelėdgalvių <strong>ir</strong> purškimas buvo efektyvesnis nei laistymas.<br />

Reikšminiai žodžiai: biopesticidas, kiaušinių dėjimo p<strong>ir</strong>menybė, Mamestra brassicae.<br />

92


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Sensitivity of Venturia inaequalis populations to<br />

krezoxym methyl<br />

Veranika Kamardzina<br />

RUC “Institute of Plant Protection” p. Priluki, Minsk region, Belarus,<br />

e-mail belizr@tut.by<br />

As a result of investigations carried out in the industrial orchards in 2000–2006, significant<br />

decrease of sensitivity of apple scab agent Venturia inaequalis populations to krezoxym methyl<br />

(Strobi) from strobilurine group was determined. In orchard “Kletsky”, Minsk district, in the<br />

f<strong>ir</strong>st year of the application of this fungicide the amount of sensitive isolates has made 100 %<br />

and the resistance factor has not increased 24.2. After 4 times of preparation application in<br />

2001 a proportion of sensitive isolates decreased up to 80.2 % and the population resistance<br />

factor increased 2.6 times. When Strobi application was stopped in 2002, a tendency to sensitivity<br />

decrease has remained: a proportion of sensitive isolates decreased up to 63.3 % and<br />

the resistance factor reached 88.4.<br />

In orchard “Rassvet”, Brest district, where krezoxym methyl was started to apply since<br />

1998, in 2005 a proportion of the resistant isolates has made 59.2 %, and the population<br />

resistance factor was 117.2. When the number of treatments decreased up to one in 2006,<br />

the situation has not changed essentially, what proves the progressive loss of V. inaequalis<br />

population sensitivity to the fungicide.<br />

Key words: apple-tree, effective concentration (ЕС 50<br />

), fungicides, industrial orchards,<br />

resistance, strobilurin, Venturia inaequalis.<br />

Introduction. Apple-tree is the basic fruit crop in Belarus occupying 95 % of the<br />

total area of large-and-small fruit plantations (Самусь, 2008). When there was passed<br />

to the intensive gardening in the Republic, apple scab (the agent – fungus Venturia<br />

inaequalis (Coockе) Winter) development in the industrial apple orchards practically<br />

annually reaches epiphytoty. Thus, crop losses on susceptible to the disease varieties<br />

reach 60 %. Under the conditions of Belarus for orchard protection against scab the<br />

limited assortment of systemic fungicides is used. To get a standard production, such<br />

preparations as Score EC from triazole group; Chorus WDG from anilino-p<strong>ir</strong>imidine<br />

group and Strobi, 500 g kg -1 from strobilurine group are the most often applied. Long<br />

application and repeated treatments by these fungicides promote accumulation of<br />

resistant forms in a phytopathogen population.<br />

Fungicides from strobilurine group have appeared on the market of Belarus in<br />

the late nineties. Strobilurines are the analogues of a natural antibiotic strobilurine<br />

93


A, which is produced by fungi Strobilurus tenacellur and Mycena galopoda (Bühler,<br />

Kollar, 1996). The<strong>ir</strong> biochemical action – inhibition of breath Qo; therefore, to the<br />

center in cytochrome b of mitochondria the abbreviated name QoI (Qo – inhibitors) is<br />

given. To the Site-specific fungicides high risk of resistance development is characteristic.<br />

In 1998 (Erichsen, 1999) for the f<strong>ir</strong>st time it was informed on field resistance of<br />

downy mildew of wheat to strobilurine in the North of Germany. In 2001 there were<br />

data on resistance of cucumber powdery and downy mildew agents (Podosphaera<br />

fusca and Pseudoperonospora cubensis) in greenhouses of Japan (Ishii et al., 2001).<br />

A representative of QoI-fungicides krezoksim methyl has started to be used in Europe<br />

in industrial orchards since 1996 (Kunz et al., 1998). In America the application of<br />

this fungicide in industrial orchards began in 1999, and in the experimental ones – in<br />

1994. Since 1997 the researches on studying the mechanism of resistance occurrence<br />

and monitoring of sensitivity to strobilurine have been carried out and in 2000 a<br />

laboratory mutant of V. inaequalis resistant to krezoxym methyl is obtained (Olaya,<br />

Koller, 1999; Zheng, Olaya, Koller, 2000). The pathogen resistance is noted in North<br />

America (USA, Canada) and South America (Chile) (Koller et al., 2004; Sallato,<br />

Latorre, 2006; Jobin, Carisse, 2007).<br />

In this connection the objective of our work was to carry out V. inaequalis resistance<br />

to strobilurin group strobi fungicide (a. i. krezoxym methyl) monitoring in<br />

industrial orchards.<br />

Object, methods and conditions. The infected material (scab infected leaves<br />

and fruits) was selected from industrial orchards “Kletsky”, Minsk area, and “Rassvet”,<br />

Brest area, and also from private sector gardens, where there were no fungicide<br />

treatments. The monosporous isolates of V. inaequalis were isolated by means of a<br />

special nozzle and a cultivation method (Седов, Жданов, 1985).<br />

The pathogen sensitivity to krеzоxym methyl was estimated by the general in<br />

phytotoxicological practice method of fungus sowing on a nutrient medium (PDA),<br />

containing various krezoxym methyl concentrations (BАSF Co., 500 g/kg krezoxym<br />

methyl) (Koller et al., 2004). There were 4 repetitions, control – without fungicide.<br />

krezoxym methyl concentration from 2.5 to 200 mkg ml -1 (ррm) was prepared<br />

by Strobi (BАSF Co., 500g/kg krezoxym methyl) dilution in water. On 6, 12, 15, 21,<br />

30-th day the fungus colonies were measured and the percent of growth suppression<br />

using Ebbot formula (1) and relative growth (2) were calculated.<br />

Т = (Dk - Df) : Dk∙100; (1)<br />

where T – growth suppression in comparison with the control, %; Dk – diameter<br />

of colony in the control (on agar with fungicide), mm; Df – diameter of colony in<br />

experience (on agar without fungicide), mm;<br />

RG = Df : Dk∙100; (2)<br />

where RG – relative growth of pathogen colonies, %; Df – diameter of colony on<br />

agar with fungicide, mm; Dk – diameter of colony on agar without fungicide, mm.<br />

ЕС 50<br />

(Fungicide concentration, 50 % necessary for effective suppression of isolates,<br />

forms composing a population of the studied strain) was defined on a slide-rule<br />

where on axis X there were the data on fungus colonies growth suppression (%), on<br />

axis Y – concentration of studied fungicide in mkg ml -1 (probit-analysis). Resistance<br />

94


factor (RF) was calculated considering the relation of ЕС 50<br />

tested isolates value to<br />

average ЕС 50<br />

of sensitive isolates. As sensitive “wild” isolates were used, isolated<br />

from the orchard, which was not under pesticide treatments.<br />

Sensitivity of apple scab agent conidia to krezoxym methyl was estimated by the<br />

results of the<strong>ir</strong> germination in a drop of fungicide solution (a hanging drop) in various<br />

concentrations. In the control аscospores and conidia were germinated in a drop of<br />

water. The results were considered in 24, 48 and 72 hours (Голышин, 1993).<br />

For statistic experimental results processing (В.Ф. Moисейченко, 1988) the<br />

average arithmetic and confidence intervals detection for 95 % probability level on<br />

PC using Excel 2007 was carried out.<br />

Results. In orchard of farm “Kletsky”, Minsk area, since 2000 in the system of<br />

apple-tree protection against scab krezoxym methyl has been applied at the rate of<br />

0.2 kg ha -1 . The number of treatments has made four during a season. The analysis<br />

of V. inaequalis sensitivity showed that at the end of vegetative period all fungus<br />

isolates were sensitive to krezoxym methyl. Thus, in 44.1 % isolates ЕС 50<br />

reached<br />

20 mkg ml -1 , in 38.2 % isolates ЕС 50<br />

value fluctuated from 21 to 40 mkg ml -1 , and in<br />

14.7 % isolates has not increased 60 mkg ml -1 (Table 1). Krezoxym methyl concentration<br />

applied at orchard sprayings has made 100 mkg ml -1 .<br />

Table 1. Distribution of V. inaequalis isolates isolated from the industrial orchards<br />

by sensitivity to krezoxym methyl<br />

1 lentelė. Iš pramoninių sodų išsk<strong>ir</strong>tų V. inaequalis izoliatų pasisk<strong>ir</strong>stymas pagal jautrumą<br />

krezoksim metilui<br />

Years of<br />

researches<br />

Tyrimų<br />

metai<br />

Number<br />

of isolates<br />

Izoliatų<br />

skaičius<br />

Number of<br />

treatments<br />

Distribution of isolates by ЕС 50<br />

Izoliatų pasisk<strong>ir</strong>stymas pagal ЕС 50<br />

(%)<br />

41–60 61–80 81–100 > 100<br />

mkg ml -1 mkg ml -1 mkg ml -1 mkg ml -1 mkg ml -1<br />

Apdorojimų<br />

skaičius<br />

0–20<br />

mkg ml -1 21–40<br />

“Kletsky”, Мinsk district (krezoxym methyl application since 2000)<br />

“Кletsky”, Мinsko rajonas (krezoksim metilas naudojamas nuo 2000 m.)<br />

2000 34 4 44.1 38.2 14.7 0 0 0<br />

2001 56 4 14.3 23.2 25.0 12.5 3.6 21.4<br />

2002 60 0 1.7 13.3 13.3 <strong>28</strong>.3 6.7 36.7<br />

“Rassvet”, Brest district (krezoxym methyl application since 1998)<br />

“Rassvet”, Bresto rajonas (krezoksim metilas naudojamas nuo 1998 m.)<br />

2005 49 4 0 0 10.2 16.3 14.3 59.2<br />

2006 58 1 0 1.7 6.9 10.3 22.4 58.6<br />

In 2001 in the same orchard also 4 krezoxym methyl reatments were done. The<br />

biological efficiency of the fungicide was high and reached 90.2 %. However, by<br />

V. inaequalis isolation from the infected leaves during harvesting it was established<br />

that in 21.4 % of isolates ЕС 50<br />

value was higher than krezoxym methyl concentration,<br />

applied in orchard, what allows us to state that these isolates were resistant. Giving<br />

up krezoxym methyl treatments in 2002 has increased the quantity of such isolates<br />

1.7 times and has made 36.7 %.<br />

Under the conditions of Brest area (industrial orchard of the farm “Rassvet”)<br />

95


in the system of orchard protection the krezoxym methyl has been applied two-four<br />

times during a season since 1998. The efficiency of a preparation was high enough –<br />

the disease development did not exceed 7 %. However, in orchard “Rassvet” in 2005<br />

after 4 times of this fungicide application its efficiency has essentially decreased: the<br />

disease development on leaves reached 21.3 %, on fruits – 43.6 %. It was a reason<br />

for estimation the sensitivity of V. inaequalis populations to krezoxym methyl. It was<br />

established that a share of resistant isolates, in which ЕС 50<br />

value exceeded 100 mkg ml -1 ,<br />

has made 59.2 %.<br />

In 2006 when orchard treatments were reduced up to one, the situation has<br />

not changed and the proportion of resistant isolates also remained at the same level<br />

(58.6 %).<br />

Having generalized the data obtained during investigations, we established a considerable<br />

decrease of V. inaequalis sensitivity to the krezoxym methyl from strobilurine<br />

group. In orchard “Kletsky”, Minsk area, in the f<strong>ir</strong>st year of Strobi application ЕС 50<br />

of the pathogen population has made 26.6 mkg ml -1 and the resistance factor has not<br />

increased 24.2 (Table 2).<br />

After 4-fold application of a preparation in 2001 the average ЕС 50<br />

value and the<br />

factor of V. inaequalis resistance has increased 2.6 times and has made 68.6 mkg ml -1<br />

and 62.4, accordingly.<br />

Таble 2. Sensitivity of V. inaequalis populations from the industrial orchards of<br />

Belarus to krezoxym methyl<br />

2 lentelė. Pramoninių Baltarusijos sodų V. inaequalis populiacijų jautrumas krezoksim<br />

metilui<br />

Year of<br />

investigations<br />

Tyrimų metai<br />

Number of treatments<br />

per season<br />

Apdorojimų<br />

skaičius per sezoną<br />

Number of<br />

isolates<br />

Izoliatų<br />

skaičius<br />

Average ЕС 50<br />

(mkg ml -1 )<br />

ЕС 50<br />

vidurkis,<br />

mkg ml -1<br />

Factor of<br />

resistance<br />

Atsparumo<br />

faktorius<br />

“Кletsky”, Мinsk district (krezoxym methyl application since 2000)<br />

“Кletsky”, Мinsko rajonas (krezoksim metilas naudojamas nuo 2000 m.)<br />

2000 4 34 26.6 ± 2.1 24.2<br />

2001 4 56 68.6 ± 7.2 62.4<br />

2002 0 60 97.2 ± 7.4 88.4<br />

“Rassvet”, Brest district (krezoxym methyl application since 1998)<br />

“Rassvet”, Bresto rajonas (krezoksim metilas naudojamas nuo 1998 m.)<br />

2005 4 49 1<strong>28</strong>.9 ± 9.1 117.2<br />

2006 1 58 121.8 ± 6.1 110.8<br />

Note. ЕС 50<br />

of sensitive isolates – 1.1 ± 0.3 mkg ml -1<br />

Pastaba. Jautrių izoliatų ЕС 50<br />

– 1.1 ± 0.3 mkg ml -1<br />

When Strobi application was stopped in 2002, the tendency to sensitivity decrease<br />

remained: the average ЕС 50<br />

value of fungus population reached 97.2 mkg ml -1 , and<br />

resistance factor made 88.4.<br />

In orchard “Rassvet”, Brest area, where krezoxym methyl was applied since<br />

1998, after four times fungicide application in 2005 the average ЕС 50<br />

for V. inaequalis<br />

96


eached 1<strong>28</strong>.9 mkg ml -1 , and resistance factor – 117.2. When frequency of treatments<br />

decreased to one in 2006 the situation has not changed: ЕС 50<br />

of the pathogen population<br />

reached 121.8 mkg ml -1 , and resistance factor – 110.2, what testifies the progressing<br />

loss of V. inaequalis population sensitivity to krezoksim methyl.<br />

ЕС 50<br />

of Kletsk population conidia germination in a fungicide drop has made<br />

35 mkg ml -1 (ЕС 50<br />

of mycelium growth – 97.2 mkg ml -1 ). ЕС 50<br />

value of conidia germination<br />

isolated from orchard “Rassvet” in 2005 has made 118 mkg ml -1 , in 2006 –<br />

94 mkg ml -1 (ЕС 50<br />

of mycelium growth – 1<strong>28</strong>.9 and 121.8 mkg ml -1 , accordingly). Thus,<br />

the obtained results conf<strong>ir</strong>med the presence of forms resistant to krezoxym methyl in<br />

the analyzed populations.<br />

Since strobilurine action is d<strong>ir</strong>ected basically on pathogen conidia germination<br />

suppression, we carried out trials studying conidia sensitivity to krezoxym methyl.<br />

At krezoxym methyl concentration 500 mkg ml -1 , that is, 5 times exceeding the<br />

used in a orchard, 1.5 % of conidia isolated from the infected apple-tree samples<br />

from orchard “Kletsky”, Minsk district, has germinated and 5.5–7.2 % from orchard<br />

“Rassvet”, Brest district (Fig.).<br />

At 100 mkg/ml concentration – 32.8 % of V. inaequalis conidia from orchard<br />

“Kletsky” and 47.9–54.3 % of the pathogen conidia from orchard “Rassvet” has<br />

germinated.<br />

Fig. Germination of V. inaequalis conidia in different krezoxym methyl<br />

concentrations (laboratory trial)<br />

Pav. V. inaequalis konidijų sudygimas sk<strong>ir</strong>tingose krezoksim metilo<br />

koncentracijose (laboratorinis bandymas)<br />

97


Discussion. On getting the messages on apple scab agent resistance to QoIfungicides,<br />

an intensive monitoring took place in Europe. The diverse levels of resistance<br />

were found in all countries of the European Union from zero and up to the<br />

highest level even within one orchard (Broniarek-Niemiec, Bielenin, Dyki, 2002).<br />

During our researches it was also determined, that in the f<strong>ir</strong>st year of application<br />

krezoxym-methyl efficiency against apple scab was rather high and all pathogen<br />

isolates were susceptible to the given fungicide. However, the longer this preparation<br />

is used in orchards (even at the allowed 4-times spraying), the lower susceptibility of<br />

the fungi V. inaequalis to the fungus.<br />

The researches of W. Koller et al.(2004) showed that V. inaequalis develops<br />

2-stage resistance to strobilurine: quantitative and qualitative (Koller et al., 2004). The<br />

quantitative answer of the pathogen population is stipulated by quantity of the done<br />

treatments in the orchards by these fungicides, and qualitative – by mutation presence<br />

in the site G143A of mitochondrial V. inaequalis in cytochrome b, then a fungus get<br />

an alternative breath.<br />

Our obtained results proved the existence of a quantitative resistance (loss of sensitivity<br />

with the increase of treatments number) in the fungus V. inaequalis. However,<br />

it is necessary to continue the problem study and determine if resistance is qualitative<br />

to krezoxym methyl of apple scab causal agent.<br />

On the base of carried out monitoring it is not impossible to predict the development<br />

of apple scab causal agent resistance to krezoxym methyl, but it is only possible<br />

to receive the information about the geographical distribution of the stable strains<br />

depending on the number of carried out treatments by this preparation, population<br />

resistance level changes in years, using it for substantiation the strategy and tactics of<br />

different mechanism of action fungicides application.<br />

Conclusions. A considerable decrease of sensitivity in apple scab agent V. inaequalis<br />

populations to krezoxym methyl (fungicide Strobi) from strobilurine group<br />

is revealed.<br />

The average ЕС 50<br />

value of isolates isolated from the orchard where krezoxym<br />

methyl was applied 4 times within 2 years has made from 26.6 to 97.2 mkg ml -1 . In<br />

21.4–36.7 % of isolates ЕС 50<br />

increased the preparation concentration used in orchards<br />

(100 mkg ml -1 ).<br />

Germination of 1.5 % conidia is noted at fungicide concentration 5 times exceeding<br />

the one applied in production.<br />

In orchards where krezoxym methyl was applied in the same frequency rate during<br />

7 years, ЕС 50<br />

value increased to 121.8–1<strong>28</strong>.9 mkg ml -1 , number of isolates with<br />

ЕС 5<br />

> 100 mkg ml -1 have made 58.6–59.2 %, and at concentration ЕС 50<br />

exceeding<br />

the one applied in production 5 times the amount of germinated conidia has made<br />

5.5–7.2 %, what testifies to the progressing loss of sensitivity of V. inaequalis population<br />

to krezoxym methyl.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 06<br />

98


References<br />

1. Broniarek-Niemiec A., Bielenin A., Dyki B. 2002. Efekt wyniszczajacego dzialania<br />

fungicydow strobilurynowych i difenkonazolu na grzybnie i zarodnikowanie<br />

Venturia inaequalis. Acta agrobotanica, 55(1): 49–58.<br />

2. Bühler B., Kollar A. 1996. Untersuchungen zur Strobilurinw<strong>ir</strong>kung auf die<br />

zellwandabbauenden Enzyme des Apfelschorfpilzes Venturia inaequalis.<br />

Mitteilungen der Biologische Bundesanstalt fur Land – und Forstw<strong>ir</strong>tschaft,<br />

321: 576.<br />

3. Erichsen E. 1999. Problems in mildew control in northern Germany. Getreide,<br />

1: 44–46.<br />

4. Ishii H., Fraaije B. A., Sugiyama T., Noguchi K., Nishimura K., Takeda T.,<br />

Amano T., Hollomon D. W. 2001. Occurrence and molecular characterization<br />

of strobilurin resistance in cucumber powdery mildew and downy mildew.<br />

Phytopathology, 91: 1 166–1 171.<br />

5. Jobin T., Carisse O. Incidence of Myclobutanil- and Kresoxim-Methyl-<br />

Insensitive Isolates of Venturia inaequalis in Quebec Orchards. Plant Disease,<br />

91(10): 1 351–1 358.<br />

6. Koller W., Parker D. M., Turechek W. W., Avila-Adame C. 2004. A Two-Phase<br />

Resistance Response of Venturia inaequalis Populations to the QoI Fungicides<br />

Kresoxim-Methyl and Trifloxystrobin. Plant Disease, 88: 537–544.<br />

7. Kunz S., Lutz B., Desing H., Mendgen K. 1998. Assessment of sensitivities to<br />

anilinopyrimidine – and strobilurin-fungicides in populations of the apple scab<br />

fungus Venturia inaequalis. Journal of Phytopathology, 146: 231–238.<br />

8. Olaya G., Koller W. 1999. Baseline Sensitivities of Venturia inaequalis<br />

Populations to the Strobilurin Fungicide Kresoxim-methyl. Plant Disease, 83:<br />

274–278.<br />

9. Sallato B. V., Latorre B. A. 2006. F<strong>ir</strong>st Report of Practical Resistance to QoI<br />

Fungicides in Venturia inaequalis (Apple Scab) in Chile. Plant Disease, 90:<br />

375.<br />

10. Zheng D., Olaya G., Koller W. 2000. Characterization of laboratory mutants of<br />

Venturia inaequalis resistant to the strobilurin-related fungicide kresoxim-methyl.<br />

Current Opinion in Genetics and Development, 35: 148–155.<br />

11. Голышин Н.М. 1993. Фунгициды. Москва: Колос.<br />

12. Моисейченко В.Ф. 1988. Методика опытного дела в плодоводстве и<br />

овощеводстве. Киев: Выща школа.<br />

13. Самусь В. А. 2007. Агробиологические основы интенсификации<br />

производства плодов яблони в республике Беларусь: автореф. дис. д-ра<br />

с.-х. наук. Горки.<br />

14. Седов Е.Н., Жданов В.В. 1985. Методика отбора устойчивых к парше сортов<br />

и сеянцев яблони на искусcтвенных инфекционных фонах. Москва.<br />

99


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Venturia inaequalis populiacijų jautrumas krezoksym metilui<br />

V. Kamardzina<br />

Santrauka<br />

2000–2006 metais pramoniniuose soduose atliktų tyrimų metu buvo nustatytas reikšmingas<br />

obelų rauplių sukėlėjo Venturia inaequalis populiacijų jautrumo krezoksim metilui<br />

(Strobi) iš strobilurino grupės sumažėjimas. Sode “Kletsky” (Minsko rajonas) p<strong>ir</strong>maisiais<br />

šio fungicido naudojimo metais jautrių izoliatų kiekis sudarė 100 %, o atsparumo faktorius<br />

nev<strong>ir</strong>šijo 24,2. 2001 metais panaudojus preparatą 4 kartus, jautrių izoliatų proporcija<br />

sumažėjo iki 80,2 %, o populiacijos atsparumo faktorius padidėjo 2,6 karto. Kai 2002 metais<br />

Strobi naudojimas buvo nutrauktas, jautrumo mažėjimo tendencija išliko: jautrių<br />

izoliatų proporcija sumažėjo iki 63,3 %, o populiacijos atsparumo faktorius pasiekė 88,4.<br />

Sode “Rassvet” (Bresto rajonas), kuriame krezoksim metilas buvo pradėtas naudoti nuo<br />

1998 metų, 2005 metais atsparių izoliatų proporcija sudarė 59,2 %, o populiacijos atsparumo<br />

faktorius buvo 117,2. Kai 2006 metais apdorojimų skaičius sumažėjo iki vieno, situacija iš<br />

esmės nepasikeitė, o tai rodo mažėjantį V. inaequalis populiacijos jautrumą šiam fungicidui.<br />

Reikšminiai žodžiai: atsparumas, fungicidai, obelys, pramoniniai sodai, strobilurinas,<br />

veiksminga koncentracija (VK 50<br />

), Venturia inaequalis.<br />

100


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Efficacy of herbicide Lentagran WP for control of<br />

annual dicotyledonous weeds in cabbage crop<br />

Danguolė Kavaliauskaitė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail d.kavaliauskaite@lsdi.lt<br />

In 2007–2008 at the Lithuanian Institute of Horticulture there were carried out the investigations<br />

of herbicide Lentagran WP (a. i. pyridate 45 %) efficiency in cabbage crop.<br />

The investigated herbicide effectively decreased weed number in cabbage crop. Annual<br />

dicotyledonous weeds were sensitive to herbicide Lentagran WP 0.5–2.0 l ha -1 . Total number<br />

of weeds 14 days after application of herbicide decreased by 51.6–82.3 %, number of annual<br />

dicotyledonous weeds decreased by 58.3–82.5 %, a<strong>ir</strong> dry weight of weeds decreased by 34.9–<br />

67.6 %. The number of annual dicotyledonous weeds in Lentagran WP 0.5–2.0 l ha -1 treatments<br />

was essentially lower to compare with untreated and also there was found essentially lower<br />

number of annual dicotyledonous weeds in Lentagran WP (a. i. pyridate 45 %) 2.0 l ha -1 treatment<br />

to compare with Butizan 400 2.0 l ha -1 treatment. Especially sensitive to Lentagran WP<br />

0.5–2.0 l ha -1 there was Galinsoga parviflora Cav. (80.4–100 %). Very sensitive to Lentagran<br />

WP 2.0 l ha -1 were Matricaria inodora L. (93.7 %), Stellaria media L. (87.3 %).<br />

Key words: cabbage, herbicides, Lentagran WP, pyridate, yield, weeds.<br />

Introduction. Broadleaf weeds continue to be significant problem in cabbage<br />

production fields. Until recently only two herbicides were registered for postemergence<br />

broadleaf weed control in transplanted cabbage. With the recent registration<br />

of Lentagran WP the possibility of developing postemergence weed management<br />

strategies for both d<strong>ir</strong>ect-seeded and transplanted cabbages exists. Herbicide Lentagran<br />

WP now registered for use in onion, leek and cabbage in the Lithuania, controls<br />

or suppresses redroot pigweed (Amaranthus retroflexus L.), common lambsquarters<br />

(Chenopodium album L.), nightshade spp. (Solanum spp.) and small flowered galinsoga<br />

(Galinsoga parviflora Cav.). Lentagran WP is postemergence contact herbicide<br />

and has no residual soil activity. Its mode of action involves hydrolysis to 3-phenyl-<br />

4-hydroxy-6-chloropyridazine, which then inhibits photosystem II electron transport<br />

(Zohner, 1987).<br />

Effective weed management must also have good crop tolerance. Pyridate injury,<br />

which occurs as distinctive, blotchy chlorosis of treated leaves, has frequently been<br />

reported in cabbage (Bullen et al., 1993; Miller, Hopen, 1991; Orfanedes, Masiunas,<br />

1990; Wallace, Bellinder, 1992). Four-leaf cabbage tolerated pyridate when applied at<br />

101


1x and 2x rates (1.0 and 2.0 kg/ha, respectively) however, when applied at earlier growth<br />

stages, significantly injury has been reported phytotoxicity. Injuring is usually transitory<br />

with nonchlorotic leaves emerging subsequent to application. There have been no<br />

reported instances of yield reductions in cabbage where pyridate was applied.<br />

The aim of the study – to investigate the effect of herbicide Lentagran WP (a. i.<br />

pyridate 45 %) efficiency in cabbage crop.<br />

Object, methods and conditions. Investigations were carried out at the Lithuanian<br />

Institute of Horticulture in 2007–2008. Soil – sandy loam on light loam, calcaric<br />

epihypogleyic luvisol (IDg 8-k, / Calc(ar)i – Epihypogleyc Luvisolls – LVg-p w cc).<br />

Ploughing layer was of 22–25 cm in thickness, of little humus (1.58 %), neutral<br />

(pH KCL<br />

7.0). There was big amount of agile phosphorus (354 mg kg -1 of the soil), potassium<br />

(146 mg kg -1 of the soil) and calcium (4 500 mg kg -1 of the soil) in the soil,<br />

but small amount of nitrogen (in the layer of 0–40 cm – 56.6 kg ha -1 N-NH 4<br />

+ N-NO 3<br />

).<br />

Before planting 200 kg ha -1 N, 150 kg ha -1 P, 200 kg ha -1 K were poured. There was<br />

grown cabbage cultivar ‘Langedijker Dauer’. Investigations were carried out according<br />

to the mechanized technology of cabbage growing created at the Lithuanian Institute<br />

of Horticulture. Cabbage experimental area was 600 m 2 . Record plot – 5 × 5 = 25 m 2 .<br />

Experiment was carried out in 4 replications.<br />

Herbicides in cabbage crop were sprayed two weeks after planting according to<br />

the s c h e m e:<br />

1) Control (without herbicides, weeded);<br />

2) Butizan 400 (standard) 2.0 l ha -1 ;<br />

3) Lentagran WP 0.5 l ha -1 ;<br />

4) Lentagran WP 1.0 l ha -1 ;<br />

5) Lentagran WP 1.5 l ha -1 ;<br />

6) Lentagran WP 2.0 l ha -1 .<br />

Herbicides were sprayed with back sprayer. Water rate – 400 l ha -1 . Weeds were<br />

counted in four places of every plot, in areas of 0.25 m 2 , diagonally thought the plot,<br />

once after the month from the last spraying. After weed calculation, they were weeded<br />

once. The data of crop weediness and cabbage yield were calculated by dispersion<br />

analysis method. Before carrying out statistical analysis, the number of weeds was<br />

recounted according to the formula: y = (x + 1): x – real weed date; y – transformed<br />

weed date (Tarakanovas, Raudonius, 2003).<br />

Results. In 2007–2008 the average total number of weeds after application of<br />

herbicide Lentagran WP 0.5–2.0 l ha -1 decreased by 51.6–82.3 % to compare with<br />

untreated. The number of total weeds in Lentagran WP 0.5–2.0 l ha -1 treatments was<br />

found essentially lower to compare with untreated and there was found essentially lower<br />

total number of weeds in Lentagran WP 1.5–2.0 l ha -1 treatments to compare with<br />

Butizan 400 2.0 l ha -1 standard treatment. The efficacy of Lentagran WP 1.5–2.0 l ha -1<br />

was bigger in 13.3–18.0 % to compare with standard treatment. Total weed number<br />

was lower in 2007 than in 2008, but herbicide efficacy was similar in both years of<br />

investigation (Table 1).<br />

102


Table 1. Efficiency of herbicide Lentagran WP for control of total number of<br />

weed in cabbage<br />

1 lentelė. Herbicido Lentagran WP įtaka bendram piktžolių skaičiui kopūstų pasėlyje<br />

Treatments<br />

Variantai<br />

Babtai, 2007–2008<br />

Total number of weeds (pcs. m -2 )<br />

Bendras piktžolių skaičius, vnt. m -2<br />

2007 2008<br />

2007–2008 average<br />

vidurkis<br />

36.5 79.0 57.7<br />

Untreated<br />

Nepurkšta<br />

Butizan 400 2.0 l ha -1 (standard 18.2* 23.0* 20.6*<br />

standartas)<br />

Lentagran WP 0.5 l ha -1 27.2* <strong>28</strong>.7* 27.9*<br />

Lentagran WP 1.0 l ha -1 19.0* 23.7* 21.3*<br />

Lentagran WP 1.5 l ha -1 8.2** 17.7* 12.9**<br />

Lentagran WP 2.0 l ha -1 6.2** 14.2** 10.2**<br />

Note: * – essentially less than in the untreated treatment (LSD 05<br />

),<br />

** – essentially less than in the Butizan 400 2.0 l ha -1 (standard) treatment (LSD 05<br />

)<br />

Pastaba: * – iš esmės mažiau negu nepurkštame variante (R 05<br />

), ** – iš esmės mažiau negu herbicidu<br />

Butizan 400 2,0 l ha -1 nupurkštame standartiniame variante (R 05<br />

).<br />

Average number of annual dicotyledonous weeds in 2007–2008 in herbicide<br />

Lentagran WP 0.5–2.0 l ha -1 treatment decreased by 58.3–82.5 % to compare with<br />

untreated. There was found essentially lower number of annual dicotyledonous<br />

weeds in Lentagran WP 0.5–2.0 l ha -1 treatments to compare with untreated and<br />

also there was found essentially lower number of annual dicotyledonous weeds in<br />

Lentagran WP 1.5–2.0 l ha -1 treatments to compare with Butizan 400 2.0 l ha -1 standard<br />

treatment. The efficacy of Lentagran WP 1.5–2.0 l ha -1 in post emergence dicotyledonous<br />

weed management was bigger in 14.8–16.7 % to compare with standard treatment.<br />

Number of annual dicotyledonous weeds was lower in 2007 and efficacy of Lentagran<br />

WP 2.0 l ha -1 was bigger by 5 % in that year than in 2008 (Table 2).<br />

Total a<strong>ir</strong>-dry weight of weeds in Lentagran WP 0.5–2.0 l ha -1 treatments decreased<br />

by 34.9–67.6 % to compare with untreated in both year of investigation. There was<br />

found essentially lower a<strong>ir</strong>-dry weight of weeds in Lentagran WP 0.5–2.0 l ha -1 treatments<br />

to compare with untreated and there was found essentially lower a<strong>ir</strong>-dry weight<br />

of weeds in Lentagran WP 2.0 l ha -1 treatment to compare with Butizan 400 2.0 l ha -1<br />

treatment. Lentagran WP 2.0 l ha -1 decreased a<strong>ir</strong>-dry weight of weeds in 27.6 %<br />

(Table 3).<br />

103


Table 2. Efficiency of herbicide Lentagran WP for control of annual dicotyledonous<br />

weed number in cabbage<br />

2 lentelė. Herbicido Lentagran WP įtaka vienmečių dviskilčių piktžolių skaičiui kopūstų<br />

pasėlyje<br />

Treatments<br />

Variantai<br />

Babtai, 2007–2008<br />

Number of annual dicotyledonous weeds, (pcs. m -2 )<br />

Vienmečių dviskilčių piktžolių skaičius, vnt. m -2<br />

2007 2008<br />

2007–2008 average<br />

vidurkis<br />

33.5 78.5 55.6<br />

Untreated<br />

Nepurkšta<br />

Butizan 400 2.0 l ha -1<br />

16.2* 22.7* 19.0*<br />

(standard<br />

standartas)<br />

Lentagran WP 0.5 l ha -1 23.2* 25.2* 23.2*<br />

Lentagran WP 1.0 l ha -1 13.2* 19.7* 16.5*<br />

Lentagran WP 1.5 l ha -1 6.2** 15.5* 10.8**<br />

Lentagran WP 2.0 l ha -1 4.0** 12.7** 9.7**<br />

Note: * – essentially less than in the untreated treatment (LSD 05<br />

), ** – essentially less than in<br />

the Butizan 400 2.0 l ha -1 (standard) treatment (LSD 05<br />

).<br />

Pastaba: * – iš esmės mažiau negu nepurkštame variante (R 05<br />

), ** – iš esmės mažiau negu herbicidu<br />

Butizan 400 2,0 l ha -1 nupurkštame standartiniame variante (R 05<br />

).<br />

Table 3. Efficiency of herbicide Lentagran WP for control of weed a<strong>ir</strong>-dry weight<br />

in cabbage<br />

3 lentelė. Herbicido Lentagran WP įtaka piktžolių orasausei masei kopūstų pasėlyje<br />

Treatments<br />

Variantai<br />

Babtai, 2007–2008<br />

Total a<strong>ir</strong>-dry weight of weeds<br />

Orasausė piktžolių masė (g m -2 )<br />

2007 2008<br />

2007–2008 average<br />

vidurkis<br />

81.2 105.0 96.7<br />

Untreated<br />

Nepurkšta<br />

Butizan 400 2.0 l ha -1 (standard 51.2* 63.5* 57.7*<br />

standartas)<br />

Lentagran WP 0.5 l ha -1 49.2* 77.0* 62.9*<br />

Lentagran WP 1.0 l ha -1 44.0* 67.0* 57.0*<br />

Lentagran WP 1.5 l ha -1 44.0* 65.7* 51.7*<br />

Lentagran WP 2.0 l ha -1 20.0** 45.7** 31.3**<br />

Note: * – essentially less than in the untreated treatment (LSD 05<br />

), ** – essentially less than in<br />

the Butizan 400 2.0 l ha -1 (standard) treatment (LSD 05<br />

).<br />

Pastaba: * – iš esmės mažiau negu nepurkštame variante (R 05<br />

), ** – iš esmės mažiau negu herbicidu<br />

Butizan 400 2,0 l ha -1 nupurkštame standartiniame variante (R 05<br />

).<br />

104


The number of Chenopodium album L. decreased by 74.8 % in treatments with<br />

Lentagran WP 2.0 l ha -1 and decreased by 49.8–67.7 % in Lentagran WP 0.5–1.5 l ha -1<br />

treatment and – 44.7 % in Butizan 400 2.0 l ha -1 standard treatment during investigation<br />

year. The number of Galinsoga parviflora Cav. decreased by 80.4–100 % in treatments<br />

with Lentagran WP 0.5–2.0 l ha -1 and decreased by 68.2 % in Butizan 400 2.0 l ha -1<br />

treatment. The number of Capsella bursa-pastoris L. decreased by 66.0–73.1 % in<br />

treatments with Lentagran WP 1.5–2.0 l ha -1 and – by 27.7–46.4 in treatments with<br />

Lentagran WP 0.5–1.0 l ha -1 and Butizan 400 2.0 l ha -1 treatment. The number of<br />

Stellaria media L. decreased by 87.3 % in treatments with Lentagran WP 2.0 l ha -1 and<br />

decreased by 100 % in treatment with Butizan 400 2.0 l ha -1 treatments. The number<br />

of Matricaria inodora L. decreased in Lentagran WP 2.0 l ha -1 treatment by 93.7 %,<br />

in Lentagran WP 1.0 l ha -1 – by 79.7 % and in Butizan 400 2.0 l ha -1 treatment – by<br />

17.2 % during investigation year (Table 4).<br />

Table 4. Efficiency of Lentagran WP for reduction (%) of main dicotyledonous<br />

weed species in cabbage<br />

4 lentelė. Kai kurių vienmečių dviskilčių piktžolių rūšių skaičiaus sumažėjimas (%)<br />

panaudojus herbicidą Lentagran WP kopūstų pasėlyje<br />

Babtai, 2007–2008<br />

Treatments Chenopodium Galinsoga Stellaria Matricaria Capsella<br />

Variantai album L. parviflora Cav. media L. inodora L. bursa-pastoris L.<br />

Untreated<br />

0 0 0 0 0<br />

Nepurkšta<br />

Butizan 400 2.0 l ha -1 44.7 68.2 100 17.2 34.6<br />

(standard / standartas)<br />

Lentagran WP 0.5 l ha -1 49.8 96.5 64.7 14.0 27.7<br />

Lentagran WP 1.0 l ha -1 57.6 80.4 50.0 79.7 46.4<br />

Lentagran WP 1.5 l ha -1 67.7 96.5 64.7 48.4 66.0<br />

Lentagran WP 2.0 l ha -1 74.8 100 87.3 93.7 73.1<br />

There was not found significant differences between treated with herbicides<br />

Lentagran WP 0.5–2.0 l ha -1 , Butizan 400 2.0 l ha -1 treatments and untreated in cabbage<br />

yield in both year of investigation. Negative d<strong>ir</strong>ect effect on crop, cabbage yield and<br />

exterior quality of yield was no observed during investigation year (Table 5).<br />

105


Table 5. Yield of cabbage after application of herbicide Lentagran WP<br />

5 lentelė. Kopūstų derlius panaudojus herbicidą Lentagran WP<br />

Treatments<br />

Variantai<br />

Babtai, 2007–2008<br />

Marketable yield<br />

Total yield<br />

Prekinis derlius<br />

Bendras derlius<br />

% from total yield<br />

(t ha -1 )<br />

t ha -1<br />

% nuo bendro derliaus<br />

39.8 39.0 97.9<br />

Untreated<br />

Nepurkšta<br />

Butizan 400 2.0 l ha -1 (standard 43.1 42.8 99.3<br />

standartas)<br />

Lentagran WP 0.5 l ha -1 46.3 43.9 94.8<br />

Lentagran WP 1.0 l ha -1 43.8 42.5 97.0<br />

Lentagran WP 1.5 l ha -1 45.6 44.6 97.8<br />

Lentagran WP 2.0 l ha -1 44.7 44.1 98.6<br />

LSD 05<br />

/ R 05<br />

6.81 6.47 -<br />

Discussion. According to the data by Kathleen et al. (1990), herbicide pyridate<br />

applied postemergence on d<strong>ir</strong>ect-seeded broccoli. According to Henderson and Ca<strong>ir</strong>ns<br />

(2002), pyridate kills weeds in broccoli, Chinese cabbage, cabbage, or cauliflower<br />

with minimal crop damage. Stall and Hensel (1994) reports about pyridate spraying<br />

in onion. Applying 450 g ha -1 pyridate caused chlorotic spotting of the sprayed vegetable<br />

leaves, but did not affect marketable yields of broccoli, cabbage or cauliflower.<br />

This rate controlled deadnettle (Lamium amplexicaule), reduced sowthistle (Sonchus<br />

oleraceus) growth by only 30–50 % compared with an unweeded control. Cabbage<br />

and cauliflower yields were unaffected by spraying 900 g ha -1 pyridate. This rate<br />

improved sowthistle control to a commercially acceptable level (Henderson, Ca<strong>ir</strong>ns,<br />

2002). In our investigation Lentagran WP (a. i. pyridate 45%) 1.0–1.5 l ha -1 showed<br />

the biggest efficient in cabbage. The number of annual dicotyledonous weeds decreased<br />

by 58.3–82.5 %. The number of Chenopodium album L. decreased by 74.8 %<br />

after spraying of Lentagran WP 2.0 l ha -1 . The number of Galinsoga parviflora Cav.<br />

decreased by 80.4–100 % after Lentagran WP 0.5–2.0 l ha -1 . The number of Capsella<br />

bursa-pastoris L. decreased by 66.0–73.1 % after Lentagran WP 1.5–2.0 l ha -1 . The<br />

number of Stellaria media L. decreased by 87.3 % after Lentagran WP 2.0 l ha -1 . The<br />

number of Matricaria inodora L. decreased in Lentagran WP 2.0 l ha -1 treatment by<br />

93.7 %, in Lentagran WP 1.0 l ha -1 – by 79.7 %. Negative effect of Lentagran WP<br />

1.0–1.5 l ha -1 on crop and cabbage yield was no observed. Orfanedes and Masiunas<br />

(1990) also reported, that four leaf cabbage tolerate pyridate when applied 1.0 and<br />

2.0 kg/ha. Bellinder et al. (1997) reported about sethoxydim and crop oil concentrate<br />

increase pyridate phytotoxycity in transplanted cabbage.<br />

106


Conclusions. 1. Lentagran WP (a. i. pyridate 45 %) 1.0–1.5 l ha -1 was most effective<br />

to control small dicotyledonous weeds in cabbage.<br />

2. Negative effect of Lentagran WP (a. i. pyridate 45 %) 1.0–1.5 l ha -1 on crop,<br />

cabbage yield and exterior quality was no observed.<br />

Gauta 2009 07 29<br />

Parengta spausdinti 2009 08 03<br />

References.<br />

1. Bellinder R. R., K<strong>ir</strong>kwyland J., Wallase R. W., Arsenovic M. 1997. Sethoxydim<br />

and Crop Oil Concentrate Increase Pyridate Phytotoxicity in Transplanted<br />

Cabbage (Brassica oleracea). Weed Technology, 11: 81–87.<br />

2. Bullen M. R., Cornes D. W., Ryan P. J. 1993. The crop tolerance of cabbage,<br />

Brussels sprouts and onions to pyridate. Brighton Crop Protection Conference,<br />

3:1 047–1 052.<br />

3. Henderson C. W., Ca<strong>ir</strong>ns R. 2002. Post emergence spraying of clopyralid, picloram<br />

or pyridate in broccoli, Chinese cabbage, cabbage, or cauliflower kills weeds,<br />

with minimal crop damage. Australian Journal of Experimental Agriculture,<br />

42(8): 1 113–1 117.<br />

4. Kathleen A., Herbst A., Derr J. F. 1990. Effect of Oxyfluorfen, Pyridate, and<br />

BAS 514 Aplied Postemergence on D<strong>ir</strong>ect-seeded Broccoli (Brassica oleracea<br />

var. botrytis). Weed Technology, 4(1): 71–75.<br />

5. Miller A. B., Hopen H. J. 1991. Critical weed control period in seeded cabbage<br />

(Brassica oleracea var. capitata). Weed Technology, 5: 852–857.<br />

6. Orfanedes S. M., Masiunas J. B. 1990. Herbicide evaluation in trans-planted<br />

cabbage. Proc. North Central Weed Science Society, 47: 27–33.<br />

7. Stall W. M., Hensel D. R. 1994. Onion herbicide evaluation in North Florida.<br />

Proc. Florida State Horticulture Society, 107: 153–155.<br />

8. Tarakanovas P., Raudonius S. 2003. Agronominių tyrimų duomenų statistinė<br />

analizė taikant kompiuterines programas Anova, Stat, Split-plot iš paketo<br />

Selekcija <strong>ir</strong> Irristat. Akademija, Kėdainių r.<br />

9. Wallace R. W., Bellinder R. R. 1992. Alternative tillage and herbicide option for<br />

successful weed control in vegetables. HortScience., 27: 745–749.<br />

10. Zohner A. 1987. Mode of crop tolerance to pyridate in corn and peanuts. 1987.<br />

Br. Crop Protection Conference. Weed, 3: 1 083–1 090.<br />

107


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Herbicido Lentagran WP veiksmingumas kopūstų pasėlyje<br />

naikinant vienametes dviskiltes piktžoles<br />

D. Kavaliauskaitė<br />

Santrauka<br />

2007–2008 m. Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute buvo atlikti herbicido<br />

Lentagran WP (v. m. pyridate 45 %) veiksmingumo tyrimai kopūstų pasėlyje.<br />

T<strong>ir</strong>tas herbicidas veiksmingai sumažino bendrą piktžolių skaičių kopūstų pasėlyje.<br />

Vienametės dviskiltės piktžolės buvo jautrios herbicidui Lentagran WP 0,5–2,0 l ha -1 .<br />

Bendras piktžolių skaičius po herbicido purškimo praėjus 14 dienų sumažėjo 51,6–82,3 %,<br />

vienamečių dviskilčių piktžolių skaičius – 58,3–82,5 %, orasausė piktžolių masė –<br />

34,9–67,6 %. Vienmečių dviskilčių piktžolių skaičius buvo iš esmės mažesnis nupurškus<br />

Lentagran WP 0,5–2,0 l ha -1 negu nepurkštame variante, o Lentagran WP 2,0 l ha -1 – iš esmės<br />

mažesnis negu herbicidu Butizan 400 2,0 l ha -1 nupurkštame standartiniame variante.<br />

Herbicidui Lentagran WP 0,5–2,0 l ha -1 ypač jautri buvo smulkiažiedė galinsoga<br />

(Galinsoga praviflora Cav.) (80,4–100 %). Lentagran WP 2,0 l ha -1 labai jautrūs buvo bekvapis<br />

šunramunis (Matricaria inodora L.) (93,7 %) <strong>ir</strong> daržinė žliūgė (Stellaria media L.) (87,3 %).<br />

Reikšminiai žodžiai: derlius, herbicidai, kopūstai, Lentagran WP, piktžolės, pyridate.<br />

108


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Tolerance of apple propagation material to herbicides<br />

Darius Kviklys<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail d.kviklys@lsdi.lt<br />

Investigations were conducted in the commercial nursery of the Lithuanian Institute of<br />

Horticulture. In 2001–2003 herbicides Stomp (pendimethalin, 4 l ha -1 ), Goltix (metamitron,<br />

3.0 l ha -1 ), Lontrel 300 (0.3 l ha -1 ), Agil (propikvizafop, 1.5 l ha -1 ), Focus Ultra (cycloxydim,<br />

4.0 l ha -1 ), Fuzilade Super (fluazifop, 3.0 l ha -1 ) and combination Fuzilade Super (2.0 l ha -1 )<br />

and Betanal Progress (phenmedipham, desmedipham and ethofumesate, 2.0 l ha -1 ) were<br />

tested in apple nursery during the f<strong>ir</strong>st and second growing season. Herbicides were sprayed<br />

d<strong>ir</strong>ectly on plants without mechanical protection. Herbicides Stomp (4 l ha -1 ), Agil (1.5 l ha -1 ),<br />

Focus Ultra (4.0 l ha -1 ) and Betanal Progress (2.0 l ha -1 ) are safe to use in apple tree nursery.<br />

Herbicide Goltix (3 l ha -1 ) should be used during the second year of apple growth. Fusilade<br />

Super (3.0 l ha -1 ) and Lontrel 300 (0.3 l ha -1 ) caused leaf damages of one-year-old apple trees,<br />

but did not interfere to the final growth. Interaction between herbicides and cultivars were<br />

noticed in the experiment with one-year-old plants.<br />

Key words: apple propagation material, herbicide, vegetative growth, weed control.<br />

Introduction. Weed control in fruit tree nurseries is performed by mechanical<br />

means and herbicides. Application of soil herbicides have been the most common<br />

practice for many years, though many of used soil herbicides were hazardous<br />

pollutant. Nevertheless until recent years such herbicides like simazin, devrinol are<br />

still used in commercial nurseries legally in some countries or not legally in others<br />

(Strandberg, Scott-Fordsmann, 2002; Kopytowski et al., 1999; Wycior et al., 1999).<br />

Use of methyl bromide was wide spread soil preparation practice both for soil disinfection<br />

and weed control, but it is forbidden because of env<strong>ir</strong>onmental concerns<br />

(Shrestha et al., 2008; Duniway, 2002). New knowledge on chemical degradation of<br />

chemicals in soil and water is gained and some of previously safe substances appear<br />

to be more aggressive than it is declared (Saratovskikh et al., 2007).<br />

Application of non-selective or broad-spectrum herbicides in the nursery requ<strong>ir</strong>es<br />

special technique and sometimes it is risky since these herbicides can negatively affect<br />

or kill nursery plants. Growing bud and trees during the f<strong>ir</strong>st season in the nursery are<br />

especially sensitive to herbicides.<br />

109


Use of more nature friendly selective herbicides is wide spread practice in growing<br />

of different agriculture crops (Kavaliauskaitė et al., 2008). Application of them in fruit<br />

tree nursery is very limited. Therefore, larger experiments were planned aiming on<br />

suitability to use various herbicides in apple tree nursery.<br />

Object, methods and conditions. Investigations were conducted in the commercial<br />

nursery of the Lithuanian Institute of Horticulture. In 2001–2002 following<br />

herbicides were tested on one-year-old apple propagation material (budded in summer<br />

2000): Stomp (active substance pendimethalin at the rate 4.0 l ha -1 ), Goltix (active<br />

substance metamitron, 3.0 l ha -1 ), Lontrel 300 (active substance clopyralid, 0.3 l ha -1 ),<br />

Agil (active substance propikvizafop, 1.5 l ha -1 ), Focus Ultra (active substance cycloxydim,<br />

4.0 l ha -1 ), Fuzilade Super (active substance fluazifop, 3.0 l ha -1 ) and combination<br />

Fuzilade Super (2.0 l ha -1 ) and Betanal Progress (active substances phenmedipham,<br />

desmedipham and ethofumesate, 2.0 l ha -1 ). In 2002–2003 the same herbicides<br />

were tested on two-year-old apples. Manual weeding was control treatment. Two<br />

apple cultivars ‘Auksis’ and ‘Shampion’ on B.396 rootstock were tested.<br />

Herbicides were applied two times during the early season: in the middle of May<br />

and at the end of June. Herbicides were sprayed by manual sprayer d<strong>ir</strong>ectly on plants<br />

without mechanical protection. Manual weeding was performed at the same time as<br />

application of herbicides and additionally in July.<br />

Trial consisted of four replications with 15–20 plants in each.<br />

Plant height (cm) was measured in May before application of herbicides, at the<br />

beginning of July and at the end of vegetation season. Trunk diameter (mm) was measured<br />

at the end of experiment. Stem and leaf damages were monitored and described<br />

in two weeks after application of herbicides.<br />

Growth characteristics of the planting materials were different and depended on<br />

climatic conditions of the vegetative period and cultivar. Since there were no interactions<br />

between year and used herbicides in the experiment with one-year-old apple<br />

planting material, the results are presented as an average of two years. No interactions<br />

were recorded between year, herbicides and cultivar in the experiment with two-yearold<br />

apple planting material; therefore, the results are presented as an average of two<br />

years and two cultivars.<br />

Variance analysis of tree growth characters was done using Fischer least significant<br />

difference test at P < 0.05.<br />

Results. No one of applied herbicides reduced growth of one-year-old apple material<br />

of cv. ‘Auksis’ (Table 1). Neither tree growth dynamics, nor final stem diameter<br />

significantly differed between herbicide treated and control plants.<br />

Herbicides Goltix, Fusilade Super and Lontrel 300 had negative effect on the<br />

height of cv. ‘Shampion’ during the earliest application date (Table 2). More pronounced<br />

tendencies of reduced tree height and stem diameter remained in plots sprayed<br />

by Goltix.<br />

110


Table 1. Herbicide effect on vegetative growth dynamics of one-year-old<br />

‘Auksis’ planting material<br />

1 lentelė. Herbicidų įtaka vienerių metų dauginamosios medžiagos ‘Auksis’ vegetatyvinio<br />

augimo dinamikai<br />

Herbicide<br />

Herbicidas<br />

Height<br />

Aukštis (cm)<br />

Stem diameter<br />

Kamieno skersmuo (mm)<br />

06.01 07.15 09.20 09.20<br />

39.8 85.6 139.0 13.2<br />

Control<br />

Kontrolė<br />

Goltix 41.0 82,1 137.2 12.7<br />

Stomp 38.9 84.2 139.7 13.0<br />

Fusilade Super 37.7 83.2 138.9 13.2<br />

Agil 41.0 86.5 142.3 13.3<br />

Focus Ultra 38.9 86.0 141.5 13.4<br />

Fuzilade Super + Betanal Progres AM 39.7 85.4 141.6 13.4<br />

Lontrel 300 38.4 84.2 143.0 13.7<br />

LSD 05<br />

/ R 05<br />

3.04 4.31 5.<strong>28</strong> 0.62<br />

Table 2. Herbicide effect on vegetative growth dynamics of one-year-old<br />

‘Shampion’ planting material<br />

2 lentelė. Herbicidų įtaka vienerių metų dauginamosios medžiagos ‘Shampion’ vegetatyvinio<br />

augimo dinamikai<br />

Herbicide<br />

Herbicidas<br />

Height<br />

Aukštis (cm)<br />

Stem diameter<br />

Kamieno skersmuo (mm)<br />

06.01 07.15 09.20 09.20<br />

34.5 70.7 1<strong>28</strong>.7 12.7<br />

Control<br />

Kontrolė<br />

Goltix 30.2 65.9 125.2 12.2<br />

Stomp 33.2 68.9 127.8 12.6<br />

Fusilade Super 31.1 66.8 126.3 12.8<br />

Agil 34.2 71.2 1<strong>28</strong>.2 12.5<br />

Focus Ultra 34.8 70.5 129.3 12.9<br />

Fuzilade Super + Betanal Progres AM 33.2 69.2 1<strong>28</strong>.1 12.3<br />

Lontrel 300 30.4 67.2 129.7 12.8<br />

LSD 05<br />

/ R 05<br />

3.05 4.92 6.2 0.61<br />

No one of used herbicides had negative effect on the vegetative characteristics<br />

of two-year-old apple planting material (Table 3). Only tendency of slightly reduced<br />

tree height was noticed in Goltix treatment.<br />

Cv. ‘Shampion’ was somewhat more sensitive than cv. ‘Auksis’. Lontrel 300<br />

caused leaf damages during both applications. Fuzilade Super damaged leaves of<br />

cv. ‘Auksis’ during f<strong>ir</strong>st application, and leaves of cv. ‘Shampion’ during early and<br />

late applications. Herbicide Goltix was a reason of leaf chlorosis of cv. ‘Shampion’.<br />

Herbicides Agil, Focus Ultra and Stomp did not damaged leaves of any cultivar during<br />

both times of application. No leaf damages were recorded on 2-year-old apple<br />

propagation material.<br />

111


Table 3. Herbicide effect on vegetative growth dynamics of two-year-old apple<br />

planting material (average of two cultivars and two years)<br />

3 lentelė. Herbicidų įtaka dvejų metų dauginamosios medžiagos vegetatyvinio augimo<br />

dinamikai (dviejų veislių <strong>ir</strong> dvejų metų vidurkiai)<br />

Herbicide<br />

Herbicidas<br />

Height<br />

Aukštis (cm)<br />

Stem diameter<br />

Kamieno skersmuo (mm)<br />

06.01 07.15 09.20 09.20<br />

116.2 145.3 188.3 18.1<br />

Control<br />

Kontrolė<br />

Goltix 112.3 140.6 180.0 18.3<br />

Stomp 114.2 142.4 184.2 17.9<br />

Fusilade Super 115.6 143.1 185.3 18.8<br />

Agil 115.4 144.9 187.4 18.2<br />

Focus Ultra 115.9 144.2 187.1 17.7<br />

Fuzilade Super + Betanal Progres AM 115.6 144.8 187.3 17.9<br />

Lontrel 300 116.2 145.1 189.8 18.0<br />

LSD 05<br />

/ R 05<br />

4.01 5.33 9.19 1.13<br />

Leaf damages by some herbicides were recorded on one-year-old planting material<br />

(Table 4).<br />

Table 4. Herbicide caused damages on apple propagation material<br />

4 lentelė. Herbicidų žala obelų dauginamajai medžiagai<br />

Herbicide<br />

Herbicidas<br />

1-year-old cv. ‘Auksis’<br />

‘Auksis’ vienmečiai<br />

sodinukai<br />

1-year-old cv. ‘Shampion’<br />

‘Šampion’ vienmečiai<br />

sodinukai<br />

2-year-old apple propagation<br />

material<br />

Obelų dvimečiai sodinukai<br />

06.01 07.15 06.01 07.15 06.01 07.15<br />

1 2 3 4 5 6 7<br />

Control - * - - - - -<br />

Kontrolė<br />

Goltix - - light chlorosis<br />

- - -<br />

lengva chlorozė<br />

Stomp - - - - - -<br />

Fusilade<br />

Super<br />

scorched 1<br />

to 3 leaves<br />

nudeginti<br />

1–3 lapai<br />

- scorched 1<br />

to 5 leaves<br />

nudeginti<br />

1–5 lapai<br />

scorched 1<br />

to 2 leaves<br />

nudeginti<br />

1–2 lapai<br />

- -<br />

Agil - - - - - -<br />

Focus Ultra - - - - - -<br />

Fuzilade Super<br />

+ Betanal<br />

Progress AM<br />

- - scorched 1<br />

to 3 leaves<br />

nudeginti<br />

1–3 lapai<br />

- - -<br />

112


1 2 3 4 5 6 7<br />

Lontrel 300 scorched 1 scorched 1 scorched 1 scorched 1 - -<br />

to 3 leaves<br />

nudeginti<br />

1–3 lapai<br />

to 2 leaves<br />

nudeginti<br />

1–2 lapai<br />

to 5 leaves<br />

nudeginti<br />

1–5 lapai<br />

to 3 leaves<br />

nudeginti<br />

1–3 lapai<br />

* no damages recorded / pažeidimų nenustatyta<br />

Discussions. Weed control in fruit tree nurseries continues to be a major problem.<br />

Weeds can decrease nursery plant development, interfere with field and harvest operations.<br />

Still extensive hand labour and tillage are used for weed control during the<br />

growing season. Since the costs of both fuel and labour continue to rise, herbicides are<br />

likely to become a more important weed management tool in the tree nursery industry<br />

(Hanson, Schneider, 2008).<br />

Herbicides availability is different throughout the world. European Commission<br />

continuously revises list of substances allowed to use for crop protection and many<br />

of them are banned or suggested to remove from the list in coming years. In some<br />

countries still widely used simazin appears to be phytotoxic to many species even at<br />

rates below recommended (Strandberg, Scott-Fordsmann, 2002). Proper replacement<br />

of simazin is an urgent task for fruit and nurseries growers. In our trial two soil herbicides<br />

Goltix and Stomp were tested. Both of them protect weed infestation for shorter<br />

time compared with simazin (Rankova et al., 2009 a). Negative apple tree reaction to<br />

Goltix was noticed immediately after its application. Tendency of reduced tree height<br />

was established both in one-year-old and two-year-old plantings.<br />

Another soil herbicide Stomp was not toxic for apple propagation material, what<br />

is conf<strong>ir</strong>med in other trials too (Gercheva et al., 2002, Rankova et al., 2009 b), though<br />

there is data on its negative effect on apple stem diameter (Wycior et al., 1999).<br />

Herbicides Agil, Focus and Fusilade Super are used to control graminaceous weeds.<br />

Nevertheless, at early stage of plant development higher dose of Fusilade Super (3.0<br />

l ha -1 ) caused damages when it was applied d<strong>ir</strong>ectly on growing one-year-old shoots.<br />

Other herbicides Agil and Focus were safe to use at any plant development stage.<br />

Lontrel 300, which is used for control of a wide range of broadleaf weeds, damaged<br />

young apple leaves. In spite of visual damages it did not course any growth<br />

suppression for cv. ‘Auksis’ and final characteristics of one-year-old plants of both<br />

tested cultivars.<br />

Interactions between herbicides and cultivars were noticed in the experiment with<br />

one-year-old plants during the earliest application date. Vegetative growth of apple<br />

trees of cv. ‘Shampion’ is less luxuriant than cv. ‘Auksis’ and it could be a reason of<br />

its somewhat higher sensitivity to some herbicides. If there were no significant differences<br />

between herbicide treatments and not sprayed plots for cv. ‘Auksis’, some<br />

herbicides as Goltix, Fusilade Super and Lontrel 300 reduced significantly the height<br />

of cv. ‘Shampion’ during the f<strong>ir</strong>st application.<br />

Conclusions. Preemergence herbicide Stomp (4.0 l ha -1 ) is safe to control weeds<br />

in apple nursery during the f<strong>ir</strong>st and second year of plant growth. Herbicide Goltix<br />

(3.0 l ha -1 ) should be used during the second year of apple growth.<br />

Fusilade Super (3.0 l ha -1 ) and Lontrel 300 (0.3 l ha -1 ) damaged leaves of one-<br />

113


year-old apple trees when they were applied d<strong>ir</strong>ectly. This did not interfere to the final<br />

characteristics of propagation material.<br />

Herbicides Agil (1.5 l ha -1 ), Focus Ultra (4.0 l ha -1 ) and Betanal Progress (2.0 l ha -1 )<br />

are safe to use in apple tree nursery.<br />

Tolerance to herbicides is determined by apple cultivar.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 20<br />

References<br />

1. Duniway J. M. 2002. Status of chemical alternatives to methyl bromide for preplant<br />

fumigation of soil. Phytopathology. 92: 1 337–1 343.<br />

2. Gercheva P., Rankova Z., Ivanova K. 2002. In vitro test system for herbicide<br />

phytotoxicity on mature embryos of fruit species. Acta Horticulturae (ISHS).<br />

577: 333–336.<br />

3. Hanson B. D., Schneider S. A. 2008. Evaluation of weed control and crop safety<br />

with herbicides in open field tree nurseries. Weed Technology, 22(3): 493–498.<br />

4. Kavaliauskaitė D., Dambrauskienė E., Zalatorius V., Viškelis P. 2008. Influence<br />

of herbicides on the productivity and raw material quality of the f<strong>ir</strong>st year medicinal<br />

thyme. Sodininkystė <strong>ir</strong> daržininkystė, 27(4): 253–260.<br />

5. Kopytowski J., Jastrzebska M., Banaszkiewicz T. 1999. Effect of herbicides on<br />

primary and secondary weed infestation of fruit tree nursery. Acta Academiae<br />

Agriculturae ac Technicae Olstenensis. 3: 85–97.<br />

6. Rankova Z., Koumanov K. S., Kolev K., Shilev S. 2009 a. Herbigation in a<br />

cherry orchard – efficiency of pendimethalin. Acta Horticulturae (ISHS). 825:<br />

459–464.<br />

7. Rankova Z., Nacheva L., Gercheva P. 2009 b. Growth habits of the vegetative<br />

apple rootstock MM106 after treatment with some soil herbicides under in vitro<br />

conditions. Acta Horticulturae (ISHS). 825: 49–54.<br />

8. Saratovskikh E. A., Polyakova O. V., Roshchupkina O. S., Lebedev A. T. 2007.<br />

Products of the Photolysis of 3,6-Dichloropicolinic Acid (the Herbicide Lontrel)<br />

in Aqueous Solutions. Applied Biochemistry and Microbiology. 43(2): 227–<br />

231.<br />

9. Shrestha A. , Browne G. T., Lampinen B. D. , Schneider S. , Simon L. , Trout<br />

T. 2008. Perennial crop nurseries treated with methyl bromide and alternative<br />

fumigants: Effects on weed seed viability, weed densities, and time requ<strong>ir</strong>ed for<br />

hand weeding. Weed Technology. 22: 267–274.<br />

10. Strandberg M. T., Scott-Fordsmand J. J. 2002. Field effects of simazine at lower<br />

trophic levels – a review. The Science of the Total Env<strong>ir</strong>onment. 296(1–3):<br />

117–137.<br />

114


11. Wycior S., Kiczorowski P., Wojcik I. 1999. Influence of herbicides on growth of<br />

the apple trees cv. Red Elstar ‘Elshof’ in nursery. Annales-Universitatis-Mariae-<br />

Curie-Sklodowska. Sectio-EEE, Horticultura. 7: 7–13.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Obelų dauginamosios medžiagos tolerantiškumas herbicidams<br />

D. Kviklys<br />

Santrauka<br />

2001–2003 m. Lietuvos sodininkystės <strong>ir</strong> daržininkystės instituto medelyne atlikti herbicidų<br />

stomp (pendimethalin, 4,0 l ha -1 ), goltix (metamitron, 3,0 l ha -1 ), lontrel 300 (0,3 l ha -1 ), agil<br />

(propikvizafop, 1,5 l ha -1 ), focus ultra (cycloxydim, 4,0 l ha -1 ), fuzilade super (fluazifop, 3,0 l ha -1 )<br />

<strong>ir</strong> herbicidų derinio fuzilade super (2,0 l ha -1 ) <strong>ir</strong> betanal progress (phenmedipham, desmedipham<br />

<strong>ir</strong> ethofumesate, 2,0 l ha -1 ) tyrimai su vienmečiais <strong>ir</strong> dvimečiais obelų sodinukais. Visi herbicidai<br />

buvo purškiami nenaudojant apsaugos. Herbicidai stomp, agil, focus <strong>ir</strong> betanal progress tinkami<br />

naudoti obelų medelyne. Herbicidą goltix rekomanduojama naudoti dauginant dvimetes obelis.<br />

Didesnės normos fusilade super (3,0 l ha -1 ) <strong>ir</strong> lontrel apdegina vienmečių obelaičių lapus, tačiau<br />

neturi neigiamos įtakos galutiniam obelaičių dydžiui. P<strong>ir</strong>mamečiame medelyne nustatytos obelų<br />

veislės <strong>ir</strong> herbicidų sąveika.<br />

Reikšminiai žodžiai: herbicidai, kova su piktžolėmis, obelų dauginamoji medžiaga,<br />

vegetatyvinis augimas.<br />

115


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Influence of maturity stage on fruit quality<br />

during storage of ‘Shampion’ apples<br />

Nomeda Kviklienė, Alma Valiuškaitė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail n.kvikliene@lsdi.lt<br />

Influence of fruit maturity on apple cv. ‘Shampion’ storage ability and rot development<br />

was investigated at the Lithuanian Institute of Horticulture in 2004–2005. Fruits for storage<br />

were harvested 5 times at weekly intervals before, during and after predictable optimum<br />

harvest date. Quality changes, presence of storage disorders, mass losses were measured<br />

during harvest period and at the end of storage. During investigation period fruit quality<br />

parameters changed according to harvest date and were specific for each trial year. Later<br />

harvested fruits were softer and had higher content of soluble solids. Fruit storage ability was<br />

closely connected to fruit maturity too. Apples were of the best quality at the end of storage,<br />

when maturity index at picking date was 0.22–0.17. During storage ‘Shampion’ apple rot was<br />

caused by Monilinia sp., Gloeosporium spp. and Penicillium spp. On the average apple fruits<br />

were mostly infected by fungus of Gloeosporium genus.<br />

Key words: Malus × domestica, maturity index, rots, storage, weight loss.<br />

Introduction. Different picking date of apple fruits during the harvest season<br />

may have a significant impact on fruit quality (Vielma et al., 2008; Rizzolo et al.,<br />

2006; Kvikliene, 2001; Franelli, Casera, 1996; Streif, 1996). To ensure the highest<br />

fruit quality at the end of long storage, apples must be harvested mature but not fully<br />

ripe. If harvested too early fruits are smaller, have reduced flavour and colour, and<br />

are more susceptible to scald, bitter rot and internal breakdown. Mass reduction by<br />

water loss is greater in earlier picked apples because waxy surface is not completely<br />

formed at this moment (Zerbini et al., 1999; Juan et al., 1999). Early picked fruits<br />

are smaller and the<strong>ir</strong> surface in a storage unit is larger. Because water transp<strong>ir</strong>ation<br />

depends on fruit surface area too, small fruits loss the<strong>ir</strong> weight faster. Another reason<br />

of more intensive evaporation is structure of fruit cuticle, which is not fully developed<br />

when fruits are harvested too early. At the same time the cuticle is the f<strong>ir</strong>st barrier<br />

that pathogens have to challenge (Ihabi et al., 1998). Later picked apples often are<br />

over-mature and all physiological processes, which complicate storage, even under<br />

optimal conditions, are underway (Ingle et al., 2000; Braun et al., 1995). Apples<br />

harvested too late are vulnerable to mechanical injures, sensitive to low temperature<br />

breakdown, water core and more rot (Hribar et al., 1996). At optimal harvest time<br />

picked apples have the organoleptic qualities (Casals et al., 2006), which enable them<br />

117


to survive more than six months of storage.<br />

The objective of this study was to investigate the effect of harvest time on fruit<br />

quality and storage ability of cv. ‘Shampion’ apples.<br />

Object, methods and conditions. Investigations were carried out with apple cv.<br />

‘Shampion’ on M.9 rootstock in 2004 and 2005. The measurements of fruit quality<br />

changes were performed 2–3 weeks before and after the predictable optimum harvest<br />

date. Apples for long storage were harvested 5 times at weekly intervals. The experiment<br />

was carried out with 4 replications and 20 trees per plot.<br />

On each picking date 10 fruits from each replication were taken for laboratory<br />

measurements: fruit f<strong>ir</strong>mness (kg cm -2 , measured with penetrometer FT-327 with 11 mm<br />

diameter probe), soluble solids content (%, with refractometer), starch conversion (with<br />

0.1 N iodine and potassium iodine solution, according to the scale 1–10). Maturity<br />

index was calculated as F/RS, where F – f<strong>ir</strong>mness, R – soluble solids concentration,<br />

S – starch conversion.<br />

On each picking date 100 fruits from each replication were taken in order to measure<br />

storability (f<strong>ir</strong>mness, soluble solids concentration, weight loss, storage disorders<br />

and rots). Fruits were stored for 180 days.<br />

The incidence (%) of fruit rot was established according to the f o r m u l a:<br />

A = B / C · 100 %; A – incidence of fruit rot; B – the number of samples, in which the<br />

rot has been detected, C – total number of investigated samples.<br />

Variance analysis of the main quality characters was done using ‘ANOVA’ statistical<br />

program.<br />

Results. During ripening period fruit f<strong>ir</strong>mness decreased by 13–15 % (Table 1).<br />

In both trial years significant differences were recorded starting from the 3 rd harvest.<br />

During the last week of investigation fruit softening was not significant.<br />

Table 1. Effect of harvest time on fruit quality during ripening<br />

1 lentelė. Skynimo laiko įtaka obuolių kokybei skynimo metu<br />

Harvest<br />

Skynimai<br />

F<strong>ir</strong>mness<br />

Kietumas (kg cm -2 )<br />

Soluble solids content<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos (%)<br />

average<br />

2004 2005<br />

vidutiniškai<br />

Maturity index<br />

Sunokimo indeksas<br />

2004 2005<br />

average<br />

vidutiniškai<br />

2004 2005<br />

1 7.9 8.0 8.0 10.6 10.8 10.7 0.33 0.54 0.44<br />

2 7.8 7.9 7.9 10.7 11.2 11.0 0.22 0.36 0.29<br />

3 7.3 7.4 7.4 11.1 11.9 11.5 0.14 0.17 0.16<br />

4 6.8 6.9 6.9 10.9 11.2 11.1 0.09 0.11 0.10<br />

5 6.9 6.8 6.9 10.6 11.7 11.2 0.08 0.09 0.09<br />

LSD 05<br />

/ R 05<br />

0.24 0.37 0.29 0.25 0.20 0.27 0.014 0.023 0.021<br />

average<br />

vidutiniškai<br />

The dynamic of soluble solids content (SSC) was similar each year. The highest<br />

amount of SSC was observed in the th<strong>ir</strong>d week of measurements, after which it levelled<br />

off.<br />

Maturity index decreased linearly to harvest date. In 2005 at 1st harvest the value<br />

of maturity index was much higher. In spite of that, fruit maturation process was much<br />

faster and no significant differences were found at last harvest among year.<br />

118


At the end of storage fruit f<strong>ir</strong>mness gradually decreased according to harvest time<br />

and in most cases differences between dates were significant (Table 2). During storage,<br />

fruit f<strong>ir</strong>mness decreased on the average from 47 to 54 % of its original value.<br />

During the 180 days of storage period SSC on the average increased by 6–15 %<br />

from its original value at harvest. In 2004 the highest SSC was found at 1st harvest<br />

after which it levelled off, whereas in 2005 value of SSC linearly depended on harvest<br />

time, and the highest amount was observed in fruits of the two last harvests.<br />

Table 2. Effect of harvest time on fruit quality at the end of storage<br />

2 lentelė. Skynimo laiko įtaka obuolių kokybei laikymo pabaigoje<br />

Harvest<br />

F<strong>ir</strong>mness<br />

Kietumas (kg cm -2 )<br />

Soluble solids content<br />

T<strong>ir</strong>pios sausosios medžiagos (%)<br />

Skynimai<br />

average<br />

average<br />

2004 2005<br />

2004 2005<br />

vidutiniškai<br />

vidutiniškai<br />

1 4.3 3.5 3.9 12.2 12.3 12.3<br />

2 3.9 3.2 3.6 12.1 12.4 12.3<br />

3 3.7 3.3 3.5 12.0 12.4 12.2<br />

4 4.2 3.0 3.6 11.9 12.5 12.2<br />

5 4.0 3.2 3.6 12.0 12.5 12.3<br />

LSD 05<br />

/ R 05<br />

0.24 0.17 0.21 0.20 0.25 0.24<br />

Weight losses during storage depended on harvest time and were dissimilar every<br />

year (Fig. 1). In 2004 weight loss was lowest in early picked apples. From 3rd harvest<br />

its value significantly increased. In 2005 the obviously lowest weight loss was established<br />

at 3rd harvest. Apples picked at this stage lost by 16–20 % less the<strong>ir</strong> mass in<br />

comparison with earlier or later picked fruits.<br />

Fig. 1. Effect of harvest time on fruit weight losses during storage<br />

1 pav. Skynimo laiko įtaka natūraliems masės nuostoliams laikymo metu<br />

119


On the average up till 19.8 % of apple rotted during 180 days of storage period<br />

(Fig. 2). The extent of losses linearly depended on harvest time. At each picking the<br />

significant increase of rotten apples was recorded and the maximum of damaged fruits<br />

was estimated of apples picked at the latest. At this stage picked apples rotted by 5 times<br />

more in comparison with apples picked at the earliest harvest.<br />

Fig. 2. Effect of harvest time on fruit rots incidence during storage<br />

2 pav. Skynimo laiko įtaka obuolių puvimui laikymo metu<br />

During the storage ‘Shampion’ apple rot was caused by Monilinia sp.,<br />

Gloeosporium spp. and Penicillium spp. On the average 58 % of apple rots were<br />

caused by Gloeosporium spp., 21 % by Penicillium spp. and 20 % by Monilinia sp.<br />

More rot injuries of Gloeosporium rot as dominating rot was detected on latterly<br />

picked apples. Significantly smaller amount of rotten apples was recorded in apples<br />

picked at optimum maturity.<br />

Discussion. During investigation period fruit quality parameters changed according<br />

to harvest date and dynamic of the<strong>ir</strong> changes were similar for each trial year.<br />

Later harvested fruits were softer and more mature. Fruit storage ability was closely<br />

connected to fruit maturity too.<br />

The softening rate of apple fruit vary from cultivar to cultivar, depending on<br />

the presence and expression of genes, which regulate the activity of hydrolytic enzymes<br />

(Ingle et al., 2000; Konopacka, Plocharski, 2002; Johnston et al., 2002). In our<br />

trials, measurements of f<strong>ir</strong>mness showed that cv. ‘Shampion’ belong to the group of<br />

medium f<strong>ir</strong>m fruits. Softening rate during ripening and storage was low. Fruits of cv.<br />

‘Shampion’ tended to lose the<strong>ir</strong> f<strong>ir</strong>mness slower than ‘Auksis’, ‘Lobo’ and ‘Lodel’<br />

(Kviklienė, 2001; Kviklienė et al., 2006), however, faster than fruits of cv. ‘Ligol’<br />

(Kviklienė et al., 2008).<br />

120


The concentration of soluble solids is a good indicator of sugar content and presumably<br />

of sweetness. Usually later picked apples show higher SSC value not only at<br />

harvest time, but at the end of storage too (Yong Soo et al., 1998). In our study SSC<br />

reached maximum at th<strong>ir</strong>d harvest after which it levelled off. However, post-storage<br />

SSC was not significantly affected by harvest time. Similar tendencies were obtained<br />

in different trials (Kviklienė et al., 2006; Wargo, Watkins, 2004; Echeverria et al.,<br />

2002; Braun et al., 1995).<br />

Loss of mass and decay during storage can greatly affect marketability. Mass loss<br />

during storage depends on fruit maturity at harvest time (Ferguson et al., 1999). Fruit<br />

picked at the optimal harvest time lose less mass during storage than fruits picked<br />

too early or too late (Elgar et al., 1999; Dris and Niskanen, 1999). In our trials lower<br />

general fruit losses were obtained at 2 nd and 3 rd harvest time. Too early and too late<br />

picked fruits had bigger losses.<br />

Incidence of rots and decay in our trial d<strong>ir</strong>ectly depended on harvest time. The<br />

higher incidence of rots in later picked apples can be explained by more intensive all<br />

the physiological processes in overmature fruits. Similar results were recorded with<br />

other apple cultivars (Dris & Niskanen, 1999; Elgar et al., 1999; Ingle et al., 2000;<br />

Kviklienė, 2004). In both trial years apple fruits were mostly infected by fungus of<br />

Gloeosporium genus.<br />

Conclusions. 1. Harvest time has a significant effect on fruit internal quality at<br />

harvest time and during storage. Apples were of the best quality at the end of storage,<br />

when maturity index at picking date was 0.22–0.17.<br />

2. Incidence of decay and rots depended linearly on fruit maturity: more late<br />

harvest – more fruit loss.<br />

4. During storage ‘Shampion’ apple rot was caused by Monilinia sp.,<br />

Gloeosporium spp. and Penicillium spp. On the average apple fruits were mostly<br />

infected by fungus of Gloeosporium genus.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 29<br />

References<br />

1. Braun H., Brosh B., Ecker P., Krumbock K. 1995. Changes in quality off apples<br />

before, during and after CA-cold storage. Obstau Und Fruchteverwertung,<br />

45(5–6): 143–206.<br />

2. Casals M., Bonany J., Carbo J., Alegre S., Iglesias I., Molina D., Casero T.,<br />

Recasens I. 2006. Establishment of a criterion to determine the optimal harvest<br />

date of ‘Gala’ apples based on consumer preferences. Journal of Fruit and<br />

Ornamental Plant Research, 14: 53–63.<br />

3. Dris R., Niskanen R. 1999. Quality changes of ‘Lobo’ apples during cold storage.<br />

Acta Hort., 485: 125–133.<br />

121


4. Echeverria G., Graell J., Lopez M. L. 2002. Effect of harvest date and storage<br />

conditions on quality and aroma production of ‘Fuji’ apples. Food Science and<br />

Technology International, 8(6): 351–360.<br />

5. Elgar H. J., Watkins C. B., Lalu N. 1999. Harvest date and crop load effects on<br />

a carbon dioxide-related storage injury of ‘Braeburn’ apple. HortScience, 34(2):<br />

305–309.<br />

6. Ferguson I., Volz R. & Woolf A. 1999. Preharvest factors affecting physiological<br />

disorders of fruit. Postharvest Biology and Technology, 15: 255–262.<br />

7. Franelli K., Casera C. 1996. Influence of harvest date on fruit quality and storability<br />

in the varieties Braeburn and Gala. Cost 94. The postharvest treatment of<br />

fruit and vegetables. East Malling, 105–115.<br />

8. Hribar J. Plestenjak A., Simcic M., Vidrih R., Patako. 1996. D. Influence of<br />

ecological conditions on optimum harvest date in Slovenia. In: A. de Jager, D.<br />

Johanson, E. Hohn (eds.), The Postharvest Treatment of Fruit and Vegetables.<br />

Determination and Prediction of Optimum Harvest Date of Apples and Pears.<br />

COST 94. European Commission. Luxembourg, 49–51.<br />

9. Ihabi M., Rafin C., Veighie E., Sancholle M. 1998. Storage diseases of apples:<br />

orchard or in storage. In: F<strong>ir</strong>st transnational workshop on biological, integrated<br />

and rational control. Lille, France 21–23 January 1998. Service Regional de la<br />

Protection des Vegetaux, Nord Pas-de Calais, 91–92.<br />

10. Ingle M., D’Souza M.C., Townsend E. C. 2000. Fruit characteristics of York<br />

apples during development and after storage. HortScience, 35(1): 95–98.<br />

11. Johnston J. W., Hewett E. W., Hertog M. L., Harker F. R. 2002. Harvest date<br />

and fruit size affect postharvest softening of apple fruit. Journal of Horticultural<br />

Science & Biotechnology, 77(3): 355–360.<br />

12. Juan J. L., Frances J., Montesinos E., Camps F., Bonany J. 1999. Effect of<br />

harvest date on quality and decay losses after cold storage of Golden Delicious<br />

apples in G<strong>ir</strong>ona. Acta Horticulturae, 485: 195–201.<br />

13. Konopacka D., Plocharski W. J. 2002. Effect of picking maturity, storage technology<br />

and shelf-life on changes of apple f<strong>ir</strong>mness of ‘Elstar’, ‘Jonagold’ and<br />

‘Gloster’ cultivars. J. Fruit Ornam. Plant Res., 10: 11–22.<br />

14. Kviklienė N. 2001. Effect of harvest date on apple fruit quality and storage ability.<br />

Folia Horticulturae, 13(2): 97–102.<br />

15. Kviklienė N. 2004. Influence of harvest date on physiological and biochemical<br />

processes in apple fruit. Sodininkystė <strong>ir</strong> daržininkystė, 23(2): 412–420.<br />

16. Kviklienė N., Kviklys D., Viškelis P. 2006. Changes in fruit quality during ripening<br />

and storage in the apple cultivar ‘Auksis’. J. Fruit Ornam. Plant Res., 14(2):<br />

195–206.<br />

17. Kviklienė N., Valiuškaitė A., Viškelis P. Effect of harvest maturity on quality<br />

and storage ability of apples cv. ‘Ligol’. Sodininkystė <strong>ir</strong> daržininkystė, 27(2):<br />

339–346.<br />

18. Rizzolo A., Grassi M., Zerbini P. E. 2006. Influence of harvest date on ripening<br />

and volatile compounds in the scab-resistant apple cultivar ‘Golden Orange’.<br />

Journal of Horticultural Science & Biotechnology, 81(4): 681–690.<br />

122


19. Streif J. 1996. Optimum harvest date for different apples cultivars in the ‘Bodensee’<br />

area. In: A. de Jager, D. Johanson, E. Hohn (eds.), The Postharvest Treatment of<br />

Fruit and Vegetables. Determination and Prediction of Optimum Harvest Date of<br />

Apples and Pears. COST 94. European Commission. Luxembourg, 15–20.<br />

20. Vielma M. S., Matta F. B., Silval J. L. 2008. Optimal harvest time of various apple<br />

cultivars grown in Northern Mississippi. Journal of the American Pomological<br />

Society, 62(1): 13–20.<br />

21. Wargo J. M., Watkins C. B. 2004. Maturity and storage quality of ‘Honeycrisp’<br />

apples. Horttechnology, 14(4): 496–499.<br />

22. Yong Soo H., Yong-Pil Ch., Yac Chang L. 1998. Influence of harvest date and<br />

postharvest treatments on fruit quality during storage and simulated marketing<br />

in ‘Fuji’ apples. J. of Korean soc. For Hor. Sc., 39(5): 574–578.<br />

23. Zerbini P. E., Pianezzola A., Grassi M. 1999. Poststorage sensory profiles of fruit<br />

of apple cultivars harvested at different maturity stages. Journal of Food Quality,<br />

22(1). 1–17.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Skynimo laiko įtaka ‘Šampion’ obuolių kokybei vaisiams nokstant <strong>ir</strong><br />

juos laikant<br />

N. Kviklienė, A. Valiuškaitė<br />

Santrauka<br />

2004 <strong>ir</strong> 2005 m. Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute t<strong>ir</strong>ta veislės ‘Šampion’<br />

obuolių, nuskintų sk<strong>ir</strong>tingo sunokimo, įtaka jų išsilaikymui. Vaisiai skinti penkis kartus per<br />

savaitę. Kiekvieno skynimo metu apskaičiuotas sunokimo indeksas. Obuolius laikant matuotas jų<br />

minkštimo kietumas, t<strong>ir</strong>pių sausųjų medžiagų kiekis <strong>ir</strong> apskaičiuoti masės nuostoliai. Nustatyta,<br />

kad vaisių kokybė skynimo <strong>ir</strong> laikymo metu priklausė nuo sunokimo laipsnio. Vėliau nuskinti<br />

vaisiai buvo minkštesni <strong>ir</strong> skynimo metu, <strong>ir</strong> laikymo pabaigoje. Metų įtaka vaisių kokybės<br />

rodikliams buvo nežymi. Laikymo pabaigoje geriausia kokybe pasižymėjo vaisiai nuskinti,<br />

kai sunokimo indeksas skynimo metu buvo 0,22–0,17. Sandėliavimo metu ‘Šampion’ veislės<br />

obuoliai buvo pažeisti Monilinia sp., Gloeosporium spp. <strong>ir</strong> Penicillium spp. genčių grybų.<br />

Abejais tyrimų metais dominavo Gloeosporium spp. genties grybų sukeliami obuolių puviniai.<br />

Reikšminiai žodžiai: laikymas, Malus × domestica, masės nuostoliai, puviniai, sunokimo<br />

indeksas.<br />

123


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Incidence of fruit rot on strawberries in Latvia,<br />

resistance of cultivars and impact of cultural systems<br />

Valda Laugale 1 , Līga Lepse 1 , Līga Vilka 2 , Regīna Rancāne 2<br />

1<br />

Pure horticultural Research Centre, Abavas 2, Pure, Tukuma r., LV-3124<br />

Latvia, e-mail pures_dpc@tukums.parks.lv<br />

2<br />

Latvian Plant Protection Research Center, Lielvardes 36/38, Riga, LV-1006<br />

Latvia, e-mail regina.rancane@laapc.lv<br />

In 2007 and 2008 strawberry plantations in different regions of Latvia were inspected<br />

looking for fruit rots. Causal agents of fruit rot were detected at the laboratory of Latvian<br />

Plant Protection Research Center. <strong>28</strong> strawberry plantations were inspected in 2007. In this<br />

year weather conditions during strawberry flowering and harvest time were not favorable for<br />

the development of the diseases. On the damaged fruits and flowers mostly fungus Botrytis<br />

cinerea was detected at laboratory. On some fruits rots caused by Hainesia lynthri, Muccor spp.<br />

and Penicillium spp. were found. Next year 26 strawberry plantations were inspected. Botrytis<br />

cinerea was detected on samples with damages like pale brown fruit rot, dead flowers and<br />

ovaries and dark brown spots on pedicles. Causal agents Hainesia lynthri, Phomopsis obscurans,<br />

Coniella castaneicola, Fusarium spp., Muccor spp., Rhizopus spp., Penicillium spp. on<br />

rotted fruits also were found at laboratory.<br />

Susceptibility to Botrytis rot of 16 strawberry cultivars was evaluated at the Pure HRC<br />

in 2006–2008. On the average during three production years, cultivars ‘Honeoye’ and ‘Ten<strong>ir</strong>a’<br />

had the lowest Botrytis incidence, but ‘Venta’ and ‘Bounty’ were the most susceptible among<br />

the tested cultivars. In 2008, experiments on extending of strawberry production season<br />

using different plant covers, plastic soil mulches, cultivars, and “frigo” plants were started at<br />

the Pure HRC. The f<strong>ir</strong>st results showed the significant effect of plastic soil mulches and plant<br />

covers on reduction of Botrytis incidence.<br />

Key words: cultivar susceptibility, cultural practices, Fragaria × ananassa, grey mold,<br />

incidence.<br />

Introduction. Strawberry is one of the most popular commercial berry crops in<br />

Latvia. In 2007 the area of strawberries was about 500 ha. Most of production is used<br />

for fresh local markets. The yield is quite low in comparison with other European<br />

countries, on the average 3–5 t ha -1 . There are several reasons for it. Mostly yield<br />

loses can be caused both by unfavourable env<strong>ir</strong>onment conditions and due to damage<br />

by different pathogenic organisms. The efficiency of plant protection is low in many<br />

farms. Grey mould, leaf spots, mildew, root diseases and nemathods are mentioned<br />

as the most widespread on strawberries under Latvia conditions (Moročko, 2003;<br />

125


Laugale et al., 2004). Especially high yield loses can be caused by fruit rots. The<br />

implementation of Integrated Plant Protection system demands to reduce the using of<br />

chemical plant protection products and to look for alternative methods like more resistant<br />

cultivars and proper agriculture (Meszka and Bielenin, 2004). Studies described<br />

here were started with aim to determine the main causal agents for strawberry fruit<br />

rots in Latvia and to evaluate the susceptibility of widely grown cultivars. The f<strong>ir</strong>st<br />

investigation results revealing the influence of cultural practice on fruit rot reduction<br />

in strawberry fields also are presented.<br />

Object, methods and conditions. <strong>28</strong> strawberry plantations in 2007 and 26<br />

plantations in 2008 were inspected for fruit rot detection in different Latvia regions<br />

(Fig. 1). In 2007 the amount of fruit rot samples was lower than in 2008 because weather<br />

conditions during strawberry flowering and harvest time were optimal for fruit<br />

formation, but not favourable for rot development. During the harvest time samples<br />

of rotted fruits, died off flowers, ovaries and dark brown pedicles were collected for<br />

causal agent detection. Causal agents of strawberry rot were isolated in pure culture,<br />

used PDA (potato-dextrose agar). Discovered fungi were identified at the laboratory<br />

of Latvian Plant Protection Research Center.<br />

Fig. 1. Inspected strawberry plantations in Latvia, 2008<br />

1 pav. Tikrintos braškių plantacijos Latvijoje, 2008 m.<br />

16 widely grown in Latvia strawberry cultivars were evaluated on susceptibility<br />

to Botrytis rot at the Pure Horticultural Research Station in 2006–2008. Plants were<br />

planted in biologically certified field in single rows at spacing of 30 × 100 cm in the<br />

autumn of 2005. A completely randomized block design with four replicates and th<strong>ir</strong>ty<br />

plants per plot was used. The following cultivars were tested: ‘Bogota’, ‘Bounty’,<br />

126


‘Dukat’, ‘Feierverk’, ‘Honeoye’, ‘Induka’, ‘Jonsok’, ‘Rubinovij Kulon’, ‘Pandora’,<br />

‘Polka’, ‘Senga Sengana’, ‘Symphony’, ‘Siurprise Olimpiadi’, ‘Ten<strong>ir</strong>a’, ‘Venta’ and<br />

‘Zefyr’. Only in organic farming permitted plant protection and nutrition products<br />

were used.<br />

In 2008 at the Pure Horticultural Research Center the damage by fruit rots were<br />

evaluated in following trials: 1) 3 cultivars grown on soil mulched with black plastic<br />

and no soil mulch; in spring till the beginning of production plants were covered with<br />

transparent film (polyethylene) or agronet (Agryl 17) and without cover as control;<br />

2) “frigo” plants (3 cultivars) in two planting densities (3.3 and 6.6 plants m -2 ) grown<br />

on soil mulched with white plastic (black lower side) and no mulch; 3) two plant<br />

types M 0<br />

and M 1<br />

generation from micropropagation of everbearer cultivar ‘Brighton’<br />

grown on soil mulched with white plastic (black lower side) and no mulch. In all trials<br />

plants were spaced 40 cm apart within rows (except one variant in trial with “frigo”<br />

plants where 20 cm distance between plants also was used), and 30 cm apart between<br />

rows. The beds were 150 cm apart, center-to-center. Split-split block design with four<br />

replicates was used. No fungicides were applied.<br />

In all trials rotted berries were harvested and weighted at each picking time separately,<br />

and the percentage of damaged berries from total yield was calculated. The data<br />

were analyzed using descriptive statistics and ANOVA (probability 95 %). Duncan’s<br />

multiple range test was applied to compare the means.<br />

Results. I n c i d e n c e o f f r u i t r o t i n s t r a w b e r r y p l a n t a t i o n s.<br />

In 2007 from <strong>28</strong> inspected strawberry plantations 51 samples of damaged fruits were<br />

collected. Pale brown rot spots were the most widespread damages on unripe and ripe<br />

fruits. Some flowers were died off as well. Botrytis cinerea was detected on damaged<br />

fruits and flowers in 57 % of inspected strawberry farms. Only in four plantations<br />

in West and one in South region of Latvia ripe fruit rot caused by Muccor spp. was<br />

detected. In few plantations rot caused by Hainesia lynthri, Fusarium spp., Rhizopus<br />

spp. and Penicillium spp. (Maas, 1998) also were found.<br />

In 2008 from 26 strawberry plantations 127 samples of rotted strawberry were<br />

collected. The pale brown fruit rot, died off flowers, ovaries and dark brown spots<br />

on pedicles were the main damages in strawberry plantations. Botrytis cinerea was<br />

detected in all inspected plantations (Fig. 2). Infection level of Botrytis cinerea was<br />

very high, because weather conditions were optimal for fungus progression.<br />

Powdery mildew (Sphaerotheca macularis) on fruits was observed only in<br />

Kurzeme region in 44 % of the inspected fields. Fusarium spp. developed at laboratory<br />

from samples with fruits, dead flowers, ovaries and dark brown pedicles. The fungus<br />

usually causes the rot of root; in this case probably infection level was very high and<br />

conidia by splash got from soil to flowers, and fruits. Fusarium spp. was detected in<br />

44 % of the plantations in Kurzeme and in 25 % in Vidzeme (Fig. 3). In samples with<br />

ripe fruit rot Mucor spp. and Rhizopus spp. were found (Smith et al., 1979).<br />

127


Fig. 2. Spread of Botrytis cinerea on strawberry samples taken from<br />

different places in Latvia, in 2007 and 2008 (%)<br />

2 pav. Botrytis cinerea paplitimas braškių pavyzdžiuose,<br />

paimtuose sk<strong>ir</strong>tingose Latvijos vietovėse 2007 <strong>ir</strong> 2008 metais, %<br />

Fig. 3. Spread of causal agents on strawberry samples taken from<br />

different places in Latvia, in 2008 (%)<br />

3 pav. Ligos sukėlėjų paplitimas braškių pavyzdžiuose,<br />

paimtuose sk<strong>ir</strong>tingose Latvijos vietovėse 2008 metais, %<br />

Causal agents Hainesia lynthri, Phomopsis obscurans, Coniella castaneicola and<br />

Penicillium spp. were detected only in few plantations in Kurzeme. The detection of<br />

the fruit rot causal agents will be continued.<br />

S u s c e p t i b i l i t y o f c u l t i v a r s. In strawberry cultivar trial the spreading<br />

of fruit rots was very low in 2006. In 2007, the percentage of damaged fruits increased,<br />

but did not exceed 7 % from total yield. Late ripening cultivars were more damaged<br />

than early ripening, because there was increased amount of precipitation at the end of<br />

1<strong>28</strong>


season. The lowest percentage of damaged berries had cultivars ‘Honeoye’, ‘Zefyr’<br />

and ‘Rubinovii Kulon’ (data not shown). Cultivar ‘Bounty’ had the highest percentage<br />

of damaged fruits. In 2008, the amount of rotted fruits on the average was significantly<br />

higher than in 2006 and 2007. It varied from 1.1 to 7.2 % from total yield depending on<br />

cultivar (data not shown). Cultivars ‘Honeoye’ and ‘Ten<strong>ir</strong>a’ had the lowest percentage<br />

of damaged berries, but ‘Venta’ was the most susceptible between tested cultivars.<br />

On the average of three production years, cultivar ‘Honeoye’ had the lowest fruit<br />

rot incidence (Fig. 4). Cultivars ‘Ten<strong>ir</strong>a’, ‘Jonsok’, ‘Rubinovij Kulon’ and ‘Zefyr’ also<br />

showed low susceptibility.<br />

Fig. 4. The amount of rotted fruits (%) from total yield on the average of<br />

three production seasons in strawberry cultivar trial.<br />

Values in columns followed by the same letter do not differ significantly<br />

according to Duncan’s multiple range test (p = 0.05)<br />

4 pav. Vidutinis supuvusių vaisių kiekis (%) nuo bendro derliaus<br />

braškių veislių bandyme per trejus derėjimo metus.<br />

Stulpeliai, pažymėti vienodomis raidėmis,<br />

patikimai nesisk<strong>ir</strong>ia pagal Dunkano kriterijų (p = 0,05)<br />

129


‘Venta’ and ‘Bounty’ had the highest percentage of rotted fruits on the average<br />

of three investigation years between tested cultivars.<br />

Impact of cultural practices. In the trial for early production using black plastic<br />

soil mulch and different plant covers the significant differences in the percentage of<br />

rotted fruits was stated, while the amount of damaged berries was low in 2008 (0–2.4 %<br />

from total yield depending on treatment). The percentage of rotted fruits was significantly<br />

lower (p = 0.007) than this of plants grown on black plastic mulch comparing<br />

to non-mulched soil (Fig. 5).<br />

Fig. 5. The amount of rotted fruits (%) from total yield in 2008 trial using<br />

black plastic soil mulch and different plant covers for early production.<br />

Columns assigned by different letters are significantly different, when p ≤ 0.05<br />

5 pav. Supuvusių vaisių kiekis (%) nuo bendro derliaus 2008 metų bandyme,<br />

panaudojant juodą plastikinį d<strong>ir</strong>vos mulčią <strong>ir</strong> sk<strong>ir</strong>tingas augalų priedangas ankstyvai produkcijai.<br />

Stulpeliai, pažymėti sk<strong>ir</strong>tingomis raidėmis, patikimai sk<strong>ir</strong>iasi, kai p ≤ 0,05<br />

Notably low amount of rotted fruits was obtained from plants grown with polyethylene<br />

cover. Agronet cover also significantly reduced the percentage of rotted<br />

fruits comparing to control (without any plant cover) (Fig. 5). The highest percentage<br />

of rotted fruits was observed on plants grown without any soil mulch and plant covering,<br />

but the lowest one – on plants grown on beds with black plastic soil mulch and<br />

polyethylene cover.<br />

In the trial where “frigo” plants in two planting densities and white with black<br />

lower side plastic soil mulch were used, significantly lower percentage of rotted fruits<br />

was obtained from plants grown on plastic mulch (p = 0.03) comparing to non-mulched<br />

treatment (Fig. 6 ).<br />

Significant difference in the percentage of rotted fruits between two planting<br />

densities was not stated in this year (Fig. 6). There was observed tendency for increasing<br />

of Botrytis damage in higher plant density for plants grown on beds with plastic<br />

mulch.<br />

130


Fig. 6. The amount of rotted fruits (%) from total yield in trial 2008 with “frigo“ plants in<br />

two planting densities and white with black lower side plastic soil mulch for late production.<br />

Columns assigned by different letters are significantly different, when p ≤ 0.05<br />

6 pav. Supuvusių vaisių kiekis (%) nuo bendro derliaus 2008 metų bandyme su “frigo” augalais, pasodintais<br />

dvejopu tankumu, <strong>ir</strong> panaudojant baltą su juoda apatine puse plastikinį d<strong>ir</strong>vos mulčią vėlyvai<br />

produkcijai. Stulpeliai, pažymėti sk<strong>ir</strong>tingomis raidėmis, patikimai sk<strong>ir</strong>iasi, kai p ≤ 0,05<br />

Fig. 7. The amount of rotted fruits (%) from total yield in 2008 trial with everbearer strawberry<br />

cultivar ‘Brighton’ using two plant types and white with black lower side plastic soil<br />

mulch. Columns assigned by different letters are significantly different, when p ≤ 0.05<br />

7 pav. Supuvusių vaisių kiekis (%) nuo bendro derliaus 2008 metų bandyme su nuolat derančia braškių<br />

veisle ‘Brighton’ panaudojant du augalų tipus <strong>ir</strong> baltą su juoda apatine puse plastikinį d<strong>ir</strong>vos mulčią.<br />

Stulpeliai, pažymėti sk<strong>ir</strong>tingomis raidėmis, patikimai sk<strong>ir</strong>iasi, kai p ≤ 0.05<br />

131


In the trial with everbearer cultivar ‘Brighton’ using two plant types and white<br />

with black lower side plastic soil mulch, significantly lower percentage of rotted fruits<br />

was obtained from plants grown on plastic mulch (p = 0.03) comparing to non-mulched<br />

treatment (Fig. 7).<br />

Significant difference in the percentage of rotted fruits between two plant types<br />

M 0<br />

and M 1<br />

was not stated (Fig. 7).<br />

Discussion. In our investigations Botrytis cinerea was determined as the main<br />

casual agent of strawberry fruit rotting. It conform to the previous investigations<br />

carried out in Latvia (Dūks, 1976; Moročko, 2003; Laugale et al., 2004). Botrytis rot<br />

is also one of the most important diseases of strawberry, reducing yield and quality<br />

pre- and post-harvest in all strawberry production areas (Berrie et al., 2000; Legard<br />

et al., 2002; Rigotti, V<strong>ir</strong>et, 2004). It is important to remove rotted fruits from the field<br />

during the harvest time to reduce infection level in strawberry plantations.<br />

In the evaluation of strawberry cultivars significant difference in susceptibility<br />

to grey mould between cultivars was stated. Only cultivar ‘Venta’ had significantly<br />

higher percentage of damaged fruits than ‘Senga Sengana’, which is characterized as<br />

susceptible to grey mold (Zurawicz, Daubeny, 1995). Several cultivars like ‘Bounty’,<br />

‘Siurprise Olimpiadi’, ‘Feierverk’, ‘Pandora’, ‘Dukat’ and ‘Bogota’ showed susceptibility<br />

similar to this of ‘Senga Sengana’. In previous investigations in Pure cultivars<br />

‘Dukat’ and ‘Bogota’ showed good resistance to Botrytis rot (Laugale et al., 2004;<br />

Laugale, Lepse, 2007). Also in this trial they had lower percentage of rotted fruits<br />

than ‘Senga Sengana’, but the difference was not significant. It can be explained by<br />

overall low spreading of the rots during test years 2006–2008. ‘Honeoye’ was the<br />

most resistant to grey mould between tested cultivars. It showed also good resistance<br />

to Botrytis rot in Finland (Matala, 2002), Poland (Cieśliński et al., 1993) and Estonia<br />

(Libek, 1997).<br />

In all trials where different cultural practices were applied the significant impact<br />

of plastic soil mulches both black, and white with black lower side on the reduction<br />

of fruit rot incidence was stated. The positive effect of black plastic soil much on<br />

reducing of grey mold damage on strawberries is reported also by Lille et al. (2003),<br />

Plekhanova and Petrova (2002). Using plant covers, especially polyethylene film, till<br />

the beginning of harvesting also reduced the percentage of rotted fruits. According to<br />

Xiao et al. (2001), shorter periods of leaf wetness and higher temperatures in plastic<br />

tunnels may have contribute to a lower incidence of Botrytis rot on fruit in comparison<br />

to the open field. According to the investigations in Finland, Agronet plant cover<br />

reduced different disease spreading, and succeeded to stop the spreading of grey mold<br />

on late cultivar ‘Hiku’ (Dalman, 1993). The increase of planting density did not cause<br />

significant increase of Botrytis rot damage in our trial. Probably because the fruit rot<br />

incidence was low in this year and in the f<strong>ir</strong>st cropping year plants were not fully-grown.<br />

According to the investigations of Daugaard (2003), climatic factors may play more<br />

important role in the control of Botrytis than differences in plant density.<br />

Conclusions. The main causal agent of strawberry fruit rotting in Latvia strawberry<br />

plantations is Botrytis cinerea Pers. It causes pale brown fruit rot, death of<br />

flowers and ovaries and dark brown spots on pedicles. Mucor spp. and Rhizopus spp.<br />

were the main casual agents for ripe (post-harvest) rot.<br />

132


Strawberry cultivars grown in Latvia have significantly different resistance level<br />

to Botrytis rot. Cultivars ‘Honeoye’ and ‘Ten<strong>ir</strong>a’ showed the highest resistance, but<br />

‘Venta’ and ‘Bounty’ were the most susceptible among the tested cultivars.<br />

According to the f<strong>ir</strong>st obtained results, plastic soil mulches and plant covers can<br />

significantly reduce fruit rot incidence.<br />

Acknowledgements. Theses studies were funded by the Latvian Ministry of<br />

Agriculture.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 13<br />

References<br />

1. Berrie A. M., Harris D. C., Xiangming Xu., Burgess C. M. 2000. A system for<br />

managing Botrytis and powdery mildew of strawberry: f<strong>ir</strong>st results. IOBC WPRS<br />

Bulletin, 23(11): 35–40.<br />

2. Cieśliński G., Klimczan A., Smolarz K. 1993. Field performance of some new<br />

American and polish strawberry cultivars grown in Poland. Acta Horticulturae,<br />

348: 171–176.<br />

3. Dalman P. 1993. Polypropylene row cover in pesticide free production of strawberry<br />

in Finland. Acta Horticulturae, 348: 489–492.<br />

4. Daugaard H. 2003. Effect of plant spacing on yield and incidence of Botrytis<br />

cinerea Pers. in strawberry. IOBC WPRS Bulletin, 26(2): 147–151.<br />

5. Dūks V. 1976. Zemenes. Liesma. Rīga, 170.<br />

6. Laugale V., Lepse L. 2007. Research trials on strawberry cultivars in Pūre<br />

Horticultural Research Station (Latvia) during the last 10 years. Sodininkystė <strong>ir</strong><br />

daržininkystė, 26(3): 81–92.<br />

7. Laugale V., Morocko I., Petrevica L. 2004. Problems for strawberry culture in<br />

Latvia. IOBC/WPRS Bulletin, 27(4): 37–40.<br />

8. Legard D. E., Mertely J. C., Xiao C. L., Chandler C. K., Duval J. R., Price J. P.<br />

2002. Cultural and chemical control of Botrytis fruit rot of strawberry in annual<br />

winter production systems. Acta Horticulturae, 567: 651–654.<br />

9. Libek A. 1997. Strawberry cultivar trials at the Polli Horticultural Institute.<br />

Sodininkystė daržininkystė, 26(3): 160–163.<br />

10. Lille T., Karp K., Värnik R. 2003. Profitability of different Technologies of<br />

strawberry cultivation. Agronomy Research, 1: 75–83.<br />

11. Maas J. L. 1998. Compendium of Strawberry Diseases. Second edition published.<br />

The American Phytopathological Society, 17–62.<br />

12. Matala V. 2002. Strawberry variety trials on berry farms. Acta Horticulturae,<br />

567(1): 215–217.<br />

13. Meszka B., Bielenin A. 2004. Possibilities of integrated grey mold control on<br />

strawberry plantations in Poland. IOBC/WPRS Bulletin, 27(4): 41–45.<br />

133


14. Moročko I. 2003. Ogulāju slimības. In: Bankina B. (ed.) Augu slimības. Latvijas<br />

Lauksaimniecības Universitāte. Jelgava, 206–227.<br />

15. Plekhanova M. N., Petrova M. N. 2002. Influence of black plastic soil mulching<br />

on productivity of strawberry cultivars in Northwest Russia. Acta Horticulturae,<br />

567: 491–494.<br />

16. Rigotti S., V<strong>ir</strong>et O. 2004. Fungal flora in strawberry plants and relative importance<br />

of Botrytis cinerea. IOBC/WPRS Bulletin, 27(4): 47–53.<br />

17. Smith W. L., Moline H. E., Johnson K. S. 1979. Studies with Mucor species<br />

causing postharvest decay of fresh produce. Phytopathology, 69: 865–869.<br />

18. Xiao C. L., Chandler C. K., Price J. F., Duval J. R., Mertely J. C., Legard D. E.<br />

2001. Comparison of epidemics of Botrytis fruit rot and powdery mildew of<br />

strawberry in large plastic tunnel and field production systems. Plant Disease,<br />

901–919.<br />

19. Zurawicz E., Daubeny H. 1995. ‘Senga Sengana’ strawberry. Fruit Varieties J.,<br />

49: 130–132.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Vaisių puvinio paplitimas ant braškių Latvijoje, veislių atsparumas <strong>ir</strong><br />

kultūrinių sistemų įtaka<br />

V. Laugale, L. Lepse, L. Vilka, R. Rancāne<br />

Santrauka<br />

2007 <strong>ir</strong> 2008 metais įva<strong>ir</strong>iuose Latvijos regionuose patikrintos braškių plantacijos ieškant<br />

vaisių puvinių. Vaisių puvinio sukėlėjai nustatyti Latvijos augalų apsaugos tyrimų centro laboratorijoje.<br />

2007 metais patikrintos <strong>28</strong> braškių plantacijos. Tais metais oro sąlygos braškių žydėjimo<br />

<strong>ir</strong> derliaus metu nebuvo palankios ligų vystymuisi. Ant pažeistų vaisių <strong>ir</strong> žiedų laboratorijoje<br />

daugiausia aptiktas Botrytis cinerea grybas. Ant kai kurių vaisių rasta Hainesia lynthri, Muccor<br />

spp. <strong>ir</strong> Penicillium spp. sukeliamų puvinių. Kitais metais patikrintos 26 braškių plantacijos.<br />

Botrytis cinerea buvo aptiktas ant pavyzdžių su tokiais pažeidimais, kaip šviesiai rudas vaisių<br />

puvinys, negyvi žiedlapiai bei mezginės <strong>ir</strong> tamsiai rudos dėmės ant žiedkočių. Be to, ant puvinio<br />

pažeistų vaisių laboratorijoje rasti šie ligos sukėlėjai – Hainesia lynthri, Phomopsis obscurans,<br />

Coniella castaneicola, Fusarium spp., Muccor spp., Rhizopus spp., Penicillium spp.<br />

16 braškių veislių jautrumas Botrytis puviniui buvo įvertintas Pure LTC 2006–2008. Per<br />

trejus derėjimo metus veislės ‘Honeoye’ <strong>ir</strong> ‘Ten<strong>ir</strong>a’ buvo mažiausiai užsikrėtusios Botrytis, o<br />

‘Venta’ <strong>ir</strong> ‘Bounty’ – iš visų t<strong>ir</strong>tų veislių labiausiai. 2008 metais Pure LTC pradėti tyrimai, kaip<br />

pratęsti braškių derėjimo sezoną, panaudojant įva<strong>ir</strong>ias augalų priedangas, plastikinius d<strong>ir</strong>vos<br />

mulčius, veisles <strong>ir</strong> “frigo” augalus. P<strong>ir</strong>mieji rezultatai parodė reikšmingą plastikinių d<strong>ir</strong>vos<br />

mulčių <strong>ir</strong> augalų priedangų poveikį Botrytis paplitimo sumažinimui.<br />

Reikšminiai žodžiai: agrotechninės priemonės, Fragaria × ananassa, kekerinis puvinys,<br />

paplitimas, veislės jautrumas.<br />

134


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Prevalence peculiarities of a<strong>ir</strong>borne Alternaria genus<br />

spores in different areas of Lithuania<br />

Rita Mikaliūnaitė, Martynas Kazlauskas, Laura Veriankaitė<br />

Department of Env<strong>ir</strong>onmental Research, Nature Science Faculty, Šiauliai University,<br />

P. Višinskio 19-115, Šiauliai, LT-77156, Lithuania, e-mail oikos@fm.su.lt<br />

The annual, seasonal and hourly distribution of Alternaria Ness. spores in the a<strong>ir</strong> was<br />

measured in three urban areas in Lithuania – Klaipėda, Šiauliai, and Vilnius in 2005–2006.<br />

H<strong>ir</strong>st type 7-day recording spore traps were used for spore fixation. Fungal spores were identified<br />

and counted according to 12 transverse traverse method. Duration of spore season was<br />

determined using 90 % method. Duration of season ranged from 62 days in Vilnius in 2005 to<br />

97 days in Klaipėda in 2006. The biggest amount of Alternaria spores was established in summer<br />

and the least one – in winter and spring. Only solitary spores were observed in February,<br />

March and April in all aerobiological stations. The total annual amount of Alternaria reached<br />

3 090 spores in Vilnius aerobiological station in 2005 and 9 718 spores in Klaipėda in 2006.<br />

The peak of sporification season was recorded in August in all locations and it was from 121<br />

to 707 spores m -3 . In this month there were observed 51.4–70.3 % of all annual spores counted.<br />

The hourly pattern of Alternaria spores concentration in August indicated maximum value<br />

between 13:00 and 1:00 hours. Minimal amounts were recorded at 5:00–9:00 hours.<br />

Key words: Alternaria, fungal spores, season duration, spore concentration.<br />

Introduction. Alternaria is an extremely common and widespread saprophyte<br />

or plant pathogenic genus, which causes big economic loses throughout the world<br />

(Corden et al., 2003; Munuera et al., 2001). The analysis of the prevalence of this<br />

fungus spores is substantial, because Alternaria colonises all the stages of plant<br />

growth (Mitakakis et al., 2001). It’s necessary to emphasize that some species are<br />

plant pathogens, which collectively cause a range of diseases with impact on a large<br />

variety of important agronomic host plants including cereals, ornamentals, oilcrops,<br />

vegetables and fruits (Thomma, 2003). Common Alternaria micromycetes A. brassicicola,<br />

A. brassicae, A. raphani, A. alternata cause diseases of oilseed and turnip<br />

rapes (Petraitienė, 2005), A. radicina, A. dauci – of carrots (Survilienė, Valiuškaitė,<br />

2006), A. brassicicola and A. brassicae – of cabbages (Survilienė et al., 2004), besides,<br />

A. alternata, A. radicina and A. tenussisima cause human diseases also (Lugauskas<br />

et al., 2002).<br />

Most aeromycology investigations are conducted in towns (Corden et al., 2003;<br />

Kasprzyk et al., 2004; Stępalska, Wołek, 2005; Kasprzyk, Worek, 2006); however, some<br />

135


esearchers pay attention to data originating from countryside (Mitakakis et al., 2001;<br />

Brazauskiene, Petraitiene, 2006; Kasprzyk, Worek, 2006). In rural env<strong>ir</strong>onments the<br />

spread of a<strong>ir</strong>borne fungal spores there was investigated to determine occurrence during<br />

the crop harvest (Mitakakis et al., 2001) or to estimate the quantity of plant pathogenic<br />

fungal spores in the a<strong>ir</strong> (Brazauskiene, Petraitiene, 2006). During these studies fungal<br />

spores were sampled with Burkard volumetric spore traps, which were located in the<br />

fields of crops (Brazauskiene, Petraitiene, 2006). Passive sedimentation plates are the<br />

alternative method, which was used to evaluate the concentration of fungal spores in<br />

the a<strong>ir</strong>. This method is more practical since allows to estimate viable micromycetes<br />

spores and to identify species. Passive sedimentation plate method is being used for<br />

the short time (Lugauskas et al., 2003), while the volumetric method allows evaluating<br />

the season of fungal spores (Stępalska et al., 1999; Corden, Millington, 2001;<br />

Corden et al., 2003; Konopińska, 2004; Olive<strong>ir</strong>a et al., 2005; Kasprzyk, Worek, 2006).<br />

In Lithuania passive method is the most common. The most common micromycetes<br />

species in Vilnius during various seasons of 1996–1999 was Alternaria alternata<br />

(Lugauskas et al., 2003).<br />

The aim of this work is to study the annual, seasonal and hourly distribution of<br />

Alternaria a<strong>ir</strong>borne spores in the a<strong>ir</strong> of three cities in Lithuania. This comparative study<br />

of coastal (Klaipėda) and landlocked (Vilnius and Šiauliai) areas of Lithuania is especially<br />

interesting, since it allows evaluating the peculiarities of spore dispersion.<br />

Objects, methods and conditions. Spores were sampled at three sites, in different<br />

places, which partly represented Lithuania – in Klaipėda (Western Lithuania,<br />

coastal place), Šiauliai (Northern Lithuania, landlocked place), and Vilnius (Southern<br />

Lithuania, landlocked place). Monitoring was carried out using three volumetric<br />

H<strong>ir</strong>st-type 7-day recording spore traps with flow rate of 10 L min -1 . Spore traps were<br />

located in Klaipėda – 55°45′20 N and 21°07′32 E, in Šiauliai – 55°55′36 N and<br />

23°18′ E, in Vilnius – 54°40′40 N and 25°16′05 E.<br />

The measurements of a<strong>ir</strong>borne fungal spore concentration in the a<strong>ir</strong> were carried<br />

out by volumetric method in 2005–2006 (Lacey, West, 2006). Spore monitoring took<br />

place in Šiauliai from 4 of February to 31 of December in 2005 and from 22 of March<br />

to 11 of October in 2006. In second site, Klaipėda it took place from <strong>28</strong> of January to<br />

26 of September in 2005 and from 8 of March to 12 of October in 2006. In Vilnius,<br />

it took place from 3 of February to 22 of September in 2005 and from 9 of March to<br />

30 of September in 2006. Melinex tape, greased with a thin layer of silicone solution<br />

was changed once in a week at the same time (Mandrioli et al., 1998). The exposed<br />

tape was cut in 48 mm segments, thus each represented 24 hours period. Average daily<br />

concentrations (spores m -3 ) were obtained by counting spores for every two hours by<br />

twelve transverse traverse method (Sterling et al., 1999). Sample representing each<br />

day were analysed for spores of Alternaria by light microscope Nikon Eclipse 50i at<br />

a magnification of 400x (0.50 mm microscopic field). For microscopic fungal spore<br />

identification Lacey, West (2006) and Käärik et al. (1983) publications were used as<br />

reference books.<br />

Estimated spore values were transformed into the number of spores in each cubic<br />

metre of a<strong>ir</strong> sampled per day. The duration of spore season was calculated by 90 %<br />

136


method – the start of Alternaria spore season was defined as the date when 5 % of<br />

the seasonal cumulative spore amount was trapped, and the end of the season – as the<br />

date when 95 % of the seasonal cumulative spore amount was reached (Stępalska,<br />

Wołek, 2005; Kasprzyk, Worek, 2006). The days when Alternaria spore amount<br />

reached 100 spores in cubic meter of a<strong>ir</strong> were recorded as the peak days. The hourly<br />

distribution of Alternaria spores concentration was determined in August, the peak<br />

of spore season. Statistical correlation and regression analysis was carried out using<br />

Stat-Eng programme. Significant difference was assessed at a critical value of p <<br />

0.05 and p < 0.01.<br />

Results. Seasonal data of Alternaria s p o r e s. The duration of<br />

spore season, calculated by 90 % method is shown in Table 1.<br />

Table 1. Seasonal data of Alternaria spores in Lithuania in 2005–2006<br />

1 lentelė. Alternaria sporų sezono trukmė Lietuvoje 2005–2006 m.<br />

Year<br />

Metai<br />

Start date<br />

Pradinė data (5 %)<br />

2005 12 July<br />

Liepos 12<br />

2006 19 June<br />

B<strong>ir</strong>želio 19<br />

2005 20 July<br />

Liepos 20<br />

2006 11 July<br />

Liepos 11<br />

2005 12 July<br />

Liepos 12<br />

2006 21 June<br />

B<strong>ir</strong>želio 21<br />

End date<br />

Galinė data (5 %)<br />

Klaipėda<br />

14 September<br />

Rugsėjo 14<br />

23 September<br />

Rrugsėjo 23<br />

Šiauliai<br />

6 October<br />

Spalio 6<br />

18 September<br />

Rugsėjo 18<br />

Vilnius<br />

11 September<br />

Rugsėjo 11<br />

18 September<br />

Rugsėjo 18<br />

Duration (days)<br />

Trukmė (dienomis)<br />

65<br />

97<br />

78<br />

68<br />

62<br />

90<br />

The Alternaria spore season duration range was from 62 days in Vilnius in 2005<br />

to 97 days in Klaipėda in 2006. In both years of research the most stable duration of<br />

spore season was in Šiauliai, it ranged to 68–78 days. In both years of observation spore<br />

season appeared to begin at the earliest in Klaipėda and Vilnius, whereas in Šiauliai<br />

it was late for 8 days in 2005 and 20–22 in 2006 (depending on stations). The end of<br />

Alternaria spore season during monitoring period in all aerobiological stations occurred<br />

in September, except Šiauliai in 2005, where spore season occurred in October.<br />

Annual and monthly totals of Alternaria s p o r e s. The cumulative<br />

annual and monthly totals of daily average concentrations of Alternaria spores<br />

are shown in Table 2. The highest Alternaria monthly concentrations were observed<br />

at the end of summer, in the middle of spore season in all three locations in both years<br />

of study period. Spore sum in August constituted 51.4–65.6 % of all spores counted in<br />

137


2005, and 56.4–70.3 % of all spores counted in 2006. In June and May, <strong>ir</strong>respectively<br />

the season, Alternaria spores occurred in the a<strong>ir</strong> at low concentrations and sporadically<br />

in March, April and October in all sites. A strong 95 % significant positive correlation<br />

(r = 0.942) was obtained between the monthly Alternaria spore amounts in different years<br />

in Klaipėda. Similar findings were in the rest two aerobiological stations: a strong 99 %<br />

positive correlation (r = 0.992) in Šiauliai and (r = 0.962) in Klaipėda.<br />

Table 2. Annual and monthly totals and the highest peak day concentrations of<br />

Alternaria spores in Lithuania in 2005–2006, (peak values in brackets)<br />

2 lentelė. Alternaria sporų pasisk<strong>ir</strong>stymas pagal metus bei mėnesius <strong>ir</strong> piko dienos koncentracijos<br />

Lietuvoje 2005–2006 m. (piko duomenys sliausteliuose)<br />

Year<br />

Metai<br />

Monthly total amount (spores m -3 ) /<br />

Highest concentration on peak day (spores m -3 ) /<br />

Bendras kiekis per mėnesį, sporos m- 3 /<br />

Didžiausia piko dienos koncentracija, sporos m -3<br />

Annual<br />

totals (spores<br />

m -3 )<br />

Iš viso per<br />

metus,<br />

sporos m -3<br />

May<br />

gegužė<br />

June<br />

b<strong>ir</strong>želis<br />

July<br />

liepa<br />

August<br />

rugpjūtis<br />

September<br />

rugsėjis<br />

Klaipėda<br />

2005 29 / 5 / 61 / 13 / 903 / 124 / 2 674 / 306 / 796 / 74 / 4 476<br />

2006 124 / 11 / 348 / 67 / 1 832 /208 / 5 888 / 707 / 1 253 / 135 / 9 718<br />

Šiauliai<br />

2005 39 / 8/ 66 / 10 / 735 / 126 / 4 038 / 375 / 868 / 82 / 6 160<br />

2006 37 / 5 / 109 / 18 / 1 001 / 139 / 4 205 / 547 / 568 / 61 / 5 984<br />

Vilnius<br />

2005 26 / 4 / 77 / 13 / 1 008 / 220 / 1 588 / 121 / 386 / 65 / 3 090<br />

2006 95 / 16 / 267 / 30 / 1 365 / 249 / 3 511 / 414 / 876 / 122 / 6 223<br />

The highest daily concentration of Alternaria spores was recorded in the middle<br />

of the season (August) in Klaipėda and Šiauliai aerobiological stations in both years.<br />

The highest concentrations occurred at the beginning of spore season only in Vilnius<br />

in 2005 and in Šiauliai in 2006.<br />

The number of peak days and maximal concentration of Alternaria spores in<br />

aerobiological stations are shown in Table 3. Alternaria spores had the<strong>ir</strong> monthly<br />

peaks in July and August in all aerobiological stations. Concentration range in 2005<br />

was from 121 to 306 spores m -3 a<strong>ir</strong>, while in 2006 concentration range was considerably<br />

higher – from 122 to 707 spores m -3 a<strong>ir</strong>.<br />

No peak days in September of 2005 were recorded, in the same time in 2006 –<br />

only few. Only 5 days were recorded as peak days of Alternaria spores in Vilnius in<br />

2005, among those 3 days in July at the start of spore season. Nevertheless, in the<br />

second monitoring year there were recorded 14 spore day peaks in this aerobiological<br />

station. The biggest number of spore peak days was determined in Klaipėda in<br />

2006 – even <strong>28</strong> days.<br />

138


Table 3. Number of Alternaria spore peak days and concentration of peak day<br />

in Lithuania in 2005–2006<br />

3 lentelė. Alternaria sporų piko dienų kiekis bei piko dienų koncentracijos Lietuvoje<br />

2005–2006 m.<br />

Aerobiological<br />

station<br />

July<br />

Liepa<br />

August<br />

Rugpjūtis<br />

September<br />

Rugsėjis<br />

Aerobiologinė<br />

stotis<br />

2005 year<br />

2005 metai<br />

2006 year<br />

2006 metai<br />

2005 year<br />

2005 metai<br />

2006 year<br />

2006 metai<br />

2005 year<br />

2005 metai<br />

2006 year<br />

2006 metai<br />

Number of days with ≥ 100 spores in m -3<br />

Dienų skaičius, kai ≥ 100 sporų m -3<br />

Klaipėda 3 6 8 18 - 4<br />

Šiauliai 1 2 13 17 - -<br />

Vilnius 3 3 2 10 - 1<br />

Maximal concentration of spores on peak day in m -3<br />

Maksimali sporų koncentracija piko dieną, m -3<br />

Klaipėda 124 208 306 707 - 135<br />

Šiauliai 126 139 375 547 - -<br />

Vilnius 220 249 121 414 - 122<br />

A strong 95 % no significant positive correlation (r = 0.956) was obtained between<br />

the maximal concentrations of spores on peak day every month in Klaipėda in different<br />

years. The similarly findings were in other aerobiological station: a strong 99 % positive<br />

no significant correlation (r = 0.996) in Šiauliai and medium (r = 0.485) in Vilnius.<br />

Hourly pattern of Alternaria s p o r e s. Maximum value of spore concentration<br />

in August was found in midnight, between 23:00–1:00 in Klaipėda in 2005,<br />

but next year of monitoring the maximal values were established between 17:00–19:00.<br />

Minimal spore counts were noted in 5:00–7:00 in both years of investigations.<br />

The hourly analysis of samples corresponding a<strong>ir</strong> of Šiauliai in August in 2005<br />

demonstrated the highest concentrations in the afternoon, 13:00–15:00. In the second<br />

year of monitoring maximal values were determined between 17:00–19:00. The lowest<br />

Alternaria spore amounts here reached at night between 3:00–7:00 in 2005 and<br />

2006.<br />

In Vilnius aerobiological station clear daily peak of spore concentration in August<br />

wasn’t recognized, concentration of spores was equally dispersed and only obscure<br />

increase was noticed in 19:00–3:00 time interval. The least amount of spores was<br />

counted in the morning at 9:00. In the second year there were differences: maximal<br />

values appeared to be between 17:00 and 19:00, while minimal at 5:00–7:00.<br />

Roughly, the highest concentrations of Alternaria spores were between 15:00 and<br />

1:00, while minimal values were observed at 5:00–9:00 in August in Lithuania.<br />

Discussion. It is possible to distinguish two regularities based on annual spore<br />

counts, comparing the results obtained from three aerobiological stations: 1) the<br />

lowest spore concentrations were in Vilnius, while higher in Šiauliai and Klaipėda<br />

aerobiological stations; 2) the interannual differences were smaller in Šiauliai than<br />

in the rest aerobiological stations – spore amount in Klaipėda in 2006 was more than<br />

twice as high as in 2005 and spore amount were 1.6 as high in 2006 as in Vilnius in<br />

2005.<br />

139


On the basis of 2005–2006 investigation, the highest total annual amount of<br />

Alternaria a<strong>ir</strong>borne spores occurred in Vilnius aerobiological station in 2006 (6223<br />

spores) and in Klaipėda in 2006 (9718 spores). Such abundance in Šiauliai maybe was<br />

caused by availability of host plants, because Alternaria is a common pathogen of<br />

cereals, vegetables, ornamentals, oilcrops, vegetables and fruits (Thomma, 2003). The<br />

investigations conducted in urban and rural env<strong>ir</strong>onments in Poland conf<strong>ir</strong>m the preliminary<br />

hypothesis that daily concentrations, mean concentrations and seasonal sums<br />

of the studied fungal spores are lower in city a<strong>ir</strong>, than in areas with lower urbanisation<br />

level (Kaspryzk, Worek, 2006). Our sites according to town size and distance from<br />

its centre to the spore traps can be arranged by urbanisation level increase as follows:<br />

Klaipėda–Šiauliai–Vilnius. Easily can be noticed, that spore sums from all the investigation<br />

period according to sites are in decreasing order: 14 194–12 144–9 313.<br />

Alternaria a<strong>ir</strong>borne fungal spores occur in Lithuania throughout nearly the whole<br />

year. In February, March and April spores occur in a<strong>ir</strong> sporadically and in May, June<br />

concentrations of its conidia are usually low; the maximum falls in August, less – in<br />

July. According to Olive<strong>ir</strong>a et al. (2005), the lowest concentrations of Alternaria spores<br />

were registered in winter and the highest concentrations were found in summer and<br />

early autumn in Porto (Portugal) in 2003. Spore concentrations were determined in<br />

summer in other places of Europe also: in Rzeszóv, Lublin and other cities of Poland<br />

(Kaspryzk et al., 2004; Konopińska, 2004; Stępalska et al., 1999; Stępalska, Wołek,<br />

2005), in Derby (England), Zagreb (Croatia) and other (Corden et al., 2003; Peternel<br />

et al., 2004). Corden et al. (2003) estimated that in two England towns Derby and<br />

Cardiff abundantly Alternaria spores are released in July, August and September, the<br />

main months for harvesting. Similar observations were made by Stępalska and Wołek<br />

(2005) in Cracow, Poland. The main months for release of Alternaria and other a<strong>ir</strong>borne<br />

fungal spores are July, August and September. These are the main months for<br />

combine harvesting and grass moving.<br />

Konopińska (2004) recorded in Liublin shorter time of Alternaria spore maximal<br />

value between 17:00–20:00, but longer minimal amounts value time: 0:00–7:00.<br />

Peternel et al. (2004) recorded in Zagreb minimal amounts of Alternaria spores on<br />

early morning, in 6:00. Munuera et al. (2001) observed that distribution of spore concentrations<br />

through the day was similar in 1993–1998 in Murcia, in Southern Spain:<br />

the maximal value of spore concentration was found in evening, at about 19:00, the<br />

lowest spore concentration was noted in early morning, at about 8:00. The same authors<br />

proposed that this late afternoon maximum could be related to a late release of<br />

spores from local sources or delay in sampling of spores released earlier and being<br />

transported to the sampler from rural areas (15–30 km away).<br />

Alternaria spore prevalence monitoring can be useful part of Integrated Disease<br />

Management programs.<br />

Conclusions. 1. The highest concentrations of Alternaria a<strong>ir</strong>borne spores in<br />

Lithuania were measured in the middle of spore season, i. e. in August. 51.4–70.3 %<br />

of annual spore amount was observed in this month.<br />

2. Depending on site and year, there were from 5 (Vilnius, 2005) to <strong>28</strong> (Klaipėda,<br />

2006) peak days with high concentration of Alternaria spores in the a<strong>ir</strong>.<br />

140


3. Hourly pattern of Alternaria spore concentration in August indicated the<br />

maximal value between 15:00 and 1:00, while minimal amounts were observed at<br />

5:00–9:00.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 10<br />

References<br />

1. Brazauskiene I., Petraitiene E. 2006. Epidemiological studies into Phoma lingam<br />

(telemorph Leptosphaeria maculans) infections in winter and spring oilseed<br />

rape. Agronomy Research, 4 (special issue): 137–140.<br />

2. Corden J. M., Millington W. M. 2001. The long-term trends and seasonal variation<br />

of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17(3/4): 127–136.<br />

3. Corden M. J., Millington M. W., Mullins J. 2003. Long-term trends and regional<br />

variation in the aeroallergen Alternaria in Cardiff and Derby UK – are differences<br />

in climate and cereal production having an effect Aerobiologia, 19(3/4):<br />

191–199.<br />

4. Käärik A., Keller J., Kiffer E., Perreau J., Resinger A. 1983. Atlas of a<strong>ir</strong>borne<br />

fungal spores in Europa. Berlin, Springer.<br />

5. Kasprzyk I., Rzepowska B., Wasylów M. 2004. Fungal spores in the atmosphere<br />

of Rzeszów (South-East Poland). Annals of Agricultural and Env<strong>ir</strong>onmental<br />

Medicine, 11(2): <strong>28</strong>5–<strong>28</strong>9.<br />

6. Kasprzyk I., Worek M. 2006. A<strong>ir</strong>borne fungal spores in urban and rural env<strong>ir</strong>onments<br />

in Poland. Aerobiologia, 22(3): 169–176.<br />

7. Konopińska A. 2004. Monitoring of Alternaria Ness and Cladosporium<br />

Link a<strong>ir</strong>borne spores in Lublin (Poland) in 2002. Annals of Agricultural and<br />

Env<strong>ir</strong>onmental Medicine, 11(2): 347–351.<br />

8. Lacey W. E., West J. S. 2006. The a<strong>ir</strong> spore. Annual for catching and identifying<br />

a<strong>ir</strong>borne biological particles. Dordrecht, Springer.<br />

9. Lugauskas A., Paškevičius A., Repečkienė J. 2002. Pathogenic and toxic microorganisms<br />

in human env<strong>ir</strong>onment. Vilnius, Aldorija.<br />

10. Lugauskas A., Šveistytė L., Ulevičius V. 2003. Concentration and species diversity<br />

of a<strong>ir</strong>borne fungi near busy streets in Lithuanian urban areas. Annals of<br />

Agricultural and Env<strong>ir</strong>onmental Medicine, 10(2): 233–239.<br />

11. Mandrioli P., Comtois P., Levizzani V. 1998. Methods in aerobiology. Bologna:<br />

Pitagora Editrice.<br />

12. Mitakakis Z. T., Clift A., McGee A. P. 2001. The effect of local cropping activities<br />

and weather on the a<strong>ir</strong>borne concentration of allergenic Alternaria spores in<br />

rural Australia. Grana, 40(4/5): 230–239.<br />

13. Munuera M., Carrion J. S., Navarro C. 2001. A<strong>ir</strong>borne Alternaria spores in SE<br />

Spain (1993–98) – occurrence patterns, relationship with weather variables and<br />

prediction models. Grana, 40(3): 111–118.<br />

141


14. Olive<strong>ir</strong>a M., Ribe<strong>ir</strong>a H., Abreu I. 2005. Annual variation of fungal spores in<br />

atmosphere of Porto 2003. Annals of Agricultural and Env<strong>ir</strong>onmental Medicine,<br />

12(2): 309–315.<br />

15. Peternel R., Čulig J., Hrga I. 2004. Atmospheric concentrations of Cladiosporium<br />

spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological<br />

factors. Annals of Agricultural and Env<strong>ir</strong>onmental Medicine, 11(2):<br />

303–307.<br />

16. Petraitienė E. 2005. Occurrence and harmfulness of Alternaria blight (Alternaria<br />

spp.) in oilseed rape (Brassica napus var. oleifera) and turnip rape (Brassica<br />

rapa var. oleifera) and possibilities to reduce its damage: summary of doctoral<br />

dissertation. Kaunas.<br />

17. Stępalska D., Harmata K., Kasprzyk I., Myszkowska D., Stach A. 1999.<br />

Occurrence of a<strong>ir</strong>borne Cladosporium and Alternaria spores in Southern and<br />

Central Poland in 1995–1996. Aerobiologia, 15(1): 39–47.<br />

18. Stępalska D., Wołek J. 2005. Variation in fungal spore concentrations of selected<br />

taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia,<br />

21(1): 43–52.<br />

19. Sterling M., Rogers C., Levetin E. 1999. An evaluation of two methods used for<br />

microscopic analysis of a<strong>ir</strong>borne fungal spore concentrations from the Burkard<br />

Spore Trap. USA. Aerobiologia, 15(1): 9–18.<br />

20. Survilienė E., Valiuškaitė A. 2006. Carrot (Daucus sativus Röhl.) colonization<br />

by Alternaria spp. and effect of fungicide spray on the<strong>ir</strong> population. Ekologija,<br />

3: 54–59.<br />

21. Survilienė E., Šidlauskienė A., Vasinauskienė M., Zitikaitė I. 2004. Resistance of<br />

Brassica L. vegetables to phytopathogens. Horticulture and vegetable Growing<br />

23(1): 115–125, (in Lithuanian).<br />

22. Thomma J. H. P. B. 2003. Alternaria spp.: from general saprophyte to specific<br />

parasite. Molecular Plant Pathology, 4(4): 225–236.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Ore plintančių Alternaria genties grybų sporų sklaidos ypatumai sk<strong>ir</strong>tingose<br />

Lietuvos vietovėse<br />

R. Mikaliūnaitė, M. Kazlauskas, L. Veriankaitė<br />

Santrauka<br />

Alternaria Ness. genties grybų sporų paplitimas ore tyrimo metais, sezono metu<br />

bei pasisk<strong>ir</strong>stymas paros metu 2005–2006 metais t<strong>ir</strong>tas trijose Lietuvos urbanistinėse<br />

vietovėse – Klaipėdoje, Šiauliuose <strong>ir</strong> Vilniuje. Nustatyti grybų sporų kiekiai per metus,<br />

sezono metu bei pasisk<strong>ir</strong>stymas paros metu. Sporų fiksavimui naudota H<strong>ir</strong>sto tipo<br />

sporų gaudyklė. Grybų sporos buvo identifikuojamos <strong>ir</strong> skaičiuojamos 12 vertikalių<br />

juostų metodu. Grybų sporų sezono trukmė apskaičiuota taikant 90 % metodą.<br />

142


Tyrimo metu sporų sezono trukmė buvo nuo 62 dienų Vilniuje 2005 metais iki 97 dienų<br />

Klaipėdoje 2006 metais. Gausiausi Alternaria sporų kiekiai buvo nustatyti vasarą, o<br />

mažiausi – žiemą bei pavasarį. Visose aerobiologinėse stotelėse pavienės sporos nustatytos<br />

vasario, kovo <strong>ir</strong> balandžio mėnesiais. Bendras Alternaria sporų kiekis per metus įva<strong>ir</strong>avo<br />

nuo 3 090 sporų Vilniaus aerobiologinėje stotelėje 2005 metais iki 9 718 sporų Klaipėdoje<br />

2006 metais. Sporifikacijos sezono pikai nustatyti rugpjūčio mėnesį visose t<strong>ir</strong>tose vietovėse<br />

<strong>ir</strong> įva<strong>ir</strong>avo nuo 121 iki 707 sporų m -3 . Šį mėnesį buvo nustatyta 51,4–70,3 % sporų nuo<br />

metinio sporų kiekio. Paros metu gausiausios Alternaria sporų koncentracijos rugpjūčio<br />

mėnesį buvo nustatytos tarp 15:00 <strong>ir</strong> 1:00 valandos, mažiausios – 5:00–9:00 valandomis.<br />

Reikšminiai žodžiai: Alternaria, grybų sporos, sezono trukmė, sporų koncentracija.<br />

143


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Water as the source of Phytophthora spp.<br />

pathogens for horticultural plants<br />

Leszek B. Orlikowski, Magdalena Ptaszek, Aleksandra Trzewik,<br />

Teresa Orlikowska<br />

Res. Institute of Pomology & Floriculture, Pomologiczna 18, 96-100 Skierniewice,<br />

Poland, e-mail lorlikow@insad.pl<br />

Using rhododendron leaf blades, Phytophthora spp. was recovered from 4 rivers, 3<br />

reservo<strong>ir</strong>s and 3 canals located in different parts of Poland. Independently of water sources<br />

location, P. citricola was found in rivers, reservo<strong>ir</strong>s and canals. Detection period and different<br />

sources of water had no big influence on Phytophthora spp. population density. Occurrence<br />

of P. cactorum, P. cambivora and P. cinnamomi in sampling water was influenced by presence<br />

of potential host plants near river and in nurseries. Under conditions favourable to the<br />

development of Phytophthora spp., P. citricola dispersed with sprinkling water in 2 hardy<br />

ornamental nursery stocks, caused shoot and tip blight of boxwood and thuja.<br />

Key words: density, dispersal, harmfulness, leaf bait, Phytophthora, recovery, water.<br />

Introduction. Most of Phytophthora species are known as economically important<br />

plant pathogens causing mainly root and stem base rot, leaf spots, fruit necrosis<br />

and tip blight. Development of disease symptoms is favoured by wet soil or<br />

substratum conditions and temperature above 20 °C resulting rapid dispersal of that<br />

group of pathogens achieved by zoospores. The most actual example of zoospores<br />

spread in water is P. alni known since 1999 on Alnus glutinosa f<strong>ir</strong>stly in England and<br />

during the next few years in many countries of Europe (Cech, 2004; Gibbs et al.,<br />

Orlikowski et al., 2003). The occurrence of Phytophthora species in rivers, streams,<br />

canals and water reservo<strong>ir</strong>s is well documented. At least 20 Phytophthora spp. were<br />

detected in water mainly in the USA and Europe including the most known species<br />

like P. cactorum, P. cambivora, P. capsici, P. cinnamomi, P. citricola, P. citrophthora,<br />

P. cryptogea, P. drechsleri, P. lateralis, P. megasperma, P. nocotianae, var. nicotianae,<br />

P. ramorum, P. syringae (Fergusson and Jeffers, 1999; Orlikowski, 2006; Themann<br />

et al., 2002). Hong and Moorman (2005) characterized Phytophthora spp. as<br />

significant crop health destructor, which increased greatly and will remain as agriculture<br />

problem. The authors concluded that contaminated water <strong>ir</strong>rigation is a primary,<br />

if not a sole, source of inoculum for Phytophthora diseases of numerous nursery,<br />

145


fruit, and vegetable crops. This conclusion is the key for studying of Phytophthora<br />

detection methods, population densities in relation to water sources and weather conditions<br />

and economic thresholds.<br />

The aim of this study is to present some results connected with the occurrence<br />

of Phytophthora species in Polish rivers, canals, water reservo<strong>ir</strong>s and harmfulness of<br />

P. citricola to some ornamental nursery plants.<br />

Object, methods and conditions. S o u r c e s o f w a t e r. Phytophthora spp.<br />

was detected in 4 rivers, 3 water canals and 3 reservo<strong>ir</strong>s. Rivers were situated in different<br />

parts of Poland. One of them (Korabiewka) is flowing through forest area, the<br />

second one (Rawka) – through agricultural area and partly forest, whereas the next<br />

two – through horticultural area with hardy nursery stocks and greenhouse farms<br />

(Kurówka and Ner). Water canals and reservo<strong>ir</strong>s are situated in 3 hardy ornamental<br />

nursery stocks in different parts of the country.<br />

Recovery of Phytophthora f r o m w a t e r. Rhododendron leaflets<br />

baits cv. ‘Nova Zembla’ were used. Baits containing at least 8 leaves secured with about<br />

3 m pieces of string were held in water about 2–3 m from benches. After 4–7 days of<br />

incubation, in relation to part of the year, baits were removed from water, washed under<br />

tap water and number of necrotic spots on each leaf blades was counted. Chosen leaves<br />

were rinsed in distilled water, blotted dry, sterilized over a burned flame and about<br />

2–5 mm in diameter pieces of leaves with brown or dark-brown spots were placed on<br />

PDA medium and incubated at 25 °C in the dark. After 24–48 h small parts of possible<br />

Phytophthora colonies were transferred to PDA slants. After segregation and cleaning<br />

of chosen isolates they were identified with species on the base of morphology and<br />

using molecular methods (Trzewik et al., 2006).<br />

Harmfulness of Phytophthora cotricola t o b o x w o o d a n d<br />

t h u j a. Observations were done in two hardy nursery stocks. In both of them plants<br />

were regularly sprinkled with water taken from reservo<strong>ir</strong>s situated in the lowest part of<br />

nurseries. Part of water was taken from wells but during summer time also from local<br />

rivers. Additionally surplus of water from nurseries was flowing to both reservo<strong>ir</strong>s.<br />

F<strong>ir</strong>st symptoms of leaf yellowing were observed on boxwood (Buxus semperv<strong>ir</strong>ens) in<br />

the beginning of June, whereas dying of thuja (Thuja occidentalis Fastigiata) tips – in<br />

the second decade of July. Within one week (thuja) and four months (boxwood) development<br />

of diseases were observed. Experimental design was completely randomized<br />

with 4 replications and 200 plants in each rep.<br />

Results. Recovery of Phytophthora s p p . f r o m w a t e r. Results<br />

with baiting of Phytophthora from rivers indicated significantly higher population<br />

number of that group of organisms in August than in June only. In Rawka significantly<br />

more necrotic spots on baiting leaves were observed in June and Phytophthora<br />

population density was about twice higher than in other rivers (Fig. 1, A). The river<br />

runs mainly through forest and agricultural area, so probability of water refuse by<br />

chemical residues is much lower than in Ner and Kurówka flowing through horticultural<br />

localities (Fig. 1, A).<br />

146


Fig. 1. Occurence of Phytophthora spp. in rivers (A), water reservo<strong>ir</strong>s (B) and<br />

nursery canals (C); number of spots on rhododendron leaf blade<br />

1 pav. Phytophtora spp. paplitimas upėse (A), medelynų kanaluose (B) <strong>ir</strong><br />

vandens rezervuaruose (C); ligos požymiai ant rododendrų lapalakščių<br />

147


Analysis of Phytophthora spp. detection from water reservo<strong>ir</strong>s and nursery canals<br />

showed the lack of differences in population densities as well as between baiting period<br />

(Fig. 1, B, C). Four Phytophthora species were detected from sampling water sources.<br />

P. citricola was detected from all sampling water in June and August. P. cinnamomi<br />

was found only in Kurówka river, P. cactorum – in Ner, meanwhile P. cambivora – in<br />

Rawka.<br />

Harmfulness of Phytophthora citricola t o b o x w o o d a n d<br />

t h u j a. The f<strong>ir</strong>st yellowing of individual boxwood shoots was observed in the middle<br />

of June on about 1.5 of plants (Fig. 2). During the next 15 weeks disease symptoms<br />

were noticed on at least 10 % of plants. Besides yellowing, on about 5 % of plants<br />

most of shoots showed dark-brown discoloration (Fig. 2).<br />

Fig. 2. Development of Phytophthora shoot rot (P. citricola) of<br />

Buxus semperv<strong>ir</strong>ens in hardy ornamental nursery stock<br />

2 pav. Buxus semperv<strong>ir</strong>ens šaknų puvinio Phytophtora (P. citricola)<br />

vystymasis atspariame dekoratyvinių medžių medelyne<br />

On tops of T. occidentalis disease symptoms were noticed after 2 days at relative<br />

a<strong>ir</strong> humidity above 90 %. Single tips changed colour to yellow-brown and dark-brown<br />

and the disease developed very quickly (Fig. 3). F<strong>ir</strong>st observation showed about 7 %<br />

of diseased plants and within 8 weeks symptoms spread on about 40 % of plants (Fig.<br />

3).<br />

148


Fig. 3. Spread of Phytophthora tip blight (P. citricola) on<br />

Thuja occidentalis Fastigiata<br />

3 pav. Phytophthora P. citricola galų rūdžių paplitimas tujose<br />

Thuja occidentalis Fastigiata<br />

Discussion. Phytophthora species were isolated from rivers, water reservo<strong>ir</strong>s<br />

and nursery canals all the year. Results are given for recovery of them in June and<br />

August because of available temperature for Phytophthora development, but also –<br />

the possibility of chemical residues transport from nurseries to water reservo<strong>ir</strong>s, canals<br />

and rivers. In Themann and et al. (2002) studies detection rates of Phytophthora<br />

spp. from nursery drains were higher in most cases than from reservo<strong>ir</strong>s. The authors<br />

found also great variation between nurseries and sampling sites. Studies of<br />

Orlikowski et al. (2007) indicated that P. citricola is the dominant water species.<br />

Occurrence of P. cinnamomi in Kurówka river was probably connected with running<br />

of surplus water from hardy nursery stocks where this species was causal agent of<br />

root and stem rot of Chamaecyparis lawsoniana, Pinus mugho var. pumilo and other<br />

coniferous plants (Orlikowski et al., 1995). P. cambivora occurs in forests, especially<br />

on European beech (Orlikowski et al., 2006), whereas P. cactorum – on ericaceous<br />

plants located near Ner river.<br />

The thuja is the best example indicating on very fast spreading of Phytophthora<br />

tip blight with water and expanding of the disease on young plant tips and in nurseries<br />

(Orlikowski, 2006; Orlikowski et al., 2004). Our study showed an important role<br />

of water in the dispersal of Phytophthora diseases not only inside nurseries but also<br />

around the country.<br />

Conclusions. 1. Rhododendron leaf baits were an excellent medium for recovery<br />

of Phytophthora species from different sources of water.<br />

2. Location of rivers and surrounding area and recovery period had no great<br />

influence on population densities of Phytophthora spp. in water.<br />

149


3. Similar spots number on rhododendron leaf baits were noticed independently<br />

of localization of water reservo<strong>ir</strong>s and canals in the country.<br />

4. From rivers, reservo<strong>ir</strong>s and water canals Phytophthora citricola, P. cinnamomi,<br />

P. cactorum and P. cambivora were recovered with domination of the f<strong>ir</strong>st species.<br />

5. Under conditions favourable to the development of Phytophthora spp., P. citricola<br />

dispersal on plants with sprinkling water may cause high losses in the production<br />

of some ornamental coniferous and deciduous plants.<br />

Gauta 2009 07 03<br />

Parengta spausdinti 2009 08 13<br />

References<br />

1. Cech Th. L. 2004. Development and spread of Phytophthora disease of alders in<br />

Austria. Materials of the 3rd IUFRO Working Party “Phytophthora in forest and<br />

natural ecosystems”, Freising, Germany 2004.09. 31: 11–17.<br />

2. Gibbs J. N., Lipscombe M. A., Peace A. J. 1999 The compact of Phytophthora<br />

disease on riparian populations of common alder (Alnus glutinosa) in southern<br />

Britain. Eur. J. For. Pathol., 29: 39–50.<br />

3. Fergusson A. J., Jeffers S. N. 1999. Detecting multiple species of Phytophthora in<br />

container mixes from ornamental crop nurseries. Plant Dis., 83: 1 129–1 136.<br />

4. Hong C. X., Moorman G. W. 2005. Plant pathogens in <strong>ir</strong>rigation water: challenges<br />

and opportunities. Critical Rev. in Pl. Sci., 24: 189–208.<br />

5. Orlikowski L. B. 2006. Relationship between source of water used for sprinkling<br />

and occurrence of Phytophthora shoot rot and tip blight in container-ornamental<br />

nurseries. J. Pl. Prot. Res., 46: 163–168.<br />

6. Orlikowski L. B., Gabarkiewicz R., Skrzypczak Cz. 1995. Phytophthora species<br />

in Polish ornamental nurseries: I. Isolation and identification of Phytophthora<br />

species. Phytopathol., 9: 73–79.<br />

7. Orlikowski L. B., Szkuta G., Sroczyński M. 2004. F<strong>ir</strong>st notice of Phytophthora<br />

tip blight of Calluna vulgaris. Phytopathol Pol., 31: 67–71.<br />

8. Orlikowski L. B., Trzewik A., Orlikowska T. 2007. Water as potential source of<br />

Phytophthora citricola. J. Plant prot. Res., 47: 125–132.<br />

9. Themann K., Werres S., Luttmann R., Diener H.-A. 2002. Observations of<br />

Phytophthora spp. in water rec<strong>ir</strong>culation systems in commercial hardy ornamental<br />

nursery stocks. Eur. J. Plant Pathol., 108: 337–343.<br />

10. Trzewik A., Wiejacha K., Orlikowski L. B., Orlikowska T., 2006. Identification<br />

of five Phytophthora species, causal agents of diseases of nursery perennials,<br />

trees and shrubs on the base of DNA markers amplified with non-specific primers.<br />

Phytopathol. Pol, 41: 27–37.<br />

150


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Vanduo kaip sodo augalų ligų sukėlėjo Phytophthora spp. šaltinis<br />

L. B. Orlikowski, M. Ptaszek, A. Trzewik, T. Orlikowska<br />

Santrauka<br />

Panaudojant rododendrų lapalakščius, Phytophthora spp. buvo išgauta iš 4 upių, 3 vandens<br />

rezervuarų <strong>ir</strong> 3 kanalų, esančių sk<strong>ir</strong>tingose Lenkijos vietose. Nepriklausomai nuo vandens telkinio<br />

vietovės, P. citricola rastas upėse, vandens rezervuaruose <strong>ir</strong> kanaluose. Aptikimo laikotarpis<br />

<strong>ir</strong> sk<strong>ir</strong>tingi vandens šaltiniai neturėjo didelės įtakos Phytophthora spp. populiacijos tankumui.<br />

Tam, kad vandens mėginiuose buvo rasta P. cactorum, P. cambivora <strong>ir</strong> P. cinnamomi, turėjo<br />

įtakos potencialiai užkrėsti augalai netoli upės <strong>ir</strong> medelynuose. Esant Phytophthora spp. vystymuisi<br />

palankioms sąlygoms, P. citricola paplitęs su laistomu vandeniu dviejuose atspariuose<br />

dekoratyvinių medžių medelynuose, sukėlė buksmedžių <strong>ir</strong> tujų šaknų bei v<strong>ir</strong>šūnių rūdis.<br />

Reikšminiai žodžiai: išgavimas, kenksmingumas, lapų diskų metodas, paplitimas,<br />

Phytophthora, tankumas, vanduo.<br />

151


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

The toxicity of Neem to the snail<br />

Arianta arbustorum<br />

Angela Ploomi*, Katrin Jõgar, Luule Metspalu, Külli Hiiesaar,<br />

Liina Loorits, Ivar Sibul, Irja Kivimägi, Anne Luik<br />

Estonian University of Life Sciences, 1 Kreutzwaldi St., 51014 Tartu, Estonia,<br />

e-mail angela.ploomi@emu.ee<br />

Herbivorous land snail Arianta arbustorum Linnaeus, 1758 (Gastropoda, Pulmonata,<br />

Helicidae) has become considerable pest that occurs throughout Central, Eastern and Northern<br />

Europe. Commercially available neem formulation NeemAzal-T/S (containing 1 % azad<strong>ir</strong>achtin,<br />

Trifolio-M GmbH, Germany) was tested on experimental white cabbage field of the<br />

Estonian University of Life Sciences against cabbage pests, including the snail A. arbustorum.<br />

The formulation was diluted with water and treated in concentrations 0.03 % and 0.3 % (solution/spraying<br />

and watering) with weekly intervals. After that the number of snails started<br />

to grow and the highest population peak was in the middle of September. All the tested neem<br />

concentrations affected the number of snails on the cabbage and were significantly different<br />

from control variant. There was no significant difference between treated variants. Both,<br />

spraying and watering with NeemAzal-T/S, affected A. arbustorum as effective repellent. It<br />

can be concluded that all neem treatments could control the snail A. arbustorum.<br />

Key words: Arianta arbustorum L., NeemAzal-T/S, white cabbage.<br />

Introduction. A lot of terrestrial gastropod species are important pests in agricultural<br />

and horticultural crops (Godan, 1983). The commonest and widespread hermaphroditic<br />

land snail Arianta arbustorum Linnaeus, 1758 (Gastropoda, Pulmonata,<br />

Helicidae) occurs throughout Central, Eastern and Northern Europe (Terhivuo, 1978;<br />

Kerney et al., 1983). A. arbustorum is an omnivorous snail that includes green plants,<br />

decaying plant material, and fungi in its diet (Hägele, 1992). The most commonly<br />

used chemical control is in the form of slug pellets, containing the active ingredient<br />

metaldehyde. Metaldehyde works by disrupting the gastric organs. Molluscicides<br />

may also contain a desiccant preventing mollusks from producing the mucous<br />

essential for survival. Pellets remain attractive to snails and slugs for several days to<br />

prolong the length of time they are available for detection (Pesticide Safety D<strong>ir</strong>ective,<br />

2000). It is tempting to use chemical control in our gardens but care must always be<br />

taken as all pesticides are toxic to living organisms and the potential hazards are very<br />

real. With the increasing popularity of organic farming in the country, there is a need<br />

to use env<strong>ir</strong>onment-friendly biopesticides and other bio-based tools to overcome the<br />

153


problem of insect pests. Plants may be an alternative to the currently used insect control<br />

agents, because they v<strong>ir</strong>tually are a rich source of bioactive organic chemicals<br />

(Godfrey, 1995; Isman, 1997). Phytophagous land snails in greenhouses and horticulture<br />

were killed by neem preparations (West, Mordue, 1992). Biopesticide NeemAzal-T/S<br />

(Trifolio-M GmbH, Germany) is registered since 2000 in Germany (Isman,<br />

2004) and since 2001 in Estonia. An extract “NeemAzal” obtained from seed kernels<br />

of the Neem tree Azad<strong>ir</strong>achta indica A. Juss and its formulation contains about 54 %<br />

of azad<strong>ir</strong>achtins. NeemAzal-T/S is a formulation of NeemAzal containing 1 % w/w<br />

of azad<strong>ir</strong>achtin A. The results of studies of possible env<strong>ir</strong>onmental impacts indicate<br />

an extremely low risk to aquatic organisms, microorganisms, earthworms, beneficial<br />

insects, honeybees, b<strong>ir</strong>ds, etc. This is true especially in view of the low concentrations<br />

of azad<strong>ir</strong>achtin A, which are requ<strong>ir</strong>ed for sufficient control of pests (Kleeberg,<br />

2004). Aim of the present study was to test different concentrations and treatment<br />

ways of neem formulation NeemAzal-T/S on white cabbage field against the herbivorous<br />

land snail A. arbustorum.<br />

Object, methods and conditions. Field experiments were done to test the<br />

efficacy of the biopesticide NeemAzal-T/S (1 % azad<strong>ir</strong>achtin, Trifolio-M GmbH,<br />

Germany) against the cabbage pests, including the snail A. arbustorum. The present<br />

experiment was carried out in the experimental garden of the Estonian University of<br />

Life Sciences in 2006. White cabbage (Brassica oleracea L. var. capitata f. alba)<br />

plants were grown from seed, kept in glasshouse until they reached the 3 true leaf<br />

stage. In mid-May the plants were replanted to the experimental field. Each variant<br />

consisted of 9 plants per plot (three rows of three plants spaced at 70 cm intervals).<br />

All variants had three replications. Different concentrations of NeemAzal-T/S were<br />

used – 0.03 % and 0.3 % for spraying and 0.3 % concentration of NeemAzal-T/S for<br />

watering of testing plots. Individuals of A. arbustorum on all the plots were sampled<br />

at 7 day intervals from 4 July to 12 September. To avoid repeated counting the snails<br />

were removed from plants by hand picking. The f<strong>ir</strong>st spraying and watering with<br />

NeemAzal-T/S was made after the f<strong>ir</strong>st counting on 4th of July. Treatments were<br />

applied at weekly intervals during the ent<strong>ir</strong>e observing period. Tests were performed<br />

using the statistical package StatSoft ver. 7, Inc. / USA. Data have been presented as<br />

mean ± standard error. Statistical comparisons were performed with repeated-measures<br />

by the Fisher LSD test. All means were considered significantly different at the<br />

p < 0.05 level.<br />

Results. The snail A. arbustorum appeared on the white cabbage in the beginning<br />

of August whereupon the number of snails started to grow. The highest population<br />

peak was in the middle of September (Fig. 1).<br />

All the tested neem concentrations affected the snail and were significantly different<br />

from control variant. A comparison of treated variants with control revealed<br />

significant differences in the number of A. arbustorum individuals (ANOVA F(3.1<strong>28</strong>) =<br />

8.75; df = 3; p < 0.05: LSD test p < 0.05). There was found no significant difference<br />

among treated variants’ snail numbers (LSD test, p > 0.05) (Fig. 2).<br />

154


Fig. 1. Seasonal dynamics of land snail Arianta arbustorum on differently<br />

NeemAzal-T/S treated variants (mean ± SE)<br />

1 pav. Margųjų medsraigių Arianta arbustorum sezoninis gausumo kitimas<br />

sk<strong>ir</strong>tingai nimazaliu apdorotuose variantuose (vidurkis ± SE)<br />

Fig. 2. Mean number of individuals of land snail Arianta arbustorum on neem treated<br />

variants. Columns with different letters are significantly different (Fisher LSD test p < 0.05)<br />

2 pav. Vidutinis margųjų medsraigių Arianta arbustorum skaičius neem purkštuose<br />

variantuose. Stulpeliai pažymėti sk<strong>ir</strong>tingomis raidėmis patikimai sk<strong>ir</strong>iasi (Fišerio testas R 05<br />

)<br />

155


These data suggest that A. arbustorum was sensitive to NeemAzal-T/S because<br />

the number of snails remained relatively low on treated variants. The comparison of<br />

the differently treated variants revealed that the land snail A. arbustorum selected<br />

least the plots sprayed with 0.3 % neem formulation (7 %), followed by sprayed with<br />

0.03 % neem (11 %) as the site for feeding and the th<strong>ir</strong>d choice was watered variant<br />

0.3 % neem (17 %).<br />

Discussion. Mollusc herbivory is generally considered to be of ecological importance<br />

only during seedling period (Hanley et al., 1995 a, b). However, in suitable<br />

mollusk habitats, mollusk biomass is high, and they may well be a major basal component<br />

of the food chain. Consequently, mollusk in these habitats should not only<br />

affect seedlings but also exert some pressure on fully-grown plants (Hägele et al.,<br />

1998). Damage is caused by gastropods due both to feeding and to contamination<br />

of the harvested plants with the<strong>ir</strong> bodies, eggs, faeces or slime, leading to deterioration<br />

in the quality of the harvest and financial loss (South, 1992). The compounds<br />

from neem A. indica have a number of properties useful for pest management. These<br />

include repellence, feeding and oviposition deterrence, insect growth regulator activity,<br />

low mammalian toxicity and low persistence in the env<strong>ir</strong>onment (Schmutterer,<br />

1990; Koul, 1992). It is evident from our results that the NeemAzal-T/S we tested<br />

had a repellent effect on the snail A. arbustorum. Some test results prove the neem<br />

oil molluscicidal activity. Neem oil significantly reduced fecundity, egg viability, and<br />

survival of the giant African snail Achatina fulica (Rao, Singh, 2000). Neem oil resulted<br />

in extension of the nymphal period and dose-dependent mortality in some<br />

homopterous insects (Schmutterer, 1990). Singh and Singh (2000) while studying the<br />

effect of Allium sativum, A. indica and Zingiber officinale on the reproduction of the<br />

snail Lymnaea acuminata reported that the<strong>ir</strong> active molluscicidal constituents allicin,<br />

azad<strong>ir</strong>achtin, and [6]-gingerol (Singh, Singh, 1995; Singh et al., 1996; 1997) caused<br />

a significant reduction in the fecundity, egg viability, and survival of young snails.<br />

Treatment of 60 % of LC50/24 h of allicin and [6]-gingerol eliminated fecundity in<br />

snail L. acuminata.<br />

Conclusion. In our research both spraying and watering with NeemAzal-T/S<br />

affected A. arbustorum as effective repellent. It can be finally concluded that all neem<br />

treatments could affect the snail A. arbustorum.<br />

Acknowledgements. This research was supported by the Estonian Science<br />

Foundation (grants no 7130, 6722 and 6781), and Estonian Ministry of Education<br />

and Research targeted financing projects no. SF170057s09, SF0170014s08 and<br />

SF0170021s08.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 29<br />

156


References<br />

1. Godan D. 1983. Pest slugs and snails: biology and control. Springer-Verlag.<br />

Berlin.<br />

2. Godfrey C. R. A. (ed.). 1995. Agrochemicals from Natural Products. New York.<br />

3. Hanley M. E., Fenner M., Edwards P. J. 1995 b. An experimental field study of<br />

the effects of mollusk grazing on seedling recruitment and survival in grassland.<br />

Journal of Ecology, 83: 621–627.<br />

4. Hanley M. E., Fenner M., Edwards P. J. 1995 a. The effect of seedling age on the<br />

likelihood of herbivory by the slug Deroceras reticulatum. Functional Ecology,<br />

9: 754–759.<br />

5. Hägele B. 1992. Saisonale Änderungen der Nahrungswahl des generalistischen<br />

herbivoren Arianta arbustorum (L.) in verschiedenen, von Pflanzen aus<br />

der Tribus Senecioneae dominierten Habitaten. Masters thesis. University of<br />

Tübingen, Tübingen.<br />

6. Hägele B. F., Wildi E., Harmatha J., Pavlík M., Rowell-Rahier M. 1998. Longterm<br />

effects on food choice of land snail Arianta arbustorum mediated by petasin<br />

and furanopetasin, two sequiterpenes from Petasites hybridus. Journal of<br />

Chemical Ecology, 24(11): 1 733–1 743.<br />

7. Isman M. B. 1997. Neem and other botanical insecticides: barriers to commercialization.<br />

Phytoparasitica, 25(4): 339–344.<br />

8. Isman M. B. 2004. Factors limiting commercial success of neem insecticides in<br />

North America and Western Europe. In: O. Koul, S. Wahab (eds.). Neem: Today<br />

and in the New Millenium. Kluwer Academic Publishers. Netherland, 33–41.<br />

9. Kerney M. P., Cameron R. A. D., Jungbluth J. H. 1983. Die landschnecken Nordund<br />

Mitteleuropas. Paul Parey. Hamburg und Berlin.<br />

10. Kleeberg H. 2004. Neem based products: registration requ<strong>ir</strong>ements, regulatory<br />

processes and global implications. In: O. Koul, S. Wahab (eds.). Neem:<br />

Today and in the New Millenium. Kluwer Academic Publishers. Netherland,<br />

109–123.<br />

11. Koul O. 1992. Neem allelochemicals and insect control. In: R. S. H. J. Rizvi,<br />

V. J. Rizvi (eds.). Allelopathy: basic and applied aspects. Chapman & Hall Ltd.<br />

London. 389–412.<br />

12. Pesticide Safety D<strong>ir</strong>ective, Efficacy Guideline 510. Testing of Molluscicide<br />

Products, 23 March 2000, PSD, Mallard House, Kings Pool, York YO1 7PX<br />

http://193.133.84.30/<br />

13. Rao I. G., Singh D. K. 2000. Effect of single and binary combinations of plantderived<br />

molluscicides on reproduction and survival of the snail Achatina fulica.<br />

Archives of Env<strong>ir</strong>onmental Contamination ant Toxicology, 39: 486–493.<br />

14. Schmutterer H. 1990. Properties and potential of natural pesticides from neem<br />

tree, Azad<strong>ir</strong>achta indica. Annual Review of Entomology, 35: 271–297.<br />

15. Singh K., Singh D. K. 1995. Molluscicidal activity of Azad<strong>ir</strong>achta indica (neem)<br />

on biochemical parameters in the ovotestis of Lymnaea acuminata. Malaysian<br />

Applied Biology, 24: 7–11.<br />

157


16. Singh K., Singh D. K. 2000. Effect of different combinations of MGK-264 or piperonyl<br />

butoxide with plant-derived molluscicides on snail reproduction. Arch.<br />

Env<strong>ir</strong>on. Contam. Toxicol, 38: 182–190.<br />

17. Singh K., Singh A., Singh D. K. 1996. Molluscicidal activity of neem (Azad<strong>ir</strong>achta<br />

indica). J. Ethnopharmacol, 52: 35–40.<br />

18. Singh S., Singh V. K., Singh D. K. 1997. Molluscicidal effect of some common<br />

spice plants. Biol. Agricul. Horticul., 14: 237–249.<br />

19. South A. 1992. Terrestrial Slugs. Biology, Ecology, Control. London: Chapman<br />

& Hall Ltd.<br />

20. Terhivuo J. 1978. Growth, reproduction and hibernation of Arianta arbustorum<br />

(L.) (Gastropoda, Helicidae) in southern Finland. Ann. Zool. Fennici, 15:<br />

8–16.<br />

21. West A. J., Mordue (Luntz) A. J. 1992. The influence of azad<strong>ir</strong>actin on the feeding<br />

behaviour of cereal aphids and slugs. Entomol. Exp. Appl., 62: 75–79.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Neem toksiškumas medsraigei Arianta arbustorum<br />

A. Ploomi, K. Jõgar, L. Metspalu, K. Hiiesaar, L. Loorits,<br />

I. Sibul, I. Kivimägi, A. Luik<br />

Santrauka<br />

Margosios medsraigės Arianta arbustorum Linnaeus, 1758 (Gastropoda, Pulmonata,<br />

Helicidae) tampa žalingais kenkėjais. Jų randama centrinėje-rytinėje <strong>ir</strong> šiaurinėje Europoje.<br />

Pramoniniu būdu gaminama neem formuluotė nimazalis-T/S (turintis 1 % azad<strong>ir</strong>achtino,<br />

Trifolio-M GmbH, Germany) buvo bandomas Estijos gamtos mokslų universiteto eksperimentiniuose<br />

baltagūžių kopūstų laukuose kovojant su kopūstų kenkėjais <strong>ir</strong> sraigėmis A. arbustorum.<br />

Preparatas buvo atskiestas vandeniu <strong>ir</strong> naudotas 0,03 % <strong>ir</strong> 0,3 % koncentracijų (t<strong>ir</strong>palas purkšti<br />

arba laistyti) kas savaitę. A. arbustorum pas<strong>ir</strong>odo rugpjūčio pradžioje. Po to sraigių gausėja, <strong>ir</strong><br />

daugiausia jų būna rugsėjo viduryje. Visos bandytos neem koncentracijos veikė sraiges ant kopūstų<br />

<strong>ir</strong> patikimai skyrėsi nuo kontrolinio varianto. Tarp apdorotų variantų patikimų sk<strong>ir</strong>tumų nebuvo. Ir<br />

laistymas, <strong>ir</strong> purškimas nimazaliu-T/S buvo veiksmingas A. arbustorum repelentas. Galima daryti<br />

išvadą, kad <strong>ir</strong> purškimas, <strong>ir</strong> laistymas nimazaliu gali reguliuoti sraigių A. arbustorum skaičių.<br />

Reikšminiai žodžiai: Arianta arbustorum L., baltagūžiai kopūstai, nimazalis.<br />

158


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

New host plants for development of<br />

Phytophthora cryptogea in Poland<br />

Magdalena Ptaszek, Leszek B. Orlikowski,<br />

Czesław Skrzypczak<br />

Res. Institute of Pomology & Floriculture, Pomologiczna 18, 96–100 Skierniewice,<br />

Poland, e-mail magdalena.ptaszek@insad.pl<br />

Pathogenicity of nine isolates of Phytophthora cryptogea from different host plants was<br />

tested. In the laboratory trials, all cultures (except S. arachnoideum) colonized leaf blades<br />

and stem parts of 3 alstroemeria cultivars, but isolates from Anthurium andreanum, Aquilegia<br />

discolor and Alstroemeria × hybrida were the most pathogenic. In the tests with columbine<br />

the quickest spread of necrosis was observed on leaves inoculated with P. cryptogea from<br />

A. discolor and Gerbera jamesonii, whereas the slowest when isolates from Sempervivum<br />

arachnoideum was used. Inoculation of S. arachnoideum with eight isolates of P. cryptogea<br />

caused necrosis of leaves, but isolates from A. discolor, Campanula persicifolia and S. arachnoideum<br />

were the most pathogenic.<br />

Key words: colonization, host plants, isolation, occurrence, pathogenicity, Phytophthora<br />

cryptogea.<br />

Introduction. The studies of Phytophthora spp. conducted in Poland during<br />

the last 10 years showed the occurrence of 17 species and increasing number of new<br />

host plants for these pathogens. Phytophthora species were mainly observed on ericaceous<br />

and coniferous plants. P. cinnamomi and P. citricola were the casual agent<br />

of root rot and stem rot of rhododendron, heather, cypress, yew and pine plants (Orlikowski<br />

1996, Orlikowski, Szkuta 2002b, 2003, Orlikowski et al. 2004). In the f<strong>ir</strong>st<br />

decade of XXI century P. cryptogea was the most often recorded on diseased plants<br />

both in greenhouses and hardy ornamental nursery stocks. According to Erwin and<br />

Ribe<strong>ir</strong>o (1996), P. cryptogea is one of the most dangerous pathogen, infected about<br />

150 plant species belonged to 23 botanical family. In Poland the species was known<br />

for at least 40 years as the casual agent of foot rot of gerbera (Orlikowski 1967/77).<br />

The objective of this work was to establish the occurrence of P. cryptogea on<br />

Aquilegia discolor, Alstroemeria × hybrida, Sempervivum arachnoideum and its<br />

pathogenicity toward 3 plant species.<br />

159


Object, methods and conditions. Isolation of Phytophthora cryptogea<br />

f r o m t h e d i s e a s e d p l a n t p a r t s. Plants with diseased symptoms<br />

were taken in greenhouse plantations and hardy nursery stocks from June to September<br />

2006–2008. Diseased plants or the<strong>ir</strong> parts were collected in plastic bags and transferred<br />

to the laboratory. The same or next day the fragments of plants were washed<br />

under tap water, rinsed in distilled water and after blotting dried and sterilized over<br />

a burner flame, 5 mm diameter pieces of tissues were put on potato-dextrose agar<br />

(Orlikowski and Szkuta, 2002). Colonies grown around inocula were transferred into<br />

PDA slants. After 7 days cultures obtained were grouped and selected isolates were<br />

identified to genera and species on the base of the<strong>ir</strong> morphology. The results were<br />

conf<strong>ir</strong>med using PCR method with species-specific primers for P. cryptogea CRYF2/<br />

CRYR2 (Boersma et al., 2000).<br />

Colonisation of plant parts by Phytophthora cryptogea.<br />

Phytophthora cultures. Isolates of P. cryptogea from Anthurium andreanum, Aquilegia<br />

discolor, Alstroemeria × hybrida, Campanula persicifolia, Forsythia intermedia,<br />

Gerbera jamesonii, Lycopersicon esculentum, Saxifraga arendsii and Sempervivum<br />

arachnoideum were used for inoculation of plant parts of alstroemeria, columbine<br />

and sempervivum. Stock cultures were grown on PDA at 24 °C in the dark. For plant<br />

parts inoculation five mm diameter inocula were taken from the edge of 7-day-old<br />

cultures.<br />

I n o c u l a t i o n o f p l a n t p a r t s. Leaf blades and about 8 cm long stem<br />

parts of tested plants were placed in a tray covered with moist blotting paper and<br />

plastic net. The central parts of leaves and the bases of stem pieces were inoculated<br />

with P. cryptogea inoculum. Trays were covered with plastic foil. After 4–5 days of<br />

incubation the size (diameter and length) of necrosis was measured. Experimental<br />

design was completely randomized with 4 replications and 10 leaf blades and stem<br />

parts in each replication. The trials were repeated at least twice.<br />

Results. Results of laboratory trials with colonization of alstroemeria, columbine<br />

and houseleek by P. cryptogea from 9 different host plants showed significant<br />

differences in pathogenicity of tested isolates toward all plant species and cultivars.<br />

In trials with alstroemeria plants all isolates (except S. arachnoideum) colonized stem<br />

parts and leaf blades (results not shown) of three cultivars. After 4-day incubation<br />

the quickest spread of necrosis was observed on alstroemeria inoculated with culture<br />

from A. discolor and A. × hybrida, whereas the slowest – on stem parts treated<br />

with isolates from S. arendsii and S. arachnoideum (Table). On columbine significant<br />

differences of disease spread were especially noticed after 5-day incubation.<br />

The quickest spread of necrotic spots was observed when isolates from G. jamesonii<br />

and A. discolor were used for inoculation of leaves, whereas the slowest with culture<br />

from S. arachnoideum (Fig. 1).<br />

Inoculation of S. arachnoideum with isolates of P. cryptogea from greenhouse<br />

plants as well as from field plants showed that all of them caused necrosis of leaves,<br />

but isolates from A. discolor, C. persicifolia and S. arachnoideum were the most<br />

pathogenic (Fig. 2).<br />

160


Table. Relationship between different isolates of Phytophthora cryptogea and<br />

the development of necrosis on 3 cultivars of Alstroemeria x hybrida stem parts:<br />

length of necrosis (mm) 4 days after inoculation<br />

Lentelė. Ryšys tarp sk<strong>ir</strong>tingų Phytophthora cryptogea izoliatų <strong>ir</strong> nekrozės vystymosi<br />

ant 3 Alstroemeria x hybrida veislių stiebų: nekrozės ilgis (mm), praėjus 4 dienoms po<br />

inokuliacijos<br />

Source of P. cryptogea<br />

P. cryptogea augalas šeimininkas<br />

Alstroemeria cultivars<br />

Alstroemeria veislės<br />

‘Lorena’ ‘Simeona’ ‘Tiara’<br />

Anthurium andreanum 8.4 b 6.1 b 4.5 c<br />

Aquilegia discolor 9.6 b 11.0 e 5.7 d<br />

Alstroemeria × hybrida 12.5 c 8.5 d 6.2 e<br />

Gerbera jamesonii 6.1 a 7.4 c 3.0 b<br />

Saxifraga arendsii 6.3 a 4.4 a 3.0 b<br />

Sempervivum arachnoideum 8.6 b 4.7 a 0 a<br />

Note: Means followed by the same letter do not differ significantly (p = 0.05) according to<br />

Duncan’s multiple range test<br />

Pastaba: Ta pačia raide pažymėtos reikšmės pagal Dunkano kriterijų patikimai nesisk<strong>ir</strong>ia<br />

(p = 0,05)<br />

Fig. 1. Spread of necrosis on Aquilegia discolor leaves 3 and 5 days<br />

after plant inoculation by isolates of P. cryptogea from 5 different host plants.<br />

Note: Means followed by the same letter do not differ significantly<br />

(p = 0.05) according to Duncan’s multiple range test<br />

1 pav. Nekrozės plitimas ant Aquilegia discolor lapų praėjus 3 <strong>ir</strong> 5 dienoms po<br />

augalo inokuliacijos P. cryptogea izoliatais iš 5 sk<strong>ir</strong>tingų augalų.<br />

Pastaba: Ta pačia raide pažymėtos reikšmės pagal Dunkano kriterijų patikimai nesisk<strong>ir</strong>ia (p = 0,05)<br />

161


Fig. 2. Spread of necrosis on S. arachnoideum leaves 4 days after plant<br />

inoculation with isolates of P. cryptogea from 8 different host plants.<br />

Note: Means followed by the same letter do not differ significantly<br />

(p = 0.05) according to Duncan’s multiple range test<br />

2 pav. Nekrozės plitimas ant S. arachnoideum lapų praėjus 4 dienoms po<br />

augalo inokuliacijos P. cryptogea izoliatais iš 8 sk<strong>ir</strong>tingų augalų.<br />

Pastaba: Ta pačia raide pažymėtos reikšmės pagal Dunkano kriterijų patikimai nesisk<strong>ir</strong>ia (p = 0,05)<br />

Discussion. During the last two years P. cryptogea was isolated from the most of<br />

analysed and diseased plants with stem/leaf bases and root rot symptoms. The losses<br />

caused by this pathogen, depended on species of cultivated plants and varied from<br />

10% to even 50%.<br />

Ours results indicated on considerable threat of P. cryptogea to plant crops in<br />

ornamental hardy nursery stocks as well as in greenhouses. The studies showed the<br />

lack of specialization specific for host plant and pathogen. P. cryptogea is not a new<br />

pathogen in Polish horticulture. The species was earlier isolated from rooted stems<br />

rot of cineraria, pachypodium and pelargonium (Orlikowski et al., 1984; Orlikowski,<br />

1996; 2003). In the last decade of XX century P. cryptogea was the reason of root<br />

and stem rot of Abies alba, Pinus mugho var. pumilo and P. nigra (Orlikowski et al.,<br />

1995). In the beginning of XXI century the species was also detected from diseased<br />

Chamaecyparis lawsoniana (Szkuta, 2004). In the last two years P. cryptogea<br />

was found in perennial nurseries on Aquilegia, Sempervivum and Saxifraga species<br />

(Orlikowski, Ptaszek, 2007) and also was isolated from rotted stem base of Forsythia<br />

intermedia (Orlikowski, Ptaszek, 2008). In Germany, P. cryptogea was detected in<br />

water and sediments of hardy ornamental nursery reservo<strong>ir</strong>s (Themann et al., 2002).<br />

The pathogen was also recovered from Polish water ponds and drainage canals situated<br />

in ornamental nurseries (Orlikowski unpbl.). It is possible that the species will spread<br />

on other plants till now not known as pathogen hosts.<br />

Conclusions. Phytophthora cryptogea was the most often isolated species from<br />

diseased A. discolor, A. x hybrida and S. arachnoideum as casual agent of stem/leaf<br />

bases and root rot.<br />

162


The species was isolated f<strong>ir</strong>st time in Poland from diseased alstroemeria, forsythia<br />

and coniferous plants and some perennials including Aquilegia Sempervivum and<br />

Saxifraga.<br />

Results of laboratory trials showed significant differences in pathogenicity of<br />

P. cryptogea isolates toward alstroemeria, columbine and houseleek.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 18<br />

References<br />

1. Boersma J. G., Cooke D. E. L., Sivasithamparam K. 2000. A survey of wildflower<br />

forms in the south-west of Western Australia for Phytophthora spp. associated<br />

with root rots. Aust. J. Exp. Agric., 40: 1 011–1 019.<br />

2. Erwin D. C., Ribe<strong>ir</strong>o O. K. 1996. Phytophthora DiseasesWorldwide. The APS,<br />

St. Paul. Minesota. 562.<br />

3. Orlikowski L. B. 1976/77. Przyczyny zamierania gerbery w niektórych gospodarstwach<br />

ogrodniczych w Polsce. Prace Inst. Sadownictwa Seria B, 2: 197–201.<br />

4. Orlikowski L. B. 1996. Phytophthora stem rot of Pelargonium. Phytopathol. Pol.<br />

12: 79–86.<br />

5. Orlikowski L. B. 1996. Phytophthora species in Polish ornamental nurseries. II.<br />

Chemical and biological control of P. cinnamomi on Chamaecyparis lawsoniana<br />

cv. Ellwoodii. Phytopathol. Pol., 11: 111–120.<br />

6. Orlikowski L. B. 2003. Phytophthora stem rot of Pachypodium lameri and its<br />

control. Phytopathol. Pol., 5: 17–21.<br />

7. Orlikowski L. B., Gabarkiewicz R., Skrzypczak C. 1995. Phytophthora species<br />

in Polish ornamental nurseries. I. Isolation and identyfication of Phytophthora<br />

species. Phytopathol. Pol., 9: 73–79.<br />

8. Orlikowski L. B., Ptaszek M. 2007. Phytophthora spp. in Polish ornamental nurseries.<br />

I. Perennial plants, new hosts of P. cryptogea. J. Plant Prot. Res., 47(4):<br />

401–408.<br />

9. Orlikowski L. B., Ptaszek M. 2008. Phytophthora cryptogea and P. citrophthora;<br />

new pathogens of Forsythia intermedia in Polish ornamental hardy nursery<br />

stocks. J. Plant Prot. Res., 48(4): 511–517.<br />

10. Orlikowski L. B., Skrzypczak C., Wojdyła A. 1984. Occurence, biology, pathogenicity<br />

and control of Phytophthora cryptogea on cineraria. Prace Instytutu<br />

Sadownictwa, Seria B, 9: 79–85.<br />

11. Orlikowski L.B., Szkuta G. 2002 a. Occurence of Phytophthora citrophthora on<br />

Syringa vulgaris in Poland. Acta Mycol., 40: 175–180.<br />

12. Orlikowski L. B., Szkuta G. 2002 b. Occurence of Phytophthora cinnamomi on<br />

ericaceous plants in container-grown ornamental nurseries in Poland. J. Plant<br />

Prot. Res., 42(2): 157–163.<br />

163


13. Orlikowski L. B., Szkuta. 2003. Phytophthora citricola on rhododendron spp. in<br />

Polish nurseries. J.Plant Prot. Res., 43 (1): 19-24.<br />

14. Orlikowski L. B., Szkuta G., Sroczyński M. 2004. F<strong>ir</strong>st notice of Phytophthora<br />

tip blight of Calluna vulgaris. Phytopathol. Pol,. 31: 67–71.<br />

15. Szkuta G. 2004. Występowanie, izolacja, identyfikacja i szkodliwość gatunków<br />

z rodzaju Phytophthora w szkółkach ozdobnych roślin iglastych. Praca doktorska<br />

. Akademia Rolnicza w Krakowie, 191.<br />

16. Themann K., Werres S., Luttmann R., Diener H. A. 2002. Observations of<br />

Phytophthora spp. in water rec<strong>ir</strong>culation systems in commercial hardy ornamental<br />

nursery stock. Europ. J. Plant Pathol., 108: 337–343.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Nauji augalai Phytophthora cryptogea vystymuisi Lenkijoje<br />

M. Ptaszek, L. B. Orlikowski, C. Skrzypczak<br />

Santrauka<br />

T<strong>ir</strong>tas devynių Phytophthora cryptogea izoliatų iš sk<strong>ir</strong>tingų augalų patogeniškumas.<br />

Laboratorijos tyrimuose visos kultūros (išskyrus S. arachnoideum) kolonizavo 3 Alstroemeria<br />

veislių lapalakščius <strong>ir</strong> stiebus, tačiau patogeniškiausi buvo izoliatai iš Anthurium andreanum,<br />

Aquilegia discolor <strong>ir</strong> Alstroemeria × hybrida. Tyrimuose su sinavadais pastebėta, jog greičiausiai<br />

nekrozė plinta ant lapų, inokuliuotų su P. cryptogea nuo A. discolor <strong>ir</strong> Gerbera jamesonii,<br />

o lėčiausiai, kai buvo naudojami izoliatai iš Sempervivum arachnoideum. S. arachnoideum<br />

inokuliacija aštuoniais P. cryptogea izoliatais sukėlė lapų nekrozę, bet patogeniškiausi buvo<br />

izoliatai iš A. discolor, Campanula persicifolia <strong>ir</strong> S. arachnoideum.<br />

Reikšminiai žodžiai: izoliacija, kolonizacija, paplitimas, patogeniškumas, Phytophthora<br />

cryptogea, užkrėsti augalai.<br />

164


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Occurrence of RBDV in Latvia and v<strong>ir</strong>us elimination<br />

in vitro by chemotherapy<br />

Neda Pūpola 1 , Līga Lepse 2 , Anna Kāle 1 ,<br />

Inga Moročko-Bičevska 1<br />

1<br />

Latvia State Institute of Fruit-Growing, Graudu str. 1, Dobele, LV-3701, Latvia,<br />

e-mail neda.pupola@lvai.lv<br />

2<br />

Pūre Horticulture Research Centre, Abavas str. 2, Pūre, LV-3124, Latvia<br />

To determine the incidence and distribution of Raspberry bushy dwarf idaeov<strong>ir</strong>us<br />

(RBDV) in Latvia 27 commercial and varietal collection plantations of Rubus spp. were<br />

surveyed in the spring of 2007. In total 224 leaf samples from 59 genotypes were collected<br />

for analyses. A combination of meristem tip culture with different antiv<strong>ir</strong>al compounds was<br />

used to test v<strong>ir</strong>us elimination possibilities in vitro from naturally infected plants of cultivar<br />

‘Babje Leto 2’. Plant samples for RBDV infection and the efficiency of v<strong>ir</strong>us elimination were<br />

verified by double-antibody sandwich enzyme-linked immunosorbent assay (DAS ELISA)<br />

using polyclonal antibodies. The obtained results showed that RBDV was spread in 70 % of<br />

surveyed raspberry plantations. The incidence of RBDV in the tested plants was 35 % and<br />

varied greatly among the cultivars. Most of the commonly grown cultivars from Eastern Europe,<br />

such as ‘K<strong>ir</strong>zach’, ‘Balzam’ and ‘Sputnica’, were infected with RBDV. V<strong>ir</strong>us was not detected<br />

in plant samples of cultivar ‘Tulameen’. RBDV elimination combining meristem culture with<br />

ribav<strong>ir</strong>in for all treated plants was unsuccessful. Treatment with azacytidine and dicyanamide<br />

was effective only for meristem clones originated from one mother plant. It suggests that the<br />

particular plants were infected with a stable v<strong>ir</strong>us isolate, which cannot be eliminated with<br />

chemotherapy and in vitro propagation techniques. To develop effective RBDV elimination<br />

procedures more work is necessary to characterize the v<strong>ir</strong>us isolates infecting raspberry and<br />

to optimise in vitro techniques. The experiments are being continued.<br />

Key words: antiv<strong>ir</strong>al compounds, chemotherapy, DAS ELISA, meristem culture,<br />

Rubus spp.<br />

Introduction. Red raspberry (Rubus idaeus L.) is one of the most important<br />

small fruit crop in Latvia, which occupies about 10 % of commercial fruit plantation<br />

area. Raspberry v<strong>ir</strong>uses are wide spread and they cause severe losses of yield<br />

and quality everywhere raspberry is cultivated. Raspberry bushy dwarf idaeov<strong>ir</strong>us<br />

(RBDV) infects wild and cultivated Rubus spp. plants throughout the world and is<br />

one of the most important pathogens of red raspberry (Natsuaki et al., 1991). Every<br />

year v<strong>ir</strong>al diseases cause significant raspberry yield loses due to premature defoliation,<br />

decreased vigour, leaf curling, necrosis, abortion of drupelets, death of lateral<br />

165


shoots and increased winter kill (Mavrič Pleško et al., 2009). In some red raspberry,<br />

such as R. idaeus var. idaeus L. and R. idaeus var. strigosus Maxim, RBDV induces<br />

yellows disease, crumbly fruit and decrease of vigour. RBDV isolates are categorised<br />

into two groups: Scottish strain (RBDV-S) and resistance breaking strain (RBDV-<br />

RB). Most isolates studied worldwide fall into S group strain and some raspberry cultivars<br />

are resistant to this strain. Whereas RBDV-RB strain can infect raspberry cultivars<br />

that are immune or highly resistant to S type strain (Jones et al., 2000). RBDV<br />

is efficiently transmitted via seed and pollen. Other ways of natural transmission are<br />

not known. Infected wild and cultivated raspberries act as v<strong>ir</strong>us natural reservo<strong>ir</strong>s<br />

(Wang et al., 2008). The only way to decrease RBDV spread in raspberry plantations<br />

is to use healthy planting material and resistant cultivars. Thermotherapy, chemotherapy,<br />

and tissue culture techniques have been used either alone or in combination<br />

to eliminate v<strong>ir</strong>uses from plants (Spiegel et al., 1993). The meristem-tip culture has<br />

been used widely for the production of v<strong>ir</strong>us-free plant material in many species<br />

propagated mainly by vegetative means (Manganaris et al., 2003). The chemotherapy<br />

is one of the newest methods for elimination of plant v<strong>ir</strong>uses and is widely used in<br />

combination with micro-propagation (Cieslinska, 2003). Compounds such as ribav<strong>ir</strong>in,<br />

5-azacytidine and other antiv<strong>ir</strong>al compounds have been successfully utilized for<br />

v<strong>ir</strong>us elimination in other economically important crops (Nascimento et al., 2003).<br />

The certification program for raspberry planting material has not been established<br />

in Latvia. Therefore, the risk that RBDV has spread uncontrolled in raspberry plantations<br />

with infected planting material and by natural transmission during the long period<br />

of time is very high. Previous research on raspberry v<strong>ir</strong>uses was carried out in 1970s<br />

and was based only on visual observations and biological indexing. Nowadays data are<br />

not available about the spread of v<strong>ir</strong>al diseases in raspberry plantations including such<br />

important pathogen as RBDV. The aim of this research was to determine the incidence<br />

of RBDV in raspberry plantations and to investigate RBDV elimination possibilities<br />

by combining micro-propagation and chemotherapy techniques.<br />

Object, methods and conditions. S u r v e y s a n d p l a n t s a m p l i n g.<br />

During the spring of 2007 twenty seven commercial and varietal collection plantations<br />

of red raspberry and blackberry were surveyed in all regions of Latvia. In total<br />

224 leaf samples were collected from 59 genotypes. From them 60 samples were<br />

collected in varietal collections. Leaflets were collected randomly from each cultivar<br />

in rows approximately ¼, ½ and ¾ of the way across the fields (Strik, Martin, 2003).<br />

From plants with visible symptoms additional samples were collected. The samples<br />

were transported to the laboratory in ice bag, proceeded immediately for analyses or<br />

stored at −80 °C.<br />

M i c r o p r o p a g a t i o n a n d c h e m o t h e r a p y. To test the v<strong>ir</strong>us elimination<br />

possibilities in vitro 23 plants of raspberry cultivar ‘Babje Leto 2’ were selected<br />

from field trial at Pūre Horticulture Research Centre. Plant initiation in vitro was carried<br />

out by using meristem tip explants from the apical and lateral buds of naturally<br />

infected plants with RBDV. Modified M&S basal salt medium (Murashige, Skoog,<br />

1962) containing ¼ of nitrates and double strength Fe salts, supplemented with 170<br />

mg L -1 KH 2<br />

PO 4<br />

and 0.4 mg L -1 thiamine, 2 mg L -1 BAP, 0.05 mg L -1 ISS and 0.1 mg L -1<br />

GA 3<br />

were used for initiation of microplants. The microplants were cultivated in<br />

vitro for five passages in above described medium containing BAP 1 mg L -1 . For<br />

166


chemotherapy three variants of media supplemented with antiv<strong>ir</strong>al chemicals were<br />

compared. Antiv<strong>ir</strong>al compounds used were ribav<strong>ir</strong>in 30 mg L -1 (Sharma et al., 2007),<br />

azacytidine 25 mg L -1 (Nascimento et al., 2003) and dicyanamide 25 mg L -1 (Bittner<br />

et al., 1989). The previously used propagation medium without antiv<strong>ir</strong>al compounds<br />

was used as a control. Twenty microplants were used in each treatment. The effect of<br />

antiv<strong>ir</strong>al compounds on microplants was recorded as a number of survived plants after<br />

25 days. The data from the chemotherapy treatments were subjected to analysis of<br />

variance (ANOVA) and mean values were compared using less significant difference<br />

(LSD) at 95 % significance level.<br />

R B D V d e t e c t i o n. For the detection of RBDV in plant material commercially<br />

available double-antibody sandwich enzyme-linked immunosorbent assay (DAS<br />

ELISA) kit (Bioreba AG, Switzerland) was used in all investigation steps according<br />

to the manufacturer instructions with some modifications. The coating and conjugate<br />

conditions were changed from manufacturer standard procedure of 4 h incubation at<br />

30 °C to an overnight incubation in the refrigerator at 4–6 °C. The absorbance was<br />

read at 405/492 nm with dual filter microplate reader (Asys Expert 96, Hitech, Austria)<br />

after 30 min, 1 h and 2 h incubation. A “cut-off” value was calculated according to<br />

manufacturer technical information (Bioreba AG, Switzerland).<br />

Results. During the surveys in Rubus spp. plantations chlorotic spots on leaves,<br />

yellowing, mottling, undersized height and crumbly fruits were observed. The presence<br />

of RBDV by DAS ELISA was detected in 70 % of surveyed plantations. From<br />

three surveyed raspberry farms all the tested samples were infected with RBDV. The<br />

incidence of RBDV in plant samples was 35 %.<br />

Raspberry cultivars ‘Balzam’ and ‘Sputnitsa’ were the most infected with RBDV<br />

among the other tested cultivars, but all the samples from cv. ‘Tulameen’ were negative<br />

with DAS ELISA (Fig.).<br />

Fig. Occurrence (%) of RBDV in tested raspberry samples<br />

Pav. RBDV paplitimas t<strong>ir</strong>tuose aviečių pavyzdžiuose, %<br />

167


For the tests for v<strong>ir</strong>us elimination possibilities in the field selected raspberry<br />

plants of cultivar ‘Babje Leto 2’ showed typical symptoms of RBDV infection, such<br />

as, undersized height, small, yellow foliages and crumbly fruits. According to DAS<br />

ELISA test results, it was proved that nine raspberry plants are infected with RBDV.<br />

Infected raspberry plants with typical RBDV symptoms and positive reaction in DAS<br />

ELISA test were propagated in vitro for five passages and obtained microplants were<br />

tested for RBDV infection after th<strong>ir</strong>d and fifth passage. After th<strong>ir</strong>d passage RBDV was<br />

detected in meristem clones originated from two mother plants, but after fifth passage<br />

RBDV was detected in meristem clones from four mother plants (Table 1).<br />

Table 1. RBDV in raspberry meristem clones after th<strong>ir</strong>d and fifth passage in vitro<br />

1 lentelė. RBDV aviečių meristeminiuose klonuose po trečiojo <strong>ir</strong> penktojo persodinimo<br />

in vitro<br />

Mother plant No.<br />

Motininio augalo Nr.<br />

3 rd passage*<br />

Trečiasis persodinimas<br />

5 th passage*<br />

Penktasis persodinimas<br />

1.13 - -<br />

2.18 + +<br />

2.19 + +<br />

2.21 - -<br />

3.13 - +<br />

3.14 - -<br />

3.15 - +<br />

* + RBDV detected by DAS ELISA; - RBDV not detected by DAS ELISA test<br />

* + RBDV aptikta DAS ELISA testu; - RBDV neaptikta DAS ELISA testu<br />

To improve RBDV elimination from infected microplants, infected meristem<br />

clones from three mother plants were treated by chemotherapy in mediums amended<br />

with different antiv<strong>ir</strong>al compounds. After 25 days different reaction of plants to the<br />

amendment of antiv<strong>ir</strong>al compounds in the medium was observed. The significantly<br />

highest amount of necrotic plants was observed in the medium containing ribav<strong>ir</strong>in.<br />

The percentage of survived plants in other two media containing antiv<strong>ir</strong>al chemicals<br />

was high and did not differ significantly from control medium (Table 2).<br />

Table 2. Amount of survived raspberry microplants (%) after 25 days of chemotherapy<br />

2 lentelė. Išlikusių aviečių mikro augalų kiekis (%) praėjus 25 dienoms po chemoterapijos<br />

Treatment<br />

Variantas<br />

Mother plant No.<br />

Motininio augalo Nr.<br />

2.18 2.19 3.15<br />

Control / Kontrolė 99 96 99<br />

Ribav<strong>ir</strong>in 30 mg L -1 70 60 83<br />

Azacytidine 25 mg L -1 100 100 100<br />

Dicyanamide 25 mg L -1 98 100 100<br />

γ 0.05<br />

0.04 0.04 0.03<br />

168


After chemotherapy microplants were tested with DAS ELISA for RBDV infection.<br />

Meristem clones originated from mother plants 2.18 and 2.19 after chemotherapy<br />

showed positive results on RBDV (Table 3).<br />

Table 3. The efficiency of chemotherapy<br />

3 lentelė. Chemoterapijos efektyvumas<br />

Mother plants No. Control<br />

Motininio augalo Nr. Kontroė<br />

Ribav<strong>ir</strong>in Azacytidine Dicyanamide<br />

2.18. + + + n/a<br />

2.19. + + + +<br />

3.15. + + - -<br />

The RBDV elimination with ribav<strong>ir</strong>in, azacytidine or dicyanamide for those clones<br />

was unsuccessful. Meristem clones originated from mother plant 3.15 remained<br />

infected with RBDV after treatment with ribav<strong>ir</strong>in, but treatment with azacytidine or<br />

dicyanamide was successful according to DAS ELISA test.<br />

Discussion. The research presented here demonstrated that RBDV is widespread<br />

in raspberry plantations in Latvia and that all commonly grown cultivars are infected.<br />

In the countries where certification programmes are not established, like in Chile, the<br />

incidence of RBDV is 35–68 % (Medina et al., 2006), what corresponds to the data<br />

obtained in this study. The percentage of infected plants in commercial plantations<br />

was lower than in varietal collections. Possibly it could be explained that nowadays<br />

farmers prefer to grow new varieties with Bu gene that are resistant to RBDV Scottish<br />

strain (RBDV-S). However, another RBDV-RB strain that widely occurs in central<br />

Europe, Russia and Siberia is able to infect cultivars that are resistant to S strain<br />

(Diekmann et al., 1994; Knight, Barbara, 1999). Although no information is available<br />

if Russian raspberry cultivars have gene Bu, our research showed that in Latvia<br />

common raspberry cultivars from Eastern Europe, such as ‘K<strong>ir</strong>zach’, ‘Balzam’ and<br />

‘Sputnica’, are highly infected with RBDV, probably with RBDV-RB strain. RBDV<br />

infection was not found in collected samples from raspberry cultivar ‘Tulameen’,<br />

which lack resistance gene Bu and in other European countries was found that ‘Tulameen’<br />

is susceptible to both strains (Chard et al., 2001; Wood, Hall, 2001; Martin,<br />

1999). It indicates that this cultivar was probably introduced as v<strong>ir</strong>us-free stock in<br />

Latvia and had not yet been infected with RBDV in the fields.<br />

The RBDV elimination by combination of micro-propagation and chemotherapy<br />

did not give the expected results. As shown in other studies RBDV is difficult or<br />

impossible to eliminate from certain genotypes of raspberry by meristem tip culture<br />

(Wang, Valkonen, 2009). No one of the used antiv<strong>ir</strong>al compounds eliminated the v<strong>ir</strong>us<br />

in raspberry meristem clones from all the mother plants. Ribav<strong>ir</strong>in has been demonstrated<br />

to give highest results in v<strong>ir</strong>us elimination in comparison with other antiv<strong>ir</strong>al<br />

chemicals (Nascimento et al., 2003). However, ribav<strong>ir</strong>in was shown be effective in<br />

elimination fruit v<strong>ir</strong>uses from apple, raspberries and Prunus spp. (Cieslinska, 2007;<br />

Sharma et al., 2007). In our work better results were obtained in treatment by azacytidine<br />

and dicyanamide for meristem clones originated from mother plant 3.15. This<br />

could be explained by the combination of host and v<strong>ir</strong>us genotype as shown in other<br />

169


studies that the efficiency of v<strong>ir</strong>us elimination in host species differs depending on the<br />

v<strong>ir</strong>us and the host genotype (Wang et al., 2008). Possibly the meristem clones 3.15<br />

were infected with other v<strong>ir</strong>us strain than clones from mother plants 2.18 and 2.19.<br />

Obtained results suggest that plants were infected with stable v<strong>ir</strong>us strains, which<br />

cannot be readily eliminated with chemotherapy and micro-propagation techniques. To<br />

improve RBDV elimination effect it is necessary to combine tissue culture techniques<br />

with chemotherapy and thermotherapy. The results obtained in this study will be useful<br />

in the establishment of v<strong>ir</strong>us-free planting material propagation and certification<br />

program in the country. The work is being continued.<br />

Conclusions. 1. In Latvia commonly grown raspberry cultivars from Eastern Europe,<br />

such as ‘K<strong>ir</strong>zach’, ‘Balzam’ and ‘Sputnica’, are highly infected with RBDV.<br />

2. Raspberry cultivar ‘Tulameen’ possibly was introduced as v<strong>ir</strong>us-free stock in<br />

Latvia and had not yet been infected with RBDV in the fields.<br />

3. Antiv<strong>ir</strong>al compounds ribav<strong>ir</strong>in, azacytidine and dicyanamide alone are not<br />

enough effective for RBDV elimination from raspberry in vitro.<br />

4. In this experiment treated meristem plants were infected with stable v<strong>ir</strong>us<br />

strain, which cannot be readily eliminated with micro-propagation techniques and<br />

chemotherapy.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 05<br />

References<br />

1. Bittner H., Schenk G., Schuster G., Kluge S. 1989. Elimination by chemotherapy<br />

of potato v<strong>ir</strong>us S from potato plants grown in vitro. Potato Research, 32 (2):<br />

175–179.<br />

2. Chard J., Irvine S., Roberts A. M. I., Nevison I. M., McGavin W. J., Jones A. T.<br />

2001. Incidence and distribution of Raspberry bushy dwarf v<strong>ir</strong>us in commercial<br />

red raspberry (Rubus idaeus) crops in Scotland. Plant Disease, 85 (9): 985–988.<br />

3. Cieslinska M. 2003. Elimination of Strawberry mottle v<strong>ir</strong>us (SMoV) from<br />

Fragaria v<strong>ir</strong>giniana UC-11 indicator plants by thermotherapy and chemotherapy.<br />

Phytopathologia polonica, 30: 51–59.<br />

4. Cieslinska M. 2007. Application of thermo- and chemotherapy in vitro for<br />

eliminating some v<strong>ir</strong>uses infecting Prunus sp. fruit trees. Journal of Fruit and<br />

Ornamental Plant Research, 15: 117–124.<br />

5. Diekmann M., Frison E. A., Putter T. (eds.) 1994. FAO/IPGRI Technical<br />

Guidelines for the Safe Movement of Small Fruit Germplasm. Food and<br />

Agriculture Organization of the United Nations, Rome/International Plant<br />

Genetic Resources Institute. 70–72.<br />

170


6. Jones A. T., McGavin W. J., Mayo M. A., Angel-Diaz J. E., Kärenlampi S. O.,<br />

Kokko H. 2000. Comparisons of some properties of two laboratory variants of<br />

Raspberry bushy dwarf v<strong>ir</strong>us (RBDV) with those of three previously characterised<br />

RBDV isolates. European Journal of Plant Pathology, 106: 623–632.<br />

7. Knight V. H., Barbara D. J. 1999. A review of Raspberry bushy dwarf v<strong>ir</strong>us<br />

at Hri-East Malling and the situation on a sample of commercial holdings in<br />

England in 1995 and 1996. Acta Horticulturae, 505: 263–271.<br />

8. Manganaris G. A., Economou A. S., Boubourakas I. N., Katis N. I. 2003.<br />

Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture<br />

in nectarine. Plant Cell Reports, 22: 195–200.<br />

9. Martin R. R. 1999. Raspberry v<strong>ir</strong>uses in Oregon, Washington and British<br />

Columbia. Acta Horticulturae, 505: 259–262.<br />

10. Mavrič Pleško I., V<strong>ir</strong>šček Marn M., Š<strong>ir</strong>ca S., Urek G. 2009. Biological, serological<br />

and molecular characterization of Raspberry bushy dwarf v<strong>ir</strong>us from grapevine<br />

and its detection in the nematode Longidorus juvenilis. European Journal of<br />

Plant Pathology, 123: 261–268.<br />

11. Medina C., Matus J. T., Zuniga M., San-Martin C., Arce-Johnson P. 2006.<br />

Occurrence and distribution of v<strong>ir</strong>uses in commercial plantings of Rubus, Ribes<br />

and Vaccinium species in Chile. Ciencia e Investigacion Agraria, 33(1): 23–<strong>28</strong>.<br />

12. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays<br />

with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473–497.<br />

13. Nascimento L. C., Pio-Ribe<strong>ir</strong>o G., Willadino L., Andrade G. P. 2003. Stock indexing<br />

and Potato v<strong>ir</strong>us Y elimination from potato plants cultivated in vitro.<br />

Scientia Agricola, 60 (3): 525–530.<br />

14. Natsuaki T., Mayo M. A., Jolly C. A., Murant A. F. 1991. Nucleotide sequence<br />

of Raspberry bushy dwarf v<strong>ir</strong>us RNA-2: a bicistronic component of a bipartite<br />

genome. Journal of General V<strong>ir</strong>ology, 72: 2 183–2 189.<br />

15. Sharma S., Singh B., Rani G., Zaidi A. A., Hallan V., Nagpal A., V<strong>ir</strong>k G. S.<br />

2007. Production of Indian citrus ringspot v<strong>ir</strong>us free plants of kinnow employing<br />

chemotherapy coupled with shoot tip grafting. Journal Central European<br />

Agriculture, 8(1): 1–8.<br />

16. Spiegel S., Frison E. A., Converse R. H. 1993. Recent developments in therapy<br />

and v<strong>ir</strong>us-detection procedures for international movement of clonal plant germ<br />

plasm. Plant Disease, 77(12): 1 176–1 180.<br />

17. Strik B., Martin R. R. 2003. Impact of Raspberry bushy dwarf v<strong>ir</strong>us on ‘Marion’<br />

blackberry. Plant Disease, 87(3): 294–296.<br />

18. Wang Q., Cuellar W. J., Rajamäki M. L., H<strong>ir</strong>ata Y., Valkonen J. P. T. 2008.<br />

Combined thermotherapy and cryotherapy for efficient v<strong>ir</strong>us eradication: relation<br />

of v<strong>ir</strong>us distribution, subcellular changes, cell survival and v<strong>ir</strong>al RNA degradation<br />

in shoot tips. Molecular Plant Pathology, 9(2): 237–250.<br />

19. Wang Q., Valkonen J. P. T. 2009. Cryotherapy of shoot tips: novel pathogen<br />

eradication method. Trends in Plant Science, 14(3): 119–122.<br />

20. Wood G. A., Hall H. K. 2001. Source of Raspberry bushy dwarf v<strong>ir</strong>us in Rubus<br />

in New Zeeland, and the infectibility of some newer cultivars to this v<strong>ir</strong>us. New<br />

Zealand Journal of Crop and Horticultural Science, 29: 177–186.<br />

171


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Aviečių žemaūgiškumo v<strong>ir</strong>uso (RBDV) paplitimas Latvijoje <strong>ir</strong><br />

v<strong>ir</strong>uso naikinimas in vitro chemoterapija<br />

N. Pūpola, L. Lepse, A. Kāle, I. Moročko-Bičevska<br />

Santrauka<br />

Siekiant nustatyti aviečių žemaūgiškumo v<strong>ir</strong>uso (RBDV) paplitimą <strong>ir</strong> pasisk<strong>ir</strong>stymą<br />

Latvijoje, 2007 metų pavasarį buvo išt<strong>ir</strong>tos 27 Rubus spp. komercinės <strong>ir</strong> veislių kolekcijų plantacijos.<br />

Analizei buvo surinkti 224 lapų pavyzdžiai priklausantys 59 genotipams. Siekiant išt<strong>ir</strong>ti<br />

v<strong>ir</strong>uso pašalinimo in vitro iš natūraliai užkrėstų veislės ‘Babje leto 2’ augalų galimybes, buvo panaudotas<br />

meristeminės kultūros <strong>ir</strong> sk<strong>ir</strong>tingų antiv<strong>ir</strong>usinių cheminių medžiagų derinys. Aiškinantis<br />

užkrėstumą šiuo v<strong>ir</strong>usu <strong>ir</strong> pastarojo pašalinimo veiksmingumą, augalų pavyzdžiai buvo patikrinti<br />

imunofermentiniu metodu (DAS-ELISA), panaudojant polikloninius antikūnius. Gauti rezultatai<br />

parodė, kad RBDV paplitęs 70 % t<strong>ir</strong>tų aviečių plantacijų. RBDV paplitimas t<strong>ir</strong>tuose augaluose<br />

siekė 35 % <strong>ir</strong> atsk<strong>ir</strong>ose veislėse labai skyrėsi. Daugelis populiariausių Rytų Europos veislių, kaip<br />

‘K<strong>ir</strong>zach’, ‘Balzam’ <strong>ir</strong> ‘Sputnica’, buvo užkrėstos AŽV. V<strong>ir</strong>uso nerasta veislės ‘Tulameen’ pavyzdžiuose.<br />

Mėginimas išnaikinti RBDV, derinant meristeminę kultūrą su ribav<strong>ir</strong>inu terpėje, visuose<br />

apdorotuose augaluose buvo nesėkmingas. Apdorojimas azacitidinu <strong>ir</strong> dicianamidu paveikė tik<br />

tuos meristemų klonus, kurie buvo kilę iš motininio augalo. Tai rodo, kad kai kurie augalai buvo<br />

užkrėsti stabiliu v<strong>ir</strong>uso izoliatu, kurio chemoterapija <strong>ir</strong> in vitro dauginimo metodais išnaikinti<br />

neįmanoma. Norint sukurti veiksmingas RBDV naikinimo priemones, reikia tiksliai apibūdinti<br />

avietes užkrečiančias v<strong>ir</strong>uso atmainas <strong>ir</strong> optimizuoti in vitro metodus. Tyrimai bus tęsiami.<br />

Reikšminiai žodžiai: antiv<strong>ir</strong>usinės medžiagos, chemoterapija, DAS-ELISA, meristeminė<br />

kultūra, Rubus spp.<br />

172


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Toxicity of biopesticides to green apple aphid in<br />

apple-tree<br />

Laimutis Raudonis, Alma Valiuškaitė, Laisvūnė Duchovskienė,<br />

Elena Survilienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail l.raudonis@lsdi.lt<br />

During two-year trial there was examined the toxicity of biopesticides BioNature R2000<br />

(a. i. azad<strong>ir</strong>achta indica 210 g/l, Pinus resinosa 180 g/l, Ricinus communis), Bioshower (a. i.<br />

100 % fatty acids) and Insecticidal Soap (a. i. 20 % fatty acids) to green apple aphid (Aphis pomi<br />

Deg.) in apple-tree at the Lithuanian Institute of Horticulture. BioNature R2000, Bioshower<br />

and Insecticidal Soap applied to A. pomi were moderately toxic after 3 days and very toxic after<br />

14 days. It is allowed to use biopesticides BioNature R2000, Bioshower and Insecticidal Soap<br />

in organic farming in many countries and according to the trial data they could be effectively<br />

applied for control of green apple aphid in apple growing.<br />

Key words: biopesticides, green apple aphid, toxicity.<br />

Introduction. European guidelines for fruit production requ<strong>ir</strong>e restrictions in<br />

pesticide use (Dickler, Schaefermeyer, 1991). On the other hand, increasing consumer<br />

concerns over the use of pesticides has lead growers to adopt more env<strong>ir</strong>onmentally<br />

friendly Integrated Pest Management (IPM) or Organic Farming (OF) approaches.<br />

The Integrated Pest Management (IPM), which is based on selective toxicity<br />

of pesticides to the invertebrate pests and harmless to predatory mites and insects,<br />

became the most relevant strategy of plant protection (Gruys et al., 1980; Tuovinen,<br />

1992; Edland, 1994; Leake, 2000; Cuthbertson, Murchie, 2003). For the development<br />

of successful IPM and OF strategies, information is requ<strong>ir</strong>ed on the d<strong>ir</strong>ect effect of<br />

chemicals upon the invertebrate pests of a given ecosystem. The toxicity of pesticides<br />

on pests has been widely studied in many countries, using a range of different chemical<br />

pesticides at different rates on various developmental stages (Duso et al., 1992;<br />

Sterk et al., 1994; Kim, Yoo, 2002; Choi et al., 2003; Hardman et al., 2003; Cuthbertson,<br />

Murchie, 2003; Raudonis et al., 2004; Martínez-Villar et al., 2005). However,<br />

the existing active substances of pesticides are reviewed by European Commission<br />

and many old with detrimental effect active substances will be withdrawn from the<br />

market.<br />

173


The organic market has grown exponentially in Europe during the last ten years.<br />

However, the organic fruit industry has shown the lowest growth rates (1–5 % market<br />

share) in comparison with the other approaches. One major reason is the high production<br />

risk due to high pest pressure and lack of control means (Tamm, 2004). Only<br />

some biopesticides, like Insecticidal soap, Azad<strong>ir</strong>achtin and etc. are allowed to use<br />

for pest control in organic farming (Compendium of UK Organic standards, 2006).<br />

Only few studies on toxicity of biopesticides to A. pomi were carried out (Castagnoli<br />

et al., 2002).<br />

The aim of this study was to investigate the toxicity of some biopesticides on A.<br />

pomi.<br />

Object, methods and conditions. Field trials were carried out on apple-trees<br />

under organic growing conditions at the Lithuanian Institute of Horticulture in 2005–<br />

2006. Biopesticides BioNature R2000 3.0 l ha l -1 (a. i. Azad<strong>ir</strong>achtin 210 g l -1 , Pinus<br />

resinosa 180 g l -1 , Ricinus communis), Bioshower 5.0 l ha l -1 (a. i. 100 % fatty acids)<br />

and Insecticidal Soap 20.0 l ha -1 (a. i. 20 % fatty acids) were tested. Apple-trees by<br />

naturally occurring green apple aphid (Aphis pomi Deg.) were d<strong>ir</strong>ectly sprayed with<br />

spray mixture equivalent to 500 l/ha at 73 growth stage according to BBCH scale<br />

(Meier, 1997). 5 trees were sprayed and 3 trees assessed for each replicate. The treatments<br />

were repeated four times at random plot distribution.<br />

The number of living aphids were counted or estimated on 10 previously marked<br />

extension shoots per plot. The f<strong>ir</strong>st assessment was made immediately before application<br />

at 73 growth stage, the second – 3 (73 growth stage) and the last 14 (75 growth<br />

stage) days after application.<br />

Mortality of aphids was calculated: x = 100 (1 - Ab/Ba) (x – mortality, %, A –<br />

number of aphids before spraying in untreated plot, B – before spraying in treated plot,<br />

a – after spraying in untreated plot, b – after spraying in treated plot).<br />

The mortality of aphids was explained according to the quantitative toxicity<br />

categories employed by the International Organization for Biological Control for<br />

assessment of pesticide toxicity to predatory and phytophagous mites in field trials:<br />

non-toxic (< 25 % mortality), slightly toxic (25–50 %), moderately toxic (51–75 %),<br />

very toxic (> 75 %) (Hassan et al., 1985).<br />

The number of aphids was compared among treatments in this study with a<br />

single factor analysis of variance (ANOVA). Specific differences were identified with<br />

Duncan’s multiple range test.<br />

Results. Tables 1 and 2 describes the effect and mortality of biopesticides to<br />

green apple aphid. In 2005 there was increase in the population of A. pomi in untreated<br />

plots. There were observed from 185 to 237 and from 82 to 96 A. pomi per<br />

10 shoots in 2005 and 2006, respectively. All the tested products (BioNature R2000,<br />

Bioshower and Insecticidal soap) significantly reduced mean numbers of A. pomi.<br />

The mortality of BioNature R2000 3.0 l ha -1 to A. pomi ranged from 67.0 to 78.5 %,<br />

Bioshower 5.0 l ha -1 – 68.4–83.1 % and Insecticidal soap 20.0 l ha -1 – 64.9–84.8 %.<br />

BioNature R2000, containing 210 g l -1 Azad<strong>ir</strong>achtin was moderately and/or very toxic<br />

to A. pomi. Higher toxicity of BioNature R2000 to A. pomi was achieved 14 days<br />

after treatment than 3 days after treatment. Insecticidal soap and Bioshower were<br />

rated as moderately or very toxic to A. pomi.<br />

174


Table 1. Effects of biopesticides on survival of Green apple aphid (A. pomi) in<br />

apple-tree in 2005<br />

1 lentelė. Biopesticidų poveikis žaliųjų obelinių amarų (A. pomi) m<strong>ir</strong>tingumui, 2005 m.<br />

Treatment<br />

Variantai<br />

Rate<br />

Norma<br />

(l ha -1 )<br />

Mean number of aphids per 10 shoots<br />

Vidutinis amarų skaičius 10 ūglių<br />

before<br />

treatment<br />

A<br />

prieš<br />

apdorojimą<br />

3 days after<br />

treatment<br />

3 dienos po<br />

apdorojimo<br />

14 days after<br />

treatment<br />

14 dienų po<br />

apdorojimo<br />

Mortality<br />

M<strong>ir</strong>tingumas (%)<br />

3 days after<br />

treatment<br />

3 dienos po<br />

apdorojimo<br />

14 days after<br />

treatment<br />

14 dienų po<br />

apdorojimo<br />

Control<br />

- 185 a 153 b 111 b - -<br />

Nepurkšta<br />

BioNature R2000 3.0 220 ab 60 a 35 a 67.0 a 78.5 a<br />

Bioshower 5.0 237 b 62 a 24 a 68.4 a 83.1 a<br />

Insecticidal Soap 20.0 231 b 67 a 21 a 64.9 a 84.8 a<br />

Insekticidinis muilas<br />

Means followed by the same letter are not different significantly (P = 0.05) according to<br />

Duncan’s multiple range test<br />

Tomis pačiomis raidėmis pažymėtos reikšmės pagal Dunkano kriterijų (P = 0,05) iš esmės nesisk<strong>ir</strong>ia<br />

Table 2. Effects of biopesticides on survival of Green apple aphid (A. pomi) in<br />

apple-tree in 2006<br />

2 lentelė. Biopesticidų poveikis žaliųjų obelinių amarų (A. pomi) m<strong>ir</strong>tingumui, 2006 m.<br />

Treatment<br />

Variantai<br />

Rate<br />

Norma<br />

(l ha -1 )<br />

Mean number of aphids per 10 shoots<br />

Vidutinis amarų skaičius 10 ūglių<br />

before<br />

treatment<br />

A<br />

prieš<br />

apdorojimą<br />

3 days after<br />

treatment<br />

3 dienos po<br />

apdorojimo<br />

14 days after<br />

treatment<br />

14 dienų po<br />

apdorojimo<br />

Mortality<br />

M<strong>ir</strong>tingumas (%)<br />

3 days after<br />

treatment<br />

3 dienos po<br />

apdorojimo<br />

14 days after<br />

treatment<br />

14 dienų po<br />

apdorojimo<br />

Control<br />

- 82 a 89 b 81 c - -<br />

Nepurkšta<br />

BioNature R2000 3.0 96 b 30 a 26 b 71.2 a 76.6 a<br />

Bioshower 5.0 95 ab 27 a 16 a 73.8 a 82.9 b<br />

Insecticidal Soap 20.0 91 ab 23 a 14 a 74.7 a 84.4 b<br />

Insekticidinis muilas<br />

Means followed by the same letter are not different significantly (P = 0.05) according to<br />

Duncan’s multiple range test<br />

Tomis pačiomis raidėmis pažymėtos reikšmės pagal Dunkano kriterijų (P = 0,05) iš esmės nesisk<strong>ir</strong>ia<br />

Discussion. Little is known concerning the toxicity of biopesticides on pests in<br />

orchards. The toxicity of biopesticides on aphids has been studied in some experiments,<br />

using Insecticidal soap or products based on Azad<strong>ir</strong>achtin (Schuster, Stansly,<br />

2000; Ahmad et al., 2003; Bostanian et al., 2005; Bostanian, Akalach, 2006; Karagounis<br />

et al., 2006; Kraiss, Cullen, 2008; Tremblay et al., 2008). However, studies<br />

showed controversial toxicity of biopesticides depending on pest or the<strong>ir</strong> predators<br />

life stage, species, abiotic factors or even different years (Imai et al., 1995; Schuster,<br />

175


Stansly, 2000; Ahmad et al., 2003; Karagounis et al., 2006; Kraiss, Cullen, 2008).<br />

BioNature R2000, containing 210 g l -1 Azad<strong>ir</strong>achtin was moderately and/or very<br />

toxic to A. pomi. Little is known on toxicity of BioNature R2000 to A. pomi from<br />

other studies. Similar toxicity results on Dysaphis plantaginea Passerini have been<br />

obtained in Germany. Various preparations based on Azad<strong>ir</strong>achta indica were highly<br />

efficient against aphids (Hummel, Kleeberg, 1997; Wyss, 1997). In our study higher<br />

toxicity of BioNature was achieved 14 days after treatment than 3 days after treatment.<br />

It can be explained that Azad<strong>ir</strong>achtin does not kill d<strong>ir</strong>ectly and insects remain alive,<br />

but it stops insects to take up food. Only few days later insects become inactive, move<br />

uncoordinatedly and cannot molt successfully and in consequence it dies (Kleeberg et<br />

al., 1997). There are not published data on toxicity of Bioshower to A. pomi. However,<br />

both formulations of Bioshower and Insecticidal soap are based on fatty acids. Some<br />

authors have found that Insecticidal soap provided significant control of populations<br />

of D. plantaginea, A. pomi and Myzus persicae Sulzer or other aphid species (Lawson,<br />

We<strong>ir</strong>es, 1991; Reuter et al., 1993; Imai et al., 1995; Karagounis et al., 2006; Kraiss,<br />

Cullen, 2008). Similar results were obtained in our test, whereas Insecticidal soap and<br />

Bioshower were rated as moderately or very toxic to A. pomi.<br />

Conclusions. In conclusion, the results of this study show that BioNature R2000,<br />

Bioshower and Insecticidal Soap are from moderately toxic to very toxic to A. pomi.<br />

The mortality of BioNature R2000 3.0 l ha -1 to A. pomi ranged from 67.0 to 78.5 %,<br />

Bioshower 5.0 l ha -1 – 68.4–83.1 % and Insecticidal soap 20.0 l ha -1 – 64.9–84.8 %.<br />

All the tested biopesticides are allowed to use in organic farming in many countries<br />

and according to the trial data could be effectively applied for control of A. pomi in<br />

apple growing.<br />

Gauta 2009 06<br />

Parengta spausdinti 2009 08 04<br />

References<br />

1. Ahmad M., Ossiewatsch H. R., Basedow T. 2003. Effects of neem-treated aphids<br />

as food/hosts on the<strong>ir</strong> predators and parasitoids. Journal of Applied Entomology,<br />

127(8): 458–464.<br />

2. Bostanian N. J., Akalach M. 2006. The effect of indoxacarb and five other insecticides<br />

on Phytoseiulus persimilis (Acari : Phytoseiidae), Amblyseius fallacis<br />

(Acari : Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera :<br />

Anthocoridae). Pest Management Science, 62(4): 334–339.<br />

3. Bostanian N. J., Akalach M., Chiasson H. 2005. Effects of a Chenopodium-based<br />

botanical insecticide/acaricide on Orius insidiosus (Hemiptera : Anthocoridae)<br />

and Aphidius colemani (Hymenoptera : Braconidae). Pest Management Science,<br />

61(10): 979–984.<br />

176


4. Castagnoli M., Angeli G., Liguori M., Forti D., Simoni S. 2002. Side effects of<br />

botanical insecticides on predatory mite Amblyseius andersoni (Chant). Journal<br />

of Pest Science, 75(5): 122–127.<br />

5. Choi W., Lee S. G., Park H. M., Ahn Y. J. 2003. Toxicity of Plant Essential<br />

Oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis<br />

(Acari: Phytoseiidae). Journal of Economic Entomology, 97(2): 553–558.<br />

6. Compendium of UK Organic standards. 2006. http://www.defra.gov.uk/farm/<br />

organic/standards/<br />

7. Cuthbertson A. G. S., Murchie A. K. 2003. The impact of fungicides to control<br />

apple scab (Venturia inaequalis) on the predatory mite Anystis baccarum and<br />

its prey Aculus schlechtendali (apple rust mite) in Northern Ireland Bramley<br />

orchards. Crop protection, 22: 1125–1130.<br />

8. Dickler E., Schafermeyer S. 1991. General principles, guidelines and standards<br />

for integrated production of pome fruits in Europe and procedures for endorsement<br />

of national or regional guidelines and standards. IOBC/WPRS Bulletin,<br />

14(3): 1–67.<br />

9. Duso C., Camporese P., Geest L. P. S. 1992. Toxicity of a number of pesticides<br />

to strains of Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae).<br />

Entomophaga, 37: 363–372.<br />

10. Edland T. 1994. Side-effects of fungicide and insecticide sprays on phytoseiid<br />

mites in apple orchards. Norwegian Journal of Agricultural sciences, 17:<br />

195–204.<br />

11. Gruys P., Jong D. J., Mandersloot H. J. 1980. Implementation of integrated control<br />

in orchards. In: A. K. Minks, P. Gruys (eds.). Integrated control of insects<br />

pests in the Netherlands. Wageningen: Pudoc, 11–17.<br />

12. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian N. J. 2003. An index for<br />

selective toxicity of miticides to phytophagous mites and the<strong>ir</strong> predators based<br />

on orchard trials. Pest Management Science, 59: 1324–1332.<br />

13. Hassan E., Oomen P. A., Overmeer W. P., Plevoets J. P., Reboulet J. N.,<br />

Rieckmann W., Samsoe-Petersen L., Sh<strong>ir</strong>es S. W., Staubli A., Stevensen J.,<br />

Tuset J. J., Vanwetswinkel G., Zon A. Q. 1985. Standard methods to the test of<br />

side-effects of pesticides on natural enemies of insects and mites developed by<br />

the IOBC/WPRS Working Group “Pesticides and Beneficial Organisms”, OEPP/<br />

EPPO Bulletin, 15: 214–255.<br />

14. Hummel E., Kleeberg H. 1997. New results on the practical application of<br />

NeemAzal-formulations. In: K. H. Hoffmann, W. Volkl (eds). Mitteilungen der<br />

deutschen gesellschaft fuer allgemeine und angewandte entomologie. Bremen,<br />

331–336.<br />

15. Imai T., Tsuchiya S., Fujimori T. 1995. Humidity effects on activity of insecticidal<br />

soap for the Green Peach Aphid, Myzus-Persicae (Sulzer) (Hemiptera,<br />

Aphididae). Applied Entomology And Zoology, 30(1): 185–188.<br />

16. Karagounis C., Kourdoumbalos A. K., Margaritopoulos J. T., Nanos G. D.,<br />

Tsitsipis J. A. 2006. Organic farming-compatible insecticides against the aphid<br />

Myzus persicae (Sulzer) in peach orchards. Journal Of Applied Entomology,<br />

130(3): 150–154.<br />

177


17. Kim S. S., Yoo S. S. 2002. Comparative toxicity of some acaricides to the predatory<br />

mite, Phytoseiulus persimilis and the two spotted spider mite, Tetranychus<br />

urticae. BioControl, 47(5): 563–573.<br />

18. Kleeberg H., Hummel E., Tross R. 1997. Different strategies to control the rosy<br />

apple aphid Dysaphis plantaginea in organic apple growing. In K. H. Hoffmann,<br />

W. Volkl (eds.). Mitteilungen der deutschen gesellschaft fuer allgemeine und<br />

angewandte entomologie. Bremen, 223–226.<br />

19. Kraiss H., Cullen E. M. 2008. Efficacy and nontarget effects of reduced-risk<br />

insecticides on Aphis glycines (Hemiptera : Aphididae) and its biological control<br />

agent Harmonia axyridis (Coleoptera: Coccinellidae). Journal Of Economic<br />

Entomology, 101(2): 391–398.<br />

20. Lawson D. S., We<strong>ir</strong>es R. W. 1991. Management of European red mite (Acari,<br />

Tetranychidae) and several aphid species on apple with petroleum oils and an<br />

insecticidal soap. Journal of Economic Entomology, 84(5): 1 550–1 557.<br />

21. Leake A. 2000. The development of integrated crop management in agricultural<br />

crops: comparisons with conventional methods. Pest Management Science,<br />

56(11): 950–953.<br />

22. Martínez-Villar E., Sáenz-De-Cabezón F. J., Moreno-Grijalba F., Marco<br />

V., Pérez-Moreno I. 2005. Effects of azad<strong>ir</strong>achtin on the two-spotted spider<br />

mite, Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied<br />

Acarology, 35(3): 215–222.<br />

23. Meier U. 1997. Growth stages of Mono- and Dicotyledonous plants. BBCH<br />

Monograph. Berlin: Blackwell Wissenschafts-Verlag.<br />

24. Raudonis L., Survilienė E., Valiuškaitė A. 2004. Toxicity of Pesticides to Predatory<br />

Mites and Insects in Apple-tree site under field conditions. Env<strong>ir</strong>onmental<br />

Toxicology, 19 (4): 291–295.<br />

25. Reuter L. L., Toscano N. C., Perring T. M. 1993. Modification of feeding-behavior<br />

of Myzus-Persicae (Homoptera, Aphididae) by selected compounds.<br />

Env<strong>ir</strong>onmental Entomology, 22(5): 915–919.<br />

26. Schuster D. J., Stansly P. A. 2000. Response of two lacewing species to biorational<br />

and broad-spectrum insecticides. Phytoparasitica, <strong>28</strong>(4): 297–304.<br />

27. Sterk G., Creemers P., Merckx K. 1994. Testing the side effects of pesticides on<br />

the predatory mite Typhlodromus pyri (Acari, Phytoseiidae) in the field trials.<br />

IOBC/WPRS Bull, 17(10): 27–40.<br />

<strong>28</strong>. Tamm L., Haseli A., Fuchs J. G., Weibel F. P., Wyss E. 2004. Organic fruit production<br />

in humid climates of Europe: Bottlenecks and new approaches in disease<br />

and pest control. Acta Horticulturae, 638: 333–339.<br />

29. Tremblay B., Belanger A., Brosseau M., Boivin G. 2008. Toxicity and sublethal<br />

effects of an insecticidal soap on Aphidius colemani (Hymenoptera : Braconidae).<br />

Pest Management Science, 64(3): 249–254.<br />

30. Tuovinen T. 1992. Predatory mites in Finish apple orchards. Acta Phyt. Ent.<br />

Hungarica, 27(2): 609–613.<br />

31. Wyss E. 1997. Different strategies to control the rosy apple aphid Dysaphis<br />

plantaginea in organic apple growing. In: K. H. Hoffmann, W. Volkl (eds.).<br />

Mitteilungen der deutschen gesellschaft fuer allgemeine und angewandte entomologie.<br />

Bremen, 233–236.<br />

178


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Biopesticidų toksiškumas žaliesiems obeliniams amarams<br />

L. Raudonis, A. Valiuškaitė, L. Duchovskienė, E. Survilienė<br />

Santrauka<br />

Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute dvejus metus t<strong>ir</strong>tas biopesticidų<br />

BioNature R2000 (a.i. azad<strong>ir</strong>achta indica 210 g/l, Pinus resinosa 180 g/l, Ricinus communis),<br />

Bioshower (v. m. 100 % riebiosios rūgštys) <strong>ir</strong> insekticidinio muilo (v. m. 20 % riebiosios<br />

rūgštys) toksiškumas žaliesiems obeliniams amarams (Aphis pomi Deg.). BioNature<br />

R2000, Bioshower <strong>ir</strong> insekticidinis muilas praėjus 3 dienoms po purškimo buvo vidutiniškai<br />

toksiški žaliesiems obeliniams amarams, o praėjus 14 dienų – labai toksiški. Biopesticidai<br />

BioNature R2000, Bioshower <strong>ir</strong> insekticidinis muilas yra leidžiami naudoti ekologi -<br />

niuose ūkiuose kenkėjams naikinti daugelyje šalių. Mūsų tyrimai rodo, kad šie produktai<br />

yra efektyvūs nuo žaliųjų obelinių amarų <strong>ir</strong> gali būti naudojami ekologiškai auginant obelis.<br />

Reikšminiai žodžiai: biopesticidai, toksiškumas, žalieji obeliniai amarai.<br />

179


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Integrated aproach of apple scab management using<br />

iMETOS warning system<br />

Laimutis Raudonis, Alma Valiuškaitė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail l.raudonis@lsdi.lt<br />

In 2007–2008 in field trials two different apple scab control strategies were compared: the<br />

current strategy – conventional disease management (CDM) and integrated disease management<br />

(IDM), according to scab infection periods. A new internet based scab warning system<br />

iMETOS was used for detection of infection periods and forecast of disease intensity at three<br />

levels: light, moderate and severe. According to CDM, apple-trees were sprayed 9 times per<br />

season. Scab warning system gave a possibility to optimize the use of fungicides against scab<br />

and to reduce to 7–8 instead 9 the total spray applications per season. CDM and IDM gave high<br />

scab control in apple-trees and there were not found any essential difference in scab incidence<br />

between two control strategies. An efficiency of IDM and CDM against disease incidence on<br />

leaves was 90.5–95.1 and 88.5–94.1 %, respectively. Efficiency against disease incidence on<br />

fruits raged from 95.1 to 95.6 and from 91.2 to 94.1 %, respectively.<br />

Key words: ascospores, conidia, conventional disease management, efficacy, infection,<br />

iMETOS warning system, integrated, .<br />

Introduction. Venturia inaequalis causal agent of apple scab is the most important<br />

apple disease and its control depends almost exclusively on frequent use of<br />

fungicides. 75 % of the pesticide use in apple production is related to control of<br />

fungal diseases, in which apple scab has a share of 70 % (Creemers, Laer, 2006). European<br />

agriculture faced the strict demands to decrease the use of pesticides in order<br />

to reduce any human or env<strong>ir</strong>onmental hazards; therefore, the need for evaluation<br />

and reduction of the use of pesticides is expressed. To obtain the reduction of the use<br />

of fungicides without any significant damage to the crop, the control of apple scab<br />

should be based on registration of climatic data, scouting of biotic parameters, infection<br />

risks and simulation disease models. The bioecology of V. inaequalis has been<br />

widely studied in many countries. The development of infection risks of apple scab<br />

highly depends on apple cultivar susceptibility, inoculum of the pathogen in orchards,<br />

ascospore release and the influence of such parameters as a<strong>ir</strong> temperature, duration of<br />

leaf wetness, relative humidity or light (Gadoury et al., 1998; Stensvand et al., 1998;<br />

181


Li, Xu, 2002; Rossi et al., 2003; Holb et al., 2004; Holb et al., 2005; Carisse et al.,<br />

2007). Based on a<strong>ir</strong> temperature duration of leaf wetness and other parameters apple<br />

scab models have been developed, evaluated and recently successfully used for the<br />

disease control in apple orchards. Met stations are equipped with sensors for registration<br />

and transmission of data about temperature, relative humidity, rainfall, leaf<br />

wetness and others for prediction of apple scab infection risks (Berrie, 1994; Butt,<br />

Xu, 1994; Bühler, Gesle, 1994; Rossi et al., 1999; Raudonis, 2002; Raudonis et al.,<br />

2003; Holb et al., 2003; Xu, Robinson, 2005; Atlamaz et al., 2007; Rossi, Bugiani,<br />

2007). However, little is known about the effect of recently introduced iMETOS scab<br />

warning system. Therefore, the objective of this study was to evaluate the effects of<br />

iMETOS scab warning system for the use in integrated disease management.<br />

Object, methods and conditions. In 2007–2008 field trials were carried out<br />

in the orchards of Lithuanian Institute of Horticulture to compare the current apple<br />

scab control strategy – conventional disease management (CDM) and integrated disease<br />

management (IDM), according to scab infection periods. Internet based pest and<br />

disease of horticultural plants warning system iMETOS (G. Pessl, Austria) recorded<br />

rainfall, a<strong>ir</strong> temperature, relative humidity, leaf wetness and calculated infection periods<br />

according to Mills and Laplante at three levels. At the beginning of the season<br />

iMETOS calculates release of scab ascospores, later infection and conidia infection<br />

when degree-day accumulation (base = 0 °C) was 500 °C. Susceptible to scab apple<br />

variety ‘Lobo’ was sprayed when release of ascospores, ascospores or conidia light<br />

infection risk reached more than 70–80 %. CDM was based on prophylactic applications<br />

and apple-trees were sprayed at 10–14 days intervals. Plot size consisted at<br />

least of 5 trees, 4 replications at random plot distribution. Fastac 50 EC 0.4 l ha -1 at<br />

09 and 73 growth stages according to BBCH scale (Meier, 1997) was used for control<br />

of insect pests.<br />

Disease incidence was calculated: P = n/N · 100. (P – disease incidence, %, n –<br />

number of attacked leaves or fruits, N – total number of investigated leaves or fruits).<br />

Disease intensity was calculated: R = ∑ab × 100/NK; R – disease intensity; a – the<br />

number of leaves or fruits damaged the same level, b – score of the scale; ∑ – the<br />

sum numbers of damaged leaves or fruits of different scores; K – the highest score of<br />

the scale (5). Injures caused by fungal diseases were evaluated according to a 6 point<br />

scale: 0 – no disease symptoms detected on leaves or fruits, 5 – injured more 75 %<br />

of leaf or fruit area.<br />

Scab incidence and intensity on leaves and fruits was compared among treatments<br />

in this study with a single factor analysis of variance (ANOVA). Specific differences<br />

were identified with Duncan’s multiple range test.<br />

The trial was carried out according to trial plan as presented in Table 1.<br />

182


Table 1. Trial plan<br />

1 lentelė. Bandymo planas<br />

rate g, AI ha -1 of<br />

fungicides<br />

fungicidų v. m.<br />

norma g ha -1<br />

IDM<br />

infection risk<br />

infekcijos<br />

laipsnis<br />

Cyprodinil 100 % ascospore<br />

release<br />

750 g kg -1 , 150 g ha -1 askosporų<br />

plitimas<br />

Cyprodinil 85 % ascospore<br />

750 g kg -1 , 150 g ha -1 infection<br />

užsikrėtimas<br />

askosporomis<br />

Trifloxistrobin 100 % conidia<br />

500 g kg -1 , 75 g ha -1 infection<br />

užsikrėtimas<br />

konidijomis<br />

Trifloxistrobin<br />

— “ —<br />

500 g kg -1 , 75 g ha -1<br />

Krezoksim-methyl<br />

— “ —<br />

500 g kg -1 , 100 g ha -1<br />

Dithianon<br />

— “ —<br />

700 g kg -1 , 70 g ha -1<br />

Dithianon<br />

— “ —<br />

700 g kg -1 , 70 g ha -1<br />

date<br />

data<br />

BBCH<br />

growth<br />

stage<br />

augimo<br />

tarpsnis<br />

CDM<br />

rate g, AI ha -1 of<br />

fungicides<br />

fungicidų v. m.<br />

norma g ha -1<br />

date<br />

data<br />

BBCH<br />

growth<br />

stage<br />

augimo<br />

tarpsnis<br />

IV.<strong>28</strong> 07<br />

1 2 3 4 5 6 7<br />

2007<br />

IV.<strong>28</strong> 07 Cyprodinil<br />

750 g kg -1 , 150 g ha -1<br />

Dithianon<br />

700 g kg -1 , 70 g ha -1 — “ —<br />

V.14 59 Cyprodinil<br />

750 g kg -1 , 150 g ha -1 V.10 57<br />

V.<strong>28</strong> 69 Trifloxistrobin<br />

500 g kg -1 , 75 g ha -1 V.22 67<br />

VI.14 73 Trifloxistrobin VI.04 71<br />

500 g kg -1 , 75 g ha -1<br />

VI.29 75 Krezoksim-methyl VI.18 73<br />

500 g kg -1 , 100 g ha -1<br />

VII.12 77 Dithianon VII.02 76<br />

700 g kg -1 , 70 g ha -1<br />

VII.29 81 Dithianon VII.12 77<br />

700 g kg -1 , 70 g ha -1<br />

VIII.12 85 Dithianon VII.26 81<br />

700 g kg -1 , 70 g ha -1<br />

– – – – Dithianon<br />

700 g kg -1 , 70 g ha -1 VIII.08 85<br />

Cyprodinil 100 % ascospore<br />

release<br />

750 g kg -1 , 150 g ha -1 askosporų<br />

plitimas<br />

Cyprodinil 79 % ascospore<br />

750 g kg -1 , 150 g ha -1 infection<br />

užsikrėtimas<br />

askosporomis<br />

Trifloxistrobin 100 % ascospore<br />

infection<br />

500 g kg -1 , 75 g ha -1 užsikrėtimas<br />

askosporomis<br />

IV.18 07<br />

2008<br />

IV.18 07 Cyprodinil<br />

750 g kg -1 , 150 g ha -1<br />

V.02 57 Cyprodinil<br />

750 g kg -1 , 150 g ha -1 V.2 57<br />

V.23 69 Trifloxistrobin<br />

500 g kg -1 , 75 g ha -1 V.16 67<br />

183


Table 1 continued<br />

1 lentelės tęsinys<br />

1 2 3 4 5 6 7<br />

Trifloxistrobin 100 % conidia VI.16 75 Trifloxistrobin V.29 71<br />

500 g kg -1 , 75 g ha -1 infection<br />

užsikrėtimas<br />

konidijomis<br />

500 g kg -1 , 75 g ha -1<br />

Krezoksim-methyl — “ — VI.30 77 Krezoksim-methyl VI.12 73<br />

500 g kg -1 , 100 g ha -1 500 g kg -1 , 100 g ha -1<br />

Dithianon<br />

— “ — VII.14 79 Dithianon VII.02 77<br />

700 g kg -1 , 70 g ha -1 700 g kg -1 , 70 g ha -1<br />

Dithianon<br />

— “ — VII.31 85 Dithianon VII.12 79<br />

700 g kg -1 , 70 g ha -1 700 g kg -1 , 70 g ha -1<br />

– – – – Dithianon VII.25 81<br />

700 g kg -1 , 70 g ha -1<br />

– – – – Dithianon<br />

700 g kg -1 , 70 g ha -1 VII.08 85<br />

Results. Apple scab ascospore release, ascospore and conidia infection periods,<br />

depending on a<strong>ir</strong> temperature, duration of leaf wetness and relative humidity<br />

in 2007–2008 are presented in Fig. 1 and 2. Apple trees were sprayed when release<br />

of ascospores, ascospores or conidia light infection risk reached more than 70–80 %,<br />

according to IDM using iMETOS warning system. In 2007 conditions for ascospore<br />

release reached 100 % on 26th of April (Fig. 1 a) and f<strong>ir</strong>st fungicide application was<br />

made. Second application was made just after ascospore infection when it reached<br />

more than 85 % (Fig. 1 b).<br />

184


Fig. 1. Scab ascospore release (a), ascospore infections (b) and<br />

conidia infections (c) depending on climatic parameters in 2007 according to iMETOS.<br />

1 pav. Rauplių askosporų plitimas (a), užsikrėtimas askosporomis (b) bei<br />

konidijomis (c) priklausomai nuo oro sąlygų, pagal iMETOS prognozavimo sistemą 2007 m.<br />

Longer duration of leaf wetness resulted in more favourable conditions for ascospore<br />

release and infection in 2008. The duration of leaf wetness in April–May lasted<br />

9 055 and 14 015 min in 2007 and 2008, respectively (Fig. 1 a, b, 2 a, b). After flowering,<br />

when degree-day accumulation (base = 0 °C) was over 500 °C, scab conidia infections<br />

were led by next sprays. Warm weather and continuously lasting duration of leaf<br />

wetness often caused severe conidia infections during the summer of 2007 (Fig. 1 c).<br />

Only from the end of May till the middle of June and from the middle till the end of<br />

July there was no conidia infection observed. Less favourable weather conditions for<br />

conidia infections were in 2008. It can be explained by shorter duration of leaf wetness.<br />

The duration of leaf wetness in June–July lasted for 24 795 min in 2007 and near<br />

two times less (13 725 min) in 2008 (Fig. 1 c, 2 c). CDM was based on prophylactic<br />

185


applications and apple-trees were sprayed at 10–14 days intervals, depending only on<br />

growth stages. Higher number of sprays was made in CDM comparing with IDM strategy,<br />

when fungicides were applied only depending on scab infection. Nine fungicide<br />

treatments were applied in CDM strategy during both experimental years. Meanwhile,<br />

treatments were reduced to eight and seven in 2007 and 2008, respectively according<br />

IDM. Nevertheless, significant difference in scab incidence and intensity was not found<br />

on leaves and on fruits at harvest between both spray programmes (Table 2). In 2007<br />

there were 8.2 and 3.7 % scabbed leaves and fruits in IDM strategy and 9.5 and 6.7 %<br />

in CDM, respectively. In 2008 the damage on leaves and fruits was 2.0 and 3.75 % in<br />

IDM and 4.0 and 8.2 % in CDM, accordingly. Meanwhile, the leaves and fruits were<br />

damaged by 85 and 97.7 in 2007 and by 49.0–91.5 % in 2008 in unsprayed orchard. An<br />

efficiency of IDM strategy against apple scab incidence on leaves/fruits ranged from<br />

90.5/95.6 to 95.1/98.6 % and intensity from 90.4/95.9 to 95.9/96.2 %, respectively<br />

during 2007–2008. Similar efficiency results were obtained in CMD.<br />

186


Fig. 2. Scab ascospore release (a), ascospore infections (b) and<br />

conidia infections (c) depending on climatic parameters in 2008 according to iMETOS.<br />

2 pav. Rauplių askosporų plitimas (a), užsikrėtimas askosporomis (b)<br />

bei konidijomis (c) priklausomai nuo oro sąlygų,<br />

pagal iMETOS prognozavimo sistemą 2008 m.<br />

Table 2. Scab incidence and intensity under Integrated and Conventional Disease<br />

Management<br />

2 lentelė. Rauplių paplitimas <strong>ir</strong> intensyvumas taikant integruotą <strong>ir</strong> įprastinę apsaugą nuo ligų<br />

Treatments<br />

Variantai<br />

Apple scab<br />

Obelų rauplės (%)<br />

leaves<br />

lapai<br />

fruits<br />

vaisiai<br />

incidence<br />

paplitimas<br />

intensity<br />

intensyvumas<br />

incidence<br />

paplitimas<br />

intensity<br />

intensyvumas<br />

2007<br />

85.0 b 50.4 b 97.7 b 77.9 b<br />

Untreated<br />

Nepurkšta<br />

IDM 8.2 a 2.5 a 3.7 a 1.1 a<br />

CDM 9.5 a 3.0 a 6.7 a 2.2 a<br />

2008<br />

Untreated<br />

49.0 b 24.3 b 91.5 b 68.3 b<br />

Nepurkšta<br />

IDM 2.0 a 2.3 a 3.75 a 3.0 a<br />

CDM 4.0 a 2.8 a 8.2 a 6.0 a<br />

Means followed by the same letter are not different significantly (P = 0.05) according to<br />

Duncan’s multiple range test<br />

Tomis pačiomis raidėmis pažymėtos reikšmės pagal Dunkano kriterijų (P = 0,05) iš esmės nesisk<strong>ir</strong>ia<br />

187


Fig. 3. Impact of Integrated and Conventional Disease Management on Apple scab incidence<br />

3 pav. Integruotos <strong>ir</strong> įprastinės apsaugos sistemų įtaka rauplių paplitimui<br />

Fig. 4. Impact of Integrated and Conventional Disease Management on Apple scab intensity<br />

4 pav. Integruotos <strong>ir</strong> įprastinės apsaugos sistemų įtaka rauplių intensyvumui<br />

188


Discussion. A<strong>ir</strong> temperature, relative humidity and leaf wetness are the factors,<br />

which mostly influence the development of apple scab infections (Gadoury et al.,<br />

1998; Hartman et al., 1999; Rossi, Bugiani, 2007; Laer, Creemers, 2004; Hamada,<br />

2005; Fröhling et al., 2005; Xu, Robinson, 2005). Refereeing these factors, scab<br />

warning systems for prediction of ascospores or conidia infection and scab control<br />

are developed (Berrie, 1994; Bühler, Gesle, 1994; Butt, Xu, 1994; Atlamaz et al.,<br />

2007). In the orchards of the Lithuanian Institute of Horticulture IDM strategy was<br />

successful during experimental years, though climatically conditions for disease development<br />

were favourable. Scab incidence on fruits was increasing in unsprayed<br />

plots to 97.7 and 91.5 % in 2007 and 2008. With the improved apple scab warning<br />

system of the IDM, which is based on iMETOS scab warning system, it was possible<br />

to avoid one fungicide application in 2007 and two in 2008, comparing with CDM.<br />

Totally IDM strategy gave a possibility to optimize the use of fungicides against scab<br />

and to reduce on average to 7–8, instead 9 the total spray applications per season<br />

without any significant increase of damage to the fruits and the<strong>ir</strong> quality. High effect<br />

of the use of different apple scab warning systems have been reported in other studies<br />

(Berrie, 1994; Bühler, Gesle, 1994; Butt, Xu, 1994; Grauslund, Loshenkohl, 1994;<br />

Pessl, 1994; Raudonis, 2002; Holb et al., 2003; Raudonis et al., 2003; Atlamaz et al.,<br />

2007; Rossi, Bugiani, 2007).<br />

Conclusions. A new internet based scab warning system iMETOS was used for<br />

detection of infection periods and forecast of disease intensity at three levels: light,<br />

moderate and severe. According to CDM apple-trees were sprayed 9 times per season.<br />

Scab warning system gave a possibility to optimize the use of fungicides against<br />

scab and to reduce to 7–8 instead 9 the total spray applications per season. CDM and<br />

IDM gave high scab control (88.5–95.1 %) in apple-trees and there were not found<br />

any essential difference in scab incidence between two control strategies.<br />

Gauta 2009 06<br />

Parengta spausdinti 2009 08 10<br />

References<br />

1. Atlamaz A., Zeki C., Uludag A. 2007. The importance of forecasting and warning<br />

systems in implementation of integrated pest management in apple orchards<br />

in Turkey. EPPO Bulletin, 37(2): 295–299.<br />

2. Berrie A. 1994. Practical experiences with the Ventem TM system for managed<br />

control of apple scab in the United Kingdom. Norwegian Journal of Agricultural<br />

Sciences. 17: 295–301.<br />

3. Bühler M., Gesle C. 1994. F<strong>ir</strong>st experiences with an improved apple scab control<br />

strategy. Norwegian Journal of Agriculture Sciences. 17: 229–240.<br />

4. Butt D. J., Xu X. M. 1994. VentemTM – a comparison apple scab warning system<br />

for use on farms. Norwegian Journal of Agricultural Sciences. 17: 247–251.<br />

189


5. Carisse O., Rolland D., Savary S. . 2007. Heterogeneity of the aerial concentration<br />

and deposition of ascospores of Venturia inaequalis within a tree canopy<br />

during the rain. European Journal of Plant Pathology, 117(1): 13–24.<br />

6. Creemers P., van Laer S. 2006. Key strategies for reduction of the dependence<br />

on fungicides in integrated fruit production. Phytopathology, 39: 19–29.<br />

7. Gadoury D. M., Stensvand A., Seem R. C. 1998. Influence of light, relative humidity,<br />

and maturity of populations on discharge of ascospores of Venturia inaequalis.<br />

Phytopathology, 88(9): 902–909.<br />

8. Grauslund J., Loshenkohl. 1994. Control of apple scab according to warning<br />

equipment. Norwegian Journal of Agricultural Sciences. 17: 241–246.<br />

9. Fröhling P., Steiner U., Oerke E.C. 2005. Influence of temperature on pre- and<br />

post- infectional development of Venturia inaequalis isolates. Modern fungicides<br />

and antifungal compounds IV: 14th International Reinhardsbrunn Symposium,<br />

25–29 April, Friedrichroda, Thuringia, Germany, 193–199.<br />

10. Hamada, N. A. 2005. Influence of temperature and leaf wetness period (LWP) on<br />

the incidence and severity of gala leaf spot (Colletotrichum spp.). Agropecuária<br />

Catarinense, 18(2): 73–77.<br />

11. Hartman J. R., Parisi L., Bautrais P. 1999. Effect of leaf wetness duration, temperature,<br />

and conidial inoculum dose on apple scab infections. Plant Disease,<br />

83(6): 531–534.<br />

12. Holb I. J., Heijne B., Jeger M. J. 2003. Summer epidemics of apple scab: the relationship<br />

between measurements and the<strong>ir</strong> implications for the development of<br />

predictive models and threshold levels under different disease control regimes.<br />

Journal of Phytopathology, 151(6): 335–343.<br />

13. Holb I. J., Heijne B., Jeger M. J. 2004. Overwintering of conidia of Venturia<br />

inaequalis and the contribution to early epidemics of apple scab. Plant disease,<br />

88(7): 751–757.<br />

14. Holb I. J., Heijne B., Jeger M. J. 2005. The widespread occurrence of overwintered<br />

conidial inoculum of Venturia inaequalis on shoots and buds in organic<br />

and integrated apple orchards across the Netherlands. European Journal of Plant<br />

Pathology, 111(2): 157–168.<br />

15. Laer S. V. Creemers P. 2004. Preventive apple scab infection warnings: optimization<br />

of leaf wetness models and evaluation of regional weather forecast data.<br />

Proceedings of the IOBC/WPRS 6th International Conference on Integrated<br />

Fruit Production. 26–30 September, Baselga di Piné, Italy, 37–41.<br />

16. Li B., Xu X. 2002. Infection and development of apple scab (Venturia inaequalis)<br />

on old leaves. Journal of Phytopathology, 150(11–12): 687–691.<br />

17. Meier U. 1997. Growth stages of Mono- and Dicotyledonous plants. Berlin.<br />

18. Pessl G. 1994. Monitored and forecast weather for use on farm. Norwegian<br />

Journal of Agricultural Sciences. 17: 425–427.<br />

19. Raudonis L. 2002. Integrated control strategy of apple scab according to warning<br />

equipment. Plant Protection Science, 38(2): 700–703.<br />

190


20. Raudonis L., Valiuškaitė A., Rašinskienė A., Survilienė E. 2003. Pests and<br />

disease management model of apple-trees according to warning equipment.<br />

Sodininkystė <strong>ir</strong> daržininkystė, 22(3): 5<strong>28</strong>–537.<br />

21. Rossi V. S., Bugiani G. R. 2007. A-scab (Apple-scab), a simulation model for<br />

estimating risk of Venturia inaequalis primary infections. EPPO Bulletin, 37 (2):<br />

300–308.<br />

22. Rossi V., Giosue S., Bugiani R. 2003. Influence of a<strong>ir</strong> temperature on the release<br />

of ascospores of Venturia inaequalis. Journal of Phytopathology, 151 (1):<br />

50–58.<br />

23. Rossi V., Ponti I., Marinelli M., Giosue S., Bugiani R. 1999. Field evaluation of<br />

some models estimating the seasonal pattern of a<strong>ir</strong>borne ascospores of Venturia<br />

inaequalis. Journal of Phytopathology, 147(10): 567–575.<br />

24. Stensvand A., Amundsen T., Semb L., Gadoury D. M., Seem R. C. 1998.<br />

Discharge and dissemination of ascospores by Venturia inaequalis during dew.<br />

Plant disease, 82(7): 761–764.<br />

25. Xu X. M., Robinson J. 2005. Modelling the effects of wetness duration and fruit<br />

maturity on infection of apple fruits of Cox’s orange Pippin and two clones of<br />

gala by Venturia inaequalis. Plant Pathology, 54(3): 347–356.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Integruotas obelų rauplių valdymas naudojant iMETOS<br />

prognozavimo sistemą<br />

L. Raudonis, A. Valiuškaitė<br />

Santrauka<br />

2007–2008m. buvo palygintos dvi sk<strong>ir</strong>tingos obelų apsaugos nuo rauplių strategijos:<br />

įprastinė <strong>ir</strong> integruota obelų apsaugos sistema. Pastaroji pagrįsta nauja iMETOS prognozavimo<br />

sistema, kuri parodo obelų rauplių mažą, vidutinį <strong>ir</strong> didelį infekcijos rizikos lygį.<br />

Pagal tradicinę apsaugos nuo rauplių sistemą obelys buvo purkštos devynis kartus per sezoną.<br />

Rauplių prognozavimo sistema leido optimizuoti fungicidų panaudojimą nuo rauplių <strong>ir</strong><br />

purškimų skaičių sumažinti iki septynių – aštuonių. Obelų rauplių paplitimas nesiskyrė panaudojus<br />

tiek tradicinę, tiek <strong>ir</strong> integruotą obelų apsaugos sistemą. Nustatytas integruotos <strong>ir</strong> tradicinės obelų<br />

apsaugos sistemų efektyvumas, rauplių plitimas ant lapų atitinkamai sumažėjo 90,5 – 95,1 <strong>ir</strong> 88,5 –<br />

94,1 %. Sistemų efektyvumas nuo rauplių ant vaisių atitinkamai buvo 95,1 – 95,6 <strong>ir</strong> 91,2 – 94,1.<br />

Reikšminiai žodžiai: askosporos, infekcija, iMETOS, integruota <strong>ir</strong> tradicinė apsaugos<br />

sistema, konidijos.<br />

191


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

F<strong>ir</strong>st evidence of Itersonilia perplexans on dill<br />

(Anethum graveolens) in Bulgaria<br />

Rossitza Rodeva 1 , Jutta Gabler 2 , Zornica Stoyanova 1<br />

1<br />

Institute of Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria,<br />

e-mail rrodeva@yahoo.com<br />

2<br />

Institute for Epidemiology and Pathogen Diagnostics of the Julius Kühn-Institute<br />

(JKI) – Federal Research Center of Cultivated Plants, D-06484 Quedlinburg,<br />

Erwin-Baur-Str. 27, e-mail jutta.gabler@jki.bund.de<br />

A blight disease was detected on dill (cultivar ‘Dukat’) in private greenhouses in Bulgaria.<br />

The purpose of this investigation was to describe the symptoms of the disease, to identify<br />

the causal agent and to determine the pathogenicity and host range. Initial symptoms were<br />

small grey-green spots and wilting of leaf tips. Wilted leaves turned brown and collapsed as<br />

the disease developed. Necroses broadened so quickly that ent<strong>ir</strong>e leaves dried within a short<br />

time. Foliage became a blighted making the leaves unsuitable for harvest. A fungus was<br />

consistently isolated from symptomatic leaves, petioles and stems of dill. The pathogen grew<br />

slowly on nutrient media and formed white to pale cream-colored colonies, velvety and flat<br />

with minimum aerial mycelium. The pathogenicity was conf<strong>ir</strong>med on dill and other Apiaceae<br />

hosts. The fungus was identified as Itersonilia perplexans on the basis of colony morphology,<br />

hyphae with clamp connections and ballistospores. Disease caused by I. perplexans has not<br />

been found previously either on dill or any other host plants in Bulgaria up till now.<br />

Key words: Anethum graveolens, Apiaceae, Itersonilia perplexans.<br />

Introduction. The fungus Itersonilia perplexans Derx has been reported to be<br />

the causal agent of leaf blight of dill (Anethum graveolens L.) in several European<br />

countries, as Italy (Matta, Garibaldi, 1968), Germany (Geßner, 1988), Austria (Bedlan,<br />

1988), Swiss (Usoltseva, Dahl, 2006) as well as in USA (Koike, Tjosvold, 2001)<br />

and New Zealand (Anonymous, 2001; 2002; 2004; 2005; 2007).<br />

In the middle of June 2008 and in the end of May 2009, symptoms characteristics<br />

to I. perplexans infection were observed on dill grown in private greenhouses in<br />

Bulgaria.<br />

The purpose of this investigation was to describe the symptoms of the disease, to<br />

identify the causal agent and to determine the pathogenicity and host range.<br />

193


Object, methods and conditions. Infected dill plants (cultivar ‘Dukat’) were<br />

collected from private greenhouses in Sofia region. The causal agent was isolated<br />

from symptomatic leaves, leaf petioles and stems. Small pieces of diseased tissue<br />

were on the surface sterilized and plated on potato dextrose agar (PDA). The cultures<br />

were stored on cornmeal agar (CMA) slopes at 4 °C and subcultured every<br />

6 months.<br />

Three isolates obtained from leaf and stem tissue were selected to study cultural<br />

and morphological characteristics of the fungus. To determine radial growth rates of the<br />

isolates, 8 mm plugs were taken from the periphery of growing colonies and transferred<br />

to plates of PDA, CMA and 0.2 % malt extract agar (MEA). Inoculated plates were<br />

incubated at 22 °C and 12 h photoperiod. The diameter of each colony was measured<br />

4 and 16 days after inoculation. The rate of increase in colony radius was determined<br />

as the difference in colony size between 4 th and 16 th day after inoculation. There were<br />

four replicate plates. Morphological characters, including size of ballistospores were<br />

recorded for cultures grown for 2–3 weeks on three nutrient media.<br />

Ballistospores of each isolate were harvested by flooding the plates with sterile<br />

distilled water, scraping the plates with sterile paintbrush and filtering through double<br />

layers of sterile cheesecloth. Ballistospores were counted with a hematocytometer and<br />

adjusted to approximately 1 × 10 4 spores/ml.<br />

Potted seedlings of dill, coriander, celery, parsley, fennel, caraway and carrot were<br />

inoculated by spraying with ballistospore suspension. Inoculated plants were put in<br />

a humid chamber for 48 hours. Plants sprayed with sterile distilled water served as<br />

controls. Disease symptoms were evaluated 10 days after inoculation. Disease severity<br />

was rated on a 0–4 scale: 0 = no visible symptoms; 1 = small grey-green lesions;<br />

2 = brown lesions on leaves and petioles; 3 = leaves snapped off at the diseased lesions<br />

or 30–50 % of the leaf diseased; 4 = 50–100 % of the plant diseased. The data were<br />

processed by the McKinney’s formula (McKinney, 1923), which generates a numeric<br />

disease index (DI) of the severity of the attack: DI = (Σvn)/(NV) × 100, where v represents<br />

the numeric value of the class, n is the number of plants assigned to the class,<br />

N is the total number of the plants in the replication and V is the numeric value of the<br />

highest class. Reisolations were made from the diseased plant parts.<br />

Results. The symptoms on the naturally and artificially infected dill plants were<br />

characterized initially as small silvery-grey to grey-green spots distributed mainly on<br />

the leaf tips (Plate 1, a). Dark grey-green streaks were detected on leaf petioles and<br />

stems (Plate 1, b). The necroses broadened so quickly, that ent<strong>ir</strong>e damaged leaves<br />

dried soon. Wilted leaves turned brown and collapsed (Plate 1, c). The foliage became<br />

blighted making the leaves unsuitable for harvest (Plate 1, d). The disease affected<br />

the umbel very seldom.<br />

A fungus was consistently isolated from symptomatic leaves, petioles and stems<br />

of dill. The colonies were slow growing. Average values for growth rates (mm/day)<br />

of three representative isolates used in the study on three nutrient media are presented<br />

in Fig. CMA nutrient medium assured the fastest growth of all isolates. Among them<br />

isolate 22 manifested the best growth on all nutrient media.<br />

194


Fig. Average growth rates of Itersonilia perplexans (isolates 21, 22 and 83) on<br />

three nutrient media (PDA, CMA and MEA) at 22 °C and 12 h photoperiod.<br />

Bars represent standard deviations (± SD). Least significant differences are<br />

0.05, 0.07, 0.09 for isolates and media and 0.09, 0.12, 0.16 for the<strong>ir</strong> interaction at<br />

P = 5 %, P = 1 %, P = 0.1 %, respectively.<br />

Pav. Vidutiniai Itersonilia perplexans (izoliatai 21, 22 <strong>ir</strong> 83)<br />

augimo greitis ant trijų mitybinių terpių (PDA, CMA <strong>ir</strong> MEA),<br />

esant 22 °C temperatūrai <strong>ir</strong> 12 h fotoperiodui. Stulpeliai atspindi standartinius<br />

nukrypimus (± SN). Mažiausi izoliatų <strong>ir</strong> terpės nukrypimai yra 0,05, 0,07, 0,09,<br />

o jų sąveikos – 0,09, 0,12, 0,16, kai atitinkamai P = 5 %, P = 1 %, P = 0.1 %.<br />

The studied isolates were all very similar, showing different colony morphology<br />

on three nutrient media (Plate II, a). The fungus grew slowly in 12 h photoperiod. In<br />

the dark the growth was still more stunted. The colony did not fill up the Petri dish in<br />

50 days (Plate II, b, c).<br />

On PDA the colonies were c<strong>ir</strong>cular, more compact, pale cream-colored, velvety.<br />

The colonies on CMA and MEA were translucent, white and flat with minimal aerial<br />

mycelium (feathery margins on MEA). The mycelium was composed primarily of<br />

branched septate hyphae with prominent clamp connections at the septa (Plate III,<br />

a). Hyphae were hyaline, 2.7–4.5 μm wide and terminated in inflated sporogenous<br />

cells thin-walled, pyriform, ovoid to subglobose. These cells germinated to form<br />

hyphae or germ tubes, on which ballistospores formed. Ballistospores were lemonshaped,<br />

broadly-lunate, ovoid to pyriform with a basal flattering and a pointed tip,<br />

smooth-walled with granular content, (10) 14.12 ± 0.25 (17) × (7) 8.95 ± 0.16 (12) μm<br />

(Plate II, b) and germinated either with hyphae (Plate III, c) or secondary ballistospores.<br />

Chlamidospores were globose to subglobose, solitary or clustered, thick-walled,<br />

11–16 × 10–15 μm, produced mainly in old cultures (Plate III, d).<br />

Besides the usual method of tissue plantings, the fungus was isolated readily by<br />

spore shootings from surface disinfected diseased tissue suspended on the lids of Petri<br />

dishes over PDA. White spore deposits of typical ballistospores of I. perplexans were<br />

observed on agar plate under the suspended diseased plant material and numerous<br />

colonies developed.<br />

195


The fungus was identified as I. perplexans (Boekhout, 1991; Boekhout et al.,<br />

1991).<br />

Inoculations proved the pathogenicity of the fungus. F<strong>ir</strong>st symptoms were observed<br />

48 hours after inoculation. All tested isolates caused typical symptoms on dill – greygreen<br />

discoloration and wilting of leaf tips and streak lesions on leaf petioles and stems<br />

(DI = 79). The symptoms on fennel were similar but less severe than on dill (DI = 61).<br />

Small (1–2 mm in diameter) c<strong>ir</strong>cular to lens-shaped, brown necrotic spots often surrounded<br />

by yellow haloes appeared on the leaf laminae of coriander (DI = 32). On<br />

carrot, caraway and parsley only single small spots were observed on the leaf periphery<br />

(DI = 25). The celery remained healthy. The fungus I. perplexans was consistently<br />

reisolated from the plant parts with symptoms. Water-treated control plants did not<br />

have any symptoms of disease and were negative to I. perplexans.<br />

Discussion. The causal agent was identified as I. perplexans based on colony<br />

morphology, hyphae with prominent clamp connections and ballistospores. The<br />

symptoms on artificially infected dill plants were similar to those on the naturally<br />

diseased ones observed in the greenhouses during June 2008 and May 2009. Some<br />

colonies of I. perplexans, free of contaminants, grew out from lesions but others<br />

were overrun by various fungi because of its slow growth. The fungus was isolated<br />

more readily by suspending diseased tissue on the lids of Petri dishes over PDA due<br />

to water-drop mechanism of ballistospore discharge. Lesions caused by I. perplexans<br />

have not been observed previously on dill plants in vegetable gardens and field<br />

experiments carried out at the Institute of Genetics, Sofia, during the last 10 years.<br />

Among the other representatives of Apiaceae family artificially inoculated fennel<br />

and coriander showed the most intensively developed disease symptoms. The fungus<br />

I. perplexans has been reported to be pathogenic on two main group plants belonging<br />

to Asteraceae (Sackston, 1958; McRitchie et al., 1973; McGovern, Seijo, 1999; Seijo<br />

et al., 2000; Horita, Yasuoka, 2002) and Apiaceae (Channon, 1963; Matta, Garibaldi,<br />

1968; Channon, 1969; Geßner, 1988; Bedlan, 1988, Koike, Tjosvold, 2001; Usoltseva,<br />

Dahl, 2006). The isolates showed specificity being pathogenic to the host group<br />

they were obtained from (Channon, 1963; Koike, Tjosvold, 2001; Horita, Yasuoka,<br />

2002).<br />

Conclusions. The disease caused by I. perplexans has not been recorded previously<br />

either on dill or any other host plants in Bulgaria up till now. Since I. perplexans<br />

grows best at high relative humidity the way to diminish the disease appearance and<br />

development is to keep the dill plants under as dry conditions as possible. The initial<br />

symptoms of I. perplexans resembled those caused by lack of nutrient substances or<br />

water. For this reason it is very important to clear up the cause as the f<strong>ir</strong>st symptoms<br />

appear and to take control measures. The infected plants have to be destroyed and do<br />

not put in the compost.<br />

196


Acknowledgements. The investigations were carried out within the framework<br />

of the bilateral research project between Institute of Genetics, Bulgarian Academy<br />

of Sciences, Sofia, Bulgaria and Institute for Resistance Research and Pathogen Diagnostics,<br />

Federal Center for Breeding Research on Cultivated Plants, Aschersleben,<br />

Germany. Financial support by the Bulgarian National Science Fund (Project<br />

B-1301) is gratefully acknowledged.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 12<br />

References<br />

1. Anonymous. 2001. New organism records: 12/05/01–22/06/01. Biosecurity, 29:<br />

23–24.<br />

2. Anonymous. 2002. New organism records: 17/08/02–27/09/02. Biosecurity, 39:<br />

27–<strong>28</strong>.<br />

3. Anonymous. 2004. New organism records: 10/11/03 –12/12/03. Biosecurity, 49:<br />

18–19.<br />

4. Anonymous. 2005. Plant kingdom records: 18/12/2004–04/02/2005. Biosecurity,<br />

58: 21–23.<br />

5. Anonymous. 2007. Pest watch: 05/08/2007–14/09/2007. Biosecurity, 79: 27.<br />

6. Bedlan G. 1988. Erstmaliges Nachweis von Itersonilia perplexans Derv an Dill<br />

in Österreich. Pflanzenschutzberichte, 49 (1): 43–44.<br />

7. Boekhout T. 1991. Systematics of Itersonilia: a comparative phenetic study.<br />

Mycological Research, 95 (2): 135–146.<br />

8. Boekhout T., Poot G., Hackman P. 1991. Genomic characteristics of strains<br />

of Itersonilia: taxonomic sequences and life cycle. Canadian Journal of<br />

Microbiology, 37: 188–194.<br />

9. Channon A. G. 1963. Studies of parsnip canker. I. The causes of the disease.<br />

Annals of applied Biology, 51: 1–15.<br />

10. Channon A. G. 1969. Infection of the flowers and seed of parsnip by Itersonilia<br />

pastinacae. Annals of applied Biology, 64: <strong>28</strong>1–<strong>28</strong>8.<br />

11. Geßner E. 1988. Blattspitzendürre an Dill: Erreger bekant – viele Frage offen.<br />

Phytomedizin. Mitteilungen der Deutschen Phytomedizinischen Gesellschaft,<br />

18(1): 10.<br />

12. Horita H., Yasuoka S. 2002. Black streak of edible burdock caused by Itersonilia<br />

perplexans in Japan. Journal of General Plant Pathology, 68: 277–<strong>28</strong>3.<br />

13. Koike S. T., Tjosvold S. A. 2001. A blight disease of dill in California caused by<br />

Itersonilia perplexans. Plant Disease, 85(7): 802.<br />

14. Matta A., Garibaldi A. 1968. L’Itersonilia pastinacae Channon su Aneto.<br />

Phytopathologia Mediterranea, 7: 34–39.<br />

15. McGovern R. J., Seijo T. E. 1999. Petal blight of Callistephus chinensis caused<br />

by Itersonilia perplexans. Plant Disease, 83(4): 397.<br />

197


16. McKinney H. H. 1923. Influence of soil temperature and moisture on infection<br />

on wheat seedling by Helmintosporium sativum. Journal of Agricultural<br />

Research, 26(5): 195–217.<br />

17. McRitchie J. J., Kimbrough J. W., Engelhard A. W. 1973. Itersonilia petal blight<br />

of Chrisanthemum in Florida. Plant Disease Reporter, 57(2): 181–182.<br />

18. Sackston W. E. 1958. Itersonilia perplexans on sunflower in Uruguay.<br />

Phytopathology, 48(2): 108–109.<br />

19. Seijo T. E., McGovern R. J., Marenco de Blandino A. 2000. Plant Disease,<br />

84(10): 1 153.<br />

20. Usoltseva M., Dahl Å. 2006. Förebygg svampangrepp i dill. Växtskydd, 9: 26.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

P<strong>ir</strong>mieji Itersonilia perplexans požymiai ant krapų (Anethum Graveolens)<br />

Bulgarijoje<br />

R. Rodeva, J. Gabler, Z. Stoyanova<br />

Santrauka<br />

Privačiuose Bulgarijos šiltnamiuose ant krapų (veislė ‘Dukat’) buvo aptiktos nekrozės.<br />

Šio tyrimo tikslas buvo apibūdinti ligos simptomus, išaiškinti sukėlėją <strong>ir</strong> nustatyti jo<br />

patogeniškumą bei augalus maitintojus. P<strong>ir</strong>mieji simptomai buvo mažos pilkšvai žalsvos<br />

dėmelės <strong>ir</strong> vystantys lapų galiukai. Ligai progresuojant, nuvytę lapai rudavo <strong>ir</strong> krito. Nekrozė<br />

plito taip greitai, kad per trumpą laiką nudžiūvo visi lapai <strong>ir</strong> nebetiko derliui. Grybas buvo<br />

izoliuotas nuo krapų lapų, žiedų <strong>ir</strong> stiebų su ligos požymiais. Ligos sukėlėjas iš lėto augo ant<br />

mitybinės terpės <strong>ir</strong> formavo nuo baltos iki pilkšvai kreminės spalvos kolonijas – aksomines<br />

<strong>ir</strong> plokščias, su minimaliu grybienos plotu. Patogeniškumas buvo patv<strong>ir</strong>tintas krapuose <strong>ir</strong><br />

kituose Apiaceae šeimos augaluose. Pagal kolonijos morfologiją, siūlinius grybus su gnybto<br />

tipo jungtimis <strong>ir</strong> balstosporas, nustatyta, jog tai Itersonilia perplexans. Patogeno I. perplexans<br />

sukeliama liga lig šiol nebuvo aptikta nei ant krapų, nei ant kokių nors kitų augalų Bulgarijoje.<br />

Reikšminiai žodžiai: Anethum graveolens, Apiaceae, Itersonilia perplexans.<br />

198


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Investigation of Tobacco rattle v<strong>ir</strong>us infection in<br />

peonies (Paeonia L.)<br />

Marija Samuitienė 1 , Meletėlė Navalinskienė 1 ,<br />

Stasė Dapkūnienė 2<br />

1<br />

Institute of Botany, Žaliųjų Ežerų 49, LT-08406 Vilnius,<br />

e-mail marija.samuitiene@botanika.lt<br />

2<br />

Plant Gene Bank, Vilnius University Botanical Garden, Ka<strong>ir</strong>ėnų 43, LT-1023<br />

Vilnius, e-mail stase.dapkuniene@gf.vu.lt<br />

The aim of this study was to evaluate the occurrence of peony ring spot disease in the<br />

collections of foreign and Lithuanian origin peony cultivars and hybrids and to identify a<br />

causal agent of this v<strong>ir</strong>al disease. During surveys of ornamental plant collections grown in<br />

Lithuania, solitary instances of affected by peony ring spot disease plants have been detected<br />

in all collections surveyed. Diseased plants occurred in the similar frequency in cultivars of<br />

foreign and Lithuanian origin from species Paeonia lactiflora, P. lutea, P. officinalis, P. suffruticosa.<br />

Samples of diseased plants were collected for investigation of disease causal agent.<br />

V<strong>ir</strong>us was isolated and identified using classical v<strong>ir</strong>ological (test-plants, electron microscopy)<br />

and modern molecular biology (DAS-ELISA, RT-PCR) methods. Inoculated test-plants expressed<br />

reaction characteristic to Tobacco rattle v<strong>ir</strong>us (TRV); electron microscopy investigation<br />

revealed characteristic to this v<strong>ir</strong>us rod-shaped particles of two modal lengths. Data of<br />

DAS-ELISA and RT-PCR conf<strong>ir</strong>med TRV infection in naturally infected peony plants and<br />

in inoculated test-plants.<br />

Key words: DAS-ELISA, RT-PCR, Tobacco rattle v<strong>ir</strong>us, test-plants.<br />

Introduction. Genus Paeonia L. has been attributed to Paeoniaceae family.<br />

There are 40 species in this genus of beautiful perennials and shrubs. The genus<br />

name goes back to classical Greek and arose from the mythological God Peon – the<br />

protector of human health and doctors. Peonies are all deciduous and have long-lived,<br />

rather woody rootstocks with swollen roots, and large compound leaves with leaflets<br />

usually toothed or lobed. Each stem in spring terminates in one to several large, roselike<br />

flowers. The<strong>ir</strong> centers are the mass of short stamens that almost conceal the 2 to<br />

5 large ovaries, which develop into short pods containing large seeds. The flowers are<br />

mostly in shades of pink or red, but there are also white and yellow-flowered species.<br />

The great majority of peonies are herbaceous, dying back to the ground in autumn,<br />

but there is a small group of Chinese species, known as the tree peonies – shrubs<br />

(Cheifetz et al., 2004).<br />

199


Peonies have been grown for hundreds of years and remain very popular flower<br />

traditionally grown in every flower-garden of our country. Lithuanian breeders<br />

O. Skeivienė, E. Tarvidienė and J. Tarvidas carried out the breeding of Paeonia lactiflora<br />

Pall., S. Eicher-Lorka – of P. suffruticosa Andrews cultivars. Breeders have<br />

created many valuable peony cultivars and hybrids. Three cultivars of O. Skeivienė<br />

(P. lactiflora ‘V<strong>ir</strong>gilijus’, ‘Garbė Motinai’, ‘Prof. K. Grybauskas’), four cultivars of<br />

S. Eicher-Lorka (P. suffruticosa ‘Elf’, ‘Žizel’, ‘Odeta’, ‘Otkrovenije’) and 25 hybrids of<br />

E. Tarvidienė and J. Tarvidas were selected and presented for conservation in Lithuanian<br />

Plant Genetic resources (Dapkūnienė, 2007; Dapkūnienė et al., 2008).<br />

Data on peony v<strong>ir</strong>al diseases are limited in literature. Tobacco rattle v<strong>ir</strong>us (TRV)<br />

infection has been reported in Japan (Chang et al., 1976), New Zealand (Jones, Young,<br />

1978) and China (Ningshen, Yunfeng, 1990). Strawberry latent ringspot and Raspberry<br />

ringspot v<strong>ir</strong>uses have been isolated from peony in Finland (Bremer, 1985), Alfalfa<br />

mosaic v<strong>ir</strong>us in Italy (Bellardi et al., 2003). F<strong>ir</strong>st publication on peony ringspot disease<br />

in Lithuania was reported in 1974 (Макутенайте, 1974). Preliminary data on TRV as<br />

a causal agent of peony ringspot disease have been published in 1999 (Samuitienė,<br />

Navalinskienė, 1999).<br />

The aim of this study was to evaluate the occurrence of peony ring spot disease<br />

in the collections of foreign and Lithuanian origin peony cultivars and hybrids and to<br />

identify TRV as a causal agent of this disease.<br />

Object, methods and conditions. The plant material was collected in Botanical<br />

Gardens of Vilnius, Kaunas Vytautas Magnus Universities, and flower collection of<br />

The Lithuanian institute of Horticulture.<br />

According to Lithuanian State Program “Genefund” the v<strong>ir</strong>ological evaluation<br />

of peony cultivars and hybrids created by Lithuanian breeders was carried out during<br />

period of 2004–2008. Lithuanian peony cultivars have been accumulated and grown<br />

in botanical gardens of Vilnius University (90 P. lactiflora cultivars and hybrids,<br />

originated by O. Skeivienė, E. Tarvidienė and J. Tarvidas); Kaunas Vytautas Magnus<br />

University (19 P. lactiflora cultivars and hybrids created by O. Skeivienė); flower collection<br />

of Lithuanian Institute of Horticulture (4 P. suffruticosa cultivars created by<br />

S. Eicher-Lorka). Peony plants grown in collections were surveyed once a year and<br />

tested for visual v<strong>ir</strong>al symptoms.<br />

Tobacco rattle v<strong>ir</strong>us has been identified by the methods of test-plant (Robinson,<br />

Harrison, 1989; Brunt et al., 1996), electron microscopy (EM) (Dijkstra, de Jager,<br />

1998), double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA)<br />

(Clark, Adams, 1977) and reverse transcription polymerase chain reaction (RT-PCR)<br />

(Weidemann, 1995).<br />

The test-plants (Table) were inoculated in early stages of growth by mechanical<br />

sap transmission, applying carborundum as an abrasive. The inocula were prepared<br />

by homogenizing infected plant tissue in 0.1 M phosphate buffer pH 7.0, containing<br />

1 % nicotine acid as v<strong>ir</strong>us-stabilizing additive.<br />

V<strong>ir</strong>us particles were examined in leaf dip preparations negatively stained with<br />

3 % uranyl acetate electron microscopically using a JEM-100S electron microscope,<br />

at the instrumental magnification of 25 000.<br />

200


DAS-ELISA was carried out using commercial kit (DSMZ Plant V<strong>ir</strong>us Collection,<br />

Germany), according to standard procedure. TRV IgG and the<strong>ir</strong> conjugate with alkaline<br />

phosphatase were used at a dilution of 1/1 000. 50 mg of sample was extracted<br />

in 1 ml of sample buffer. 0.1 % p-nitrophenylphosphate was used as substrate. The<br />

reactions were measured after 90 min incubation with substrate photometrically at<br />

405 nm (Labsystems Multiskan RC).<br />

Reverse transcription polymerase chain reaction (RT–PCR) for TRV detection<br />

was accomplished using the primers designed from sequence of the 16 k protein gene<br />

of RNA–1 of TRV strain ‘SYM’. Oligonucleotide primer A was synthesized complementary<br />

to the nucleotides 6461 to 6478 5’–GGT GTC CCA AAT TCT CTG–3’ and<br />

oligonucleotide primer B in sense to orientation to nucleotides 6115 to 6133: 5’–CGT<br />

TGT GTA CTC AAG GGT TG–3’. Primers A and B define a target sequence of 364 bp<br />

(Hamilton et al., 1987; Weidemann, 1995).<br />

Total RNA was extracted from symptomatic test plant material stored frozen at<br />

-20 °C using QuickPrep TM Total RNA Extraction Kit (Amersham Biosciences UK).<br />

Extraction procedure was carried out according to the manufacturer’s instructions.<br />

All PCR procedures were carried out in Eppendorf Master Cycler Personal. For<br />

RNA denaturation mixture of 9 µl RNA (for each sample) and 1 µl 20 pM of downstream<br />

primer B was incubated 5 min at 70 °C and 5 min at 4 °C.<br />

Reverse transcription (RT, cDNA synthesis) reaction mixture (for one sample):<br />

4 µl 5 × PCR buffer; 1 µl RNasin; 2 µl 10 mM dNTPs; 1 µl 200 U/µl MulRev<br />

Transcriptase and 11 µl of denatured RNA mix. Reaction was performed incubating<br />

at 42 °C for 60 min, at 70 °C for 10 min and at 4 °C for 5 min.<br />

PCR reaction mixture contained (for one sample): 7 µl cDNA; 34.75 µl PCR water,<br />

4 µl 2 mM dNTPmix, 1 µl 20 pM primer A, 1 µl 20 pM primer B, 5 µl 10 × PCR buffer<br />

without Mg 2+ , 3 µl MgCl 2<br />

, 0.25 µl 5U/µl Taq DNA polymerase. Reaction mixtures<br />

were incubated at 94 °C for 5 min (for f<strong>ir</strong>st step), 25 cycles of 94 °C for 45 sec, 49 °C<br />

for 46 sec, 72 °C for 1 min, and at 72 °C for 5 min (final step).<br />

Resulting PCR products were analyzed by electrophoresis through 5 % polyacrylamide<br />

gel, stained with ethidium bromide, and DNA bands visualized using a<br />

UV transilluminator. DNA fragment size standard was PhiX174 RFI DNA HaeIII<br />

digest, fragment sizes (from top to bottom): 1 353, 1 078, 873, 603, 310, <strong>28</strong>1, 271,<br />

234, 194, 118, 72 bp.<br />

Results. During regular surveys to monitor phytosanitary status of ornamental<br />

plants grown at Botanical gardens solitary instances of diseased plants from species<br />

Paonia lactiflora, P. lutea, P. officinalis, P. suffruticosa were observed in all collections<br />

surveyed. Peony plants showed symptoms characteristic of peony ring spot disease.<br />

At early stage of disease leaf tissue develops light green <strong>ir</strong>regular-shaped spot,<br />

later becoming yellowish. Around them and also around green patches yellow rings<br />

appear. The pattern looks like concentric <strong>ir</strong>regular rings and semi-rings. The pattern<br />

covers all leaf lamina. Symptoms make progress later in season, becoming particularly<br />

visible in autumn. The rings turned into large sinuous yellow bands. Considerable<br />

variation in symptom expression can be noticed depending on cultivar, growing<br />

conditions and season (Fig. 1). Some peony cultivars show chlorotic spots with green<br />

blotches in the middle, surrounded by yellow bands or rings with light-green dots.<br />

201


Fig. 1. Symptoms of ringspot disease on peony leaves<br />

1 pav. Žiediškosios dėmėtligės simptomai and bijūnų lapų<br />

V<strong>ir</strong>us was isolated from collected samples of diseased peonies by the method of<br />

test-plants. Using mechanical inoculation the group of 17 test-plants representing five<br />

families was inoculated with v<strong>ir</strong>us isolates separated from naturally infected peonies.<br />

Test-plants and results of the<strong>ir</strong> reaction to inoculation are presented in Table.<br />

Table 1. Test-plant reactions to inoculation of v<strong>ir</strong>us isolated from peony<br />

1 lentelė. Augalų indikatorių reakcija užkrėtus iš bijūnų išsk<strong>ir</strong>tu v<strong>ir</strong>usu<br />

Test-plant<br />

Augalas indikatorius<br />

Reaction<br />

Reakcija<br />

1 2<br />

Aizoceaeae F. Rudolphi<br />

Tetragonia expansa Murr.<br />

L: NLL<br />

Amaranthaceae<br />

Amaranthus paniculatus L.<br />

L: BrLL<br />

Gomphrena globosa L.<br />

L: NSp<br />

Asteraceae Dumort<br />

Galinsoga parviflora Cav.<br />

L: NStr, RiSp<br />

Chenopodiaceae Vent.<br />

Atriplex hortensis L.<br />

L: LL<br />

Celosia argentea<br />

L: BrLL; S: LeDis,VB<br />

Chenopodium amaranticolor Coste et Reyn L: NLL<br />

C. ambrosioides L. L: NLL<br />

C. foetidum Schrad. L: LL<br />

C. quinoa Willd. L: Cl and NLL<br />

C. urbicum L. L: LL<br />

Cucurbitaceae Juss.<br />

Cucumis sativus L.<br />

L: Cl or NLL<br />

202


Table continued<br />

Lentelės tęsinys<br />

1 2<br />

Solanaceae Juss.<br />

Nicandra physalodes (L.) Gaertn.<br />

L: NLL; S: ClSp, RiSp<br />

Nicotiana debneyi Domin.<br />

L: L: NLL; S: LeDis, M<br />

N. glutinosa L. L:GNRi; S: NSp, NRi, Stu<br />

N. occidentalis Wheeler L: NRiSp; S: M, LeNr<br />

N. tabacum ‘Xanthi’ L. L: NSp; S: EtNRiPat, N, Dis, VC<br />

Abbreviations: L – local reaction; S – systemic reaction; LL – local lesions; Le – leaf; Cl –<br />

chlorotic, chlorosis; N – necrotic, necrosis; Stu – stunting; Sp – spots; M – mosaic; Nr – narrowing;<br />

Ri –rings; Dis – distortion; Str – streaks; C – clearing; Et – etching; Pat – pattern;<br />

Br – brown; G – grey; VB – vein banding; VC – vein clearing.<br />

Sutrumpinimai: L – vietinė reakcija; S – sisteminė reakcija; LL – vietiniai pažeidimai; Le – lapas; Cl –<br />

chlorozė, chlorotinis; N – nekrozė, nekrotinis; Stu – žemaūgė; Sp – dėmės; M – mozaika; Nr – susiaurėjimas;<br />

Ri – žiedai; Dis – deformacija; Str – dryžiai; C – pašviesėjimas; Et – grav<strong>ir</strong>uotė; Pat – piešinys;<br />

Br – rudas; G – pilkas; VB – apvadas apie gyslas; VC – gyslų pašviesėjimas.<br />

The resulting reaction of test-plants was typical for Tobacco rattle v<strong>ir</strong>us (TRV),<br />

described in literature (Robinson, Harrison, 1986; Brunt et al., 1996). V<strong>ir</strong>us induced<br />

chlorotic and necrotic local lesions in all inoculated test-plants (Fig. 2).<br />

Fig. 2. Necrotic local lesions induced by TRV isolated<br />

from peony on leaves of inoculated test-plants:<br />

a – Nicandra physalodes; b – Tetragonia expansa<br />

2 pav. Vietiniai nekrotiniai pažeidimai sukelti iš bijūnų išsk<strong>ir</strong>tu<br />

TRV ant inokuliuotų augalų indikatorių lapų:<br />

a – Nicandra physalodes; b – Tetragonia expansa<br />

Celosia argentea and test-plants representatives of Solanaceae developed local<br />

and systemic reactions (Fig. 3).<br />

203


Fig. 3. Systemic reaction on test plants induced by TRV isolated from peony:<br />

a – vein banding and leaf distortion symptoms on Celosia argentea;<br />

b – necrotic ring etching on Nicotiana tabacum ‘Xanthi’ leaf<br />

3 pav. Sisteminė reakcija ant augalų indikatorių užkrėstų iš bijūnų išsk<strong>ir</strong>tu TRV:<br />

a – gyslų apvadų <strong>ir</strong> lapų deformacijos požymiai ant Celosia argentea;<br />

b – nekrotinė žiediškoji grav<strong>ir</strong>uotė ant Nicotiana tabacum ‘Xanthi’ lapo<br />

EM revealed rod-shaped v<strong>ir</strong>us particles of two modal lengths of 55–110 nm<br />

(short particles) and 200 nm (long particles) (Fig. 4). Such morphology of particles is<br />

characteristic of TRV (Robinson, Harrison, 1986; Brunt et al., 1996).<br />

Fig. 4. Electronomikrograph of TRV particles. Bar represents 100 nm.<br />

4 pav. TRV dalelių elektronomikrografija. Brūkšnys – 100 nm.<br />

Symptomatic host plants and inoculated test-plants were tested in DAS–ELISA.<br />

Reaction was considered positive when absorbance at 405 nm was higher than twice the<br />

mean of healthy (negative) controls. All tested plants gave clearly expressed positive<br />

reaction conf<strong>ir</strong>ming TRV infection (data not shown).<br />

TRV identification by test-plant reactions, EM and serological test were verified<br />

in RT-PCR using as samples test-plants inoculated with v<strong>ir</strong>us isolated from peony<br />

(isolate No 0429). Total RNA was extracted from frozen leaf tissue of infected testplants.<br />

Leaf tissue from healthy Nicotiana tabacum plant was used as negative control<br />

(K-). Previously identified TRV isolate from gladiolus was used as positive control<br />

204


(K+). Specific for TRV PCR products were obtained with locally infected Tetragonia<br />

expansa, Chenopodium quinoa, systemically infected Celosia argentea, Nicotiana<br />

tabacum and positive control, but not with negative control. Specific bands in polyacrylamide<br />

gel of analyzed products after electrophoresis at a position corresponding<br />

to the expected size of amplification product of 364 bp were obtained, conf<strong>ir</strong>ming<br />

TRV identity (Fig. 5).<br />

Fig. 5. RT-PCR products of amplified DNA fragments from TRV isolated from peony<br />

(EF 5 % PAGE). Lanes: 1, 8 – DNA size standard PhiX174 DNA HaeIII digest, fragment<br />

sizes (from top to bottom): 1 353, 1 078, 873, 603, 310, <strong>28</strong>1, 271, 234, 194, 118, 72 bp.,<br />

2 – Tetragonia expansa; 3 – Chenopodium quinoa (local reaction); 4 – Celosia argentea;<br />

5 – Nicotiana tabacum (systemic reaction); 6 – (K-); 7 – (K+). Size of product – 364 bp.<br />

5 pav. Iš bijūnų išsk<strong>ir</strong>to TRV DNR fragmento pagausinto AT-PGR reakcijoje produktai<br />

(EF 5 % poliakrilamido gelyje). Takeliai: 1, 8 – DNR fragmentų dydžio standartas<br />

PhiX174 DNA HaeIII digest, fragmentų dydžiai (nuo v<strong>ir</strong>šaus į apačią):<br />

1 353, 1 078, 873, 603, 310, <strong>28</strong>1, 271, 234, 194, 118, 72 bp.,<br />

2 – Tetragonia expansa 3 – Chenopodium quinoa (vietinė reakcija); 4 – Celosia argentea;<br />

5 – Nicotiana tabacum (sisteminė reakcija); 6 – K– ; 7 – K+. Produkto dydis – 364 bp.<br />

During surveying of Lithuanian peony cultivars in collections it was revealed that<br />

great majority of plants were healthy. One diseased plant in the cultivar ‘Garbė Motinai’<br />

and two plants in hybrids were found showing symptoms of ring spot disease. These<br />

plants were removed in order to avoid spreading of infection. So, v<strong>ir</strong>ological state of<br />

Lithuanian peony cultivars and hybrids growing in collections is good.<br />

Discussion. TRV was isolated from peony plants showing symptoms characteristic<br />

to peony ring spot disease. V<strong>ir</strong>us was reliably identified using classical v<strong>ir</strong>ological<br />

methods of test-plants, electron microscopy, and modern methods of molecular<br />

biology, DAS-ELISA, RT-PCR. TRV as the most prevalent agent of v<strong>ir</strong>us disease<br />

in peonies causing ring spot disease was described in literature (Chang et al., 1976;<br />

Jones, Young, 1978; Ningshen, Yunfeng, 1990; Brunt et al., 1996). TRV is the type<br />

member of Tobrav<strong>ir</strong>us genus, and it is the only v<strong>ir</strong>us of the genus to infect ornamental<br />

plants (Brunt, 1995). TRV has a very wide natural host range, including ornamentals;<br />

205


its infection was reported in ornamental species: Alstroemeria L., Lilium L., Narcissus<br />

L., Aster L., Crocus L., Freesia Eckl. Ex Klatt, Gladiolus L., Hyacinthus L.,<br />

Iris L., Nerine Herb., Phlox L., Tulipa L. (Loebenstein et al., 1995). This v<strong>ir</strong>us is<br />

widespread on ornamentals in our country; it was isolated and identified in 15 species<br />

belonging to 10 botanical families (Samuitienė, Navalinskienė, 2000). More than<br />

400 species in more than 50 dicotyledonous and monocotyledonous families can be<br />

infected experimentally; in many instances the infection does not become systemic.<br />

The v<strong>ir</strong>us has rod-shaped particles c. 22 nm in diameter and of two predominant<br />

lengths 180–215 nm (long) and 46–115 nm (short). It is transmitted by Trichodorus<br />

and Paratrichodorus nematodes, species of which are strain specific vectors and can<br />

retains v<strong>ir</strong>us for many months if non-feeding. The v<strong>ir</strong>us is also seed-borne in some<br />

host species (Robinson, Harrison, 1989; Brunt, 1995; Brunt et al., 1996).<br />

Methods of controlling peony v<strong>ir</strong>uses consist of growing and multiplying selected<br />

healthy stocks, visual inspection of plants for symptoms and elimination of affected<br />

plants. The losses by nematode transmitted v<strong>ir</strong>uses can be reduced by means to control<br />

the nematodes. The application of meristem tip culture method can be applied for<br />

propagation v<strong>ir</strong>us-free plant material especially for the most valuable peony cultivars<br />

(Spiegel, Loebenstein, 1995).<br />

Conclusions. 1. Peony plants expressing symptoms characteristic to peony ring<br />

spot disease have been found as solitary instances in all collections surveyed in cultivars<br />

of foreign and Lithuanian origin from species Paeonia lactiflora Pall., P. lutea<br />

Delav. ex Franch., P. officinalis L., P. suffruticosa Andrews.<br />

2. The causal agent of peony ring spot disease was isolated and identified by the<br />

methods of test-plants, electron microscopy, DAS-ELISA and RT-PCR as Tobacco<br />

rattle v<strong>ir</strong>us (TRV).<br />

Acknowledgements. This work was supported in part by the grant No. 18 from<br />

Lithuanian State Program “Genefund” and by Lithuanian State Science and Studies<br />

Foundation (Project No. V–25/2009).<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 04<br />

References<br />

1. Bellardi M. G., Rubies-Antonell C., Bianchi A. 2003. F<strong>ir</strong>st report of a disease of<br />

peony caused by Alfalfa mosaic v<strong>ir</strong>us. Plant Disease, 87(1): 99.<br />

2. Bremer K. 1985. Strawberry latent ringspot v<strong>ir</strong>us in ornamental plants in Finland.<br />

Annales Agriculturae Fenniae, 24(2): 101–102.<br />

3. Brunt A. A. 1995. Major genera of plant v<strong>ir</strong>uses. In: Loebenstein G., Lawson R. H.,<br />

Brunt A. A. (eds.). V<strong>ir</strong>us and V<strong>ir</strong>us-like Diseases of Bulb and Flower Crops.<br />

Wiley, Jerusalem: 29–66.<br />

206


4. Brunt A. A., Crabtree K., Dalwitz M. J., Gibbs A. J., Watson L. (eds.) 1996.<br />

V<strong>ir</strong>uses of Plants. Descriptions and Lists from VIDE Database. UK Univ. Press,<br />

Cambridge. 1 484.<br />

5. Chang M. U., Doi Y., Yora K. 1976. A rod-shaped v<strong>ir</strong>us found in the peony ringspot.<br />

Annals of the Phytopathological Society of Japan, 42(3): 325–3<strong>28</strong>.<br />

6. Cheifetz A., Double C., Barnard L., Imwold D. (eds.). 2006. Annuals and perennials.<br />

Tandem Verlag, Sydney.<br />

7. Clark M. F., Adams A. N. 1977. Characteristics of the microplate method of<br />

enzyme-linked immunosorbent assay for detection of plant v<strong>ir</strong>uses. Journal of<br />

General V<strong>ir</strong>ology, 34: 475–483.<br />

8. Dapkūnienė S. 2007. Lietuvos augalų nacionaliniai genetiniai ištekliai.<br />

Lietuviškos bijūnų veislės. Spaudvita, Kėdainiai.<br />

9. Dapkūnienė S., Motiejūnaitė O., Varkulevičienė J., Pakulienė J., Guseva, V.,<br />

Mažeikienė I. 2008. Lietuviški bijūnai miestų gėlynams. In: Miestų želdynų<br />

formavimas’ 2008: gėlės <strong>ir</strong> gėlynai / Formation of Urban Green Areas’ 2008.<br />

Flowers and Paterres. Mokslinių straipsnių rinkinys, Klaipėdos verslo <strong>ir</strong><br />

technologijų kolegija, Klaipėda.<br />

10. Dijkstra J., de Jager C. P. 1998. Practical Plant V<strong>ir</strong>ology. Protocols and Exercises.<br />

Springer-Verlag, Berlin.<br />

11. Hamilton W. D., Boccara M., Robinson D. J., Baulcombe D. C. 1987. The complete<br />

nucleotide sequence of tobacco rattle v<strong>ir</strong>us RNA-1. Journal of General<br />

V<strong>ir</strong>ology, 68: 2 563–2 575.<br />

12. Jones A. T., Young B. R. 1978. Some properties of two isolates of tobacco rattle<br />

v<strong>ir</strong>us obtained from peony and narcissus plants in New Zealand. Plant Disease<br />

Reporter, 62(11): 925–9<strong>28</strong>.<br />

13. Loebenstein G., Lawson R. H., Brunt A. A. (eds.), 1995. V<strong>ir</strong>us and V<strong>ir</strong>us-like<br />

Diseases of Bulb and Flower Crops. Wiley, Jerusalem.<br />

14. Ningsheng W., Yunfeng W., 1990. About tobacco rattle v<strong>ir</strong>us peony isolate (TRV-<br />

Pa). Acta Phytopathology Sinica, 20(4): 247–251.<br />

15. Robinson D. J., Harrison B. D. 1989. Tobacco rattle v<strong>ir</strong>us. AAB Descriptions of<br />

Plant V<strong>ir</strong>uses, 346 (No 12 revised). 6.<br />

16. Samuitienė M., Navalinskienė M. 1999. Identification of peony ringspot causal<br />

agent and its distribution in Lithuania. Material of International Scientific<br />

Conference on Plant Genefund Accumulation, Evaluation and Protection in the<br />

Botanical Gardens. 1–2 July, Vilnius, 85–87.<br />

17. Samuitienė M., Navalinskienė M., 2000. Natural occurrence of Tobacco rattle<br />

tobrav<strong>ir</strong>us on ornamental plants in Lithuania. Biologija, 2: 293–295.<br />

18. Spiegel S., Loebenstein G., 1995. Control of v<strong>ir</strong>us diseases. In: Loebenstein G.,<br />

Lawson R. H., Brunt A. A. (eds.). V<strong>ir</strong>us and V<strong>ir</strong>us-like Diseases of Bulb and<br />

Flower Crops. Wiley, Jerusalem: 203–218.<br />

19. Weidemann H. -L. 1995. Detection of tobacco rattle v<strong>ir</strong>us in potato tubers and<br />

roots by polymerase chain reaction (PCR). Journal of Phytopathology, 143:<br />

455–458.<br />

20. Макутенайте М. 1974. Вирусные болезни декоративных растений семейства<br />

Ranunculaceae в Литве. Труды ВНИИ защиты растений, 4: 80–82.<br />

207


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Tabako garbanotosios dryžligės (Tobacco rattle v<strong>ir</strong>us, TRV)<br />

v<strong>ir</strong>uso infekcijos bijūnuose (Paeonia L.) tyrimas<br />

M. Samuitienė, M. Navalinskienė, S. Dapkūnienė<br />

Santrauka<br />

Darbo tikslas buvo įvertinti mūsų šalies botanikos sodų kolekcijose auginamų lietuviškos<br />

selekcijos <strong>ir</strong> užsieninių veislių bijūnų pažeistumą bijūnų žiediškąja dėmėtlige <strong>ir</strong> identifikuoti<br />

šios v<strong>ir</strong>usinės ligos sukėlėją. Tikrinant Lietuvoje auginamų dekoratyvinių augalų<br />

kolekcijų fitosanitarinę būklę, buvo aptinkama pavienių bijūnų augalų su ryškiais bijūnų<br />

žiediškosios dėmėtligės požymiais. Sergančių augalų buvo aptinkama panašiu dažnumu tarp<br />

Paeonia lactiflora, P. lutea, P. officinalis, P. suffruticosa rūšių <strong>ir</strong> užsieninių, <strong>ir</strong> lietuviškos<br />

selekcijos veislių augalų. Buvo surinkti sergančių augalų pavyzdžiai v<strong>ir</strong>usinės ligos sukėlėjo<br />

tyrimams. Iš pažeistų augalų išsk<strong>ir</strong>tas <strong>ir</strong> klasikiniais v<strong>ir</strong>usologijos (augalų indikatorių,<br />

elektroninės mikroskopijos) bei moderniais molekulinės biologijos (DAS-ELISA, AT-PGR)<br />

metodais identifikuotas tabako garbanotosios dryžligės (Tobacco rattle v<strong>ir</strong>us, TRV) v<strong>ir</strong>usas.<br />

Reikšminiai žodžiai: DAS-ELISA, RT-PCR, t<strong>ir</strong>ti augalai, Tobacco rattle v<strong>ir</strong>us.<br />

208


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Evaluation of agronomical characters and<br />

resistance to fungal diseases of apple cultivars<br />

Audrius Sasnauskas, Dalia Gelvonauskienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail A.Sasnauskas@lsdi.lt<br />

In 2004–2009 at the Lithuanian Institute of Horticulture blooming period and abundance,<br />

trunk cross sectional area, yield, productivity, resistance to scab (Venturia inaequalis) and<br />

apple blotch (Phyllosticta mali) were studied in 7 apple (Malus × domestica Borkh.) cultivars.<br />

Trees were grafted on rootstock B.118 with spacing 4 × 2.5 m.<br />

‘Auksis’ and ‘Connell Red’ were the best ones among the tested cultivars. The following<br />

apple cultivars were distinguished for particular characteristics: ‘Kim’ – earliest blooming,<br />

‘Winterbanana’ – latest blooming, ‘Connell Red’– blooming abundance, ‘Connell Red’ –<br />

weakest growth, ‘Auksis’ and ‘Connell Red’ – yield in young orchard, ‘Auksis’ and ‘B<strong>ir</strong>git<br />

Bonnier’– resistance to scab, ‘Auksis’ and ‘Connell Red’– resistance to apple blotch.<br />

Key words: apple, cultivars, growth, phenology, Phyllosticta mali, productivity, Venturia<br />

inaequalis, yield.<br />

Introduction. Superior fruit qualities, high productivity, resistance to diseases<br />

and pests, winter hardiness, storability and marketability are the crucial requ<strong>ir</strong>ements<br />

to new apple cultivars (Kellerhals et al., 1999; Kellerhals et al., 2003; Sansavini et al.,<br />

2005; Rutkowski et al., 2005). Apple scab (Venturia inaequalis) is one of the most<br />

important diseases in fruit orchards in Lithuania (Raudonis, Valiuškaitė, 2003). High<br />

quality scab resistant cultivars have been developed over the last 50 years. Scab resistance<br />

determined by the gene V f<br />

, derived from Malus floribunda 821, has been<br />

considered durable for a long time (Kellerhals et al., 1999). However, before the appearance<br />

of races of scab v<strong>ir</strong>ulent to V f<br />

(Parisi et al., 1993) it was obvious that breeding<br />

for scab resistance should include alternative sources of resistances. On the other<br />

hand, cultivars with durable resistance to other diseases – apple blotch (Phyllosticta<br />

mali), powdery mildew (Podosphaera leucotricha) and f<strong>ir</strong>e blight (Erwinia amylovora)<br />

– are important for ecological and economical considerations. Resistance to<br />

biotic and adaptation to abiotic factors of newly introduced apple cultivars and promising<br />

hybrids is being studied at the Lithuanian Institute of Horticulture (Sasnauskas<br />

et al., 2006; Gelvonauskienė et al., 2007; Sasnauskas et al., 2007; Sasnauskas et<br />

al., 2009).<br />

Objective of the work was to study some agronomical characters and resistance<br />

to fungal disease of the introduced apple cultivars.<br />

209


Object, methods and conditions. T r i a l y e a r s a n d p l a c e. The trial of 7<br />

apple cultivars was planted at the Lithuanian Institute of Horticulture in the spring of<br />

2004. Trees were grafted on B.118 rootstock. Evaluation and characterization of the<br />

cultivars was performed in 2006–2009.<br />

M e t e o r o l o g i c a l c o n d i t i o n s. The late spring frost at the beginning of<br />

bloom injured blossoms in 2007. At this time the minimal a<strong>ir</strong> temperature above the<br />

ground dropped from -3 °C to -2.5 °C, what injured fruit settings. Such conditions<br />

negatively affected yield parameters. In 2006 during flowering and after it weather<br />

was cold, but were no frosts and such condition didn’t affect yield.<br />

P l a n t m a t e r i a l. The following introduced apple cultivars were compared<br />

with the standard cv. ‘Auksis’ (Lithuania): ‘Bavendorf’ (Germany), ‘B<strong>ir</strong>git<br />

Bonnier’ (Sweden), ‘Connell Red’ (USA), ‘Kim’ (USA), ‘Nyckelby’ (Sweden) and<br />

‘Winterbanana’ (USA).<br />

E x p e r i m e n t a l d e s i g n. The trees were planted at the distance of 4 × 2.5 m.<br />

The trial was established in five replications. Each plot contained 1 fruit-tree. They were<br />

formed as spindle. Growing, fertilizing, pest, disease and weed control, soil cultivation,<br />

pruning, shaping and care of apple cultivars were maintained as recommended for<br />

commercial orchards (Intensyvios obelų <strong>ir</strong> kriaušių auginimo technologijos, 2005).<br />

O b s e r v a t i o n s a n d s t a t i s t i c a l a n a l y s i s. In the trial the following<br />

characters of apple cultivars was established: blooming periods, days; blooming<br />

abundance, scores (1-no blooming detected on trees, 9-bloomed more than 90 % of<br />

flowers); apple tree trunk cross-section area, cm 2 ; yield, t ha -1 ; productivity, kg/cm 2 ,<br />

resistance to scab (Venturia inaequalis) and apple blotch (Phyllosticta mali), scores<br />

(1-no disease symptoms detected on leaves, 9-injured more than 75 % of leaf area). All<br />

data were subjected to analysis of variance. The significance of differences between the<br />

cultivars was estimated at 0.05 levels (Fisher’s Protected LSD and Duncan’s Multiple<br />

Range Test) (Tarakanovas, Raudonius, 2003).<br />

Results. B l o o m i n g p e r i o d. Apple trees started blooming in the<strong>ir</strong> th<strong>ir</strong>d<br />

year in the orchard. All the blooming stages (beginning of blooming, beginning of<br />

full blooming, end of full blooming and end of blooming) began earliest in ‘Kim’,<br />

while the latest blooming was observed in ‘Winterbanana’ trees (Table 1). According<br />

to investigation data, blooming period continued 10–12 days.<br />

Table 1. Dates of blooming periods of apple cultivars<br />

1 lentelė. Obelų veislių žydėjimo tarpsniai<br />

Babtai, 2006–2008<br />

Cultivars<br />

Veislės<br />

Beginning of<br />

blooming<br />

(month, day)<br />

Žydėjimo pradžia,<br />

mėn., diena<br />

Beginning of full<br />

blooming<br />

(month, day)<br />

Masinio žydėjimo<br />

pradžia, mėn., diena<br />

210<br />

End of full blooming<br />

(month, day)<br />

Masinio žydėjimo<br />

pabaiga,<br />

mėn., diena<br />

End of blooming<br />

(month, day)<br />

Žydėjimo pabaiga,<br />

mėn., diena<br />

1 2 3 4 5<br />

‘Auksis’ 05-12 ab* 05-16 ab 05-20 ab 05-22 a<br />

‘Bavendorf’ 05-16 bcd 05- 20 bcd 05-23 bcd 05-26 bc<br />

‘B<strong>ir</strong>git Bonnier’ 05-16 bcd 05-20 bcd 05-22 bcd 05-25 abc


Table 1 continued<br />

1 lentelės tęsinys<br />

1 2 3 4 5<br />

‘Connell Red’ 05-17 cd 05-19 bcd 05-24 bcd 05-27 bc<br />

‘Kim’ 05-10 a 05-15 a 05-18 a 05-21 a<br />

‘Nyckelby’ 05-18 cd 05-22 cd 05-26 d 05-<strong>28</strong> bc<br />

‘Winterbanana’ 05-18 d 05-23 d 05-25 cd 05-29 c<br />

Mean<br />

05-16 05-19 05-22 05-25<br />

Veislių vidurkis<br />

* Duncan’s multiple range t-test / Duomenys apskaičiuoti pagal Dunkano kriterijų Means<br />

followed by the same letter are not significantly different at P = 0.05<br />

* Tarp vidurkių, pažymėtų tomis pačiomis raidėmis, nėra esminių sk<strong>ir</strong>tumų, kai P = 0,05<br />

B l o o m i n g a b u n d a n c e. In the th<strong>ir</strong>d year of growth apple trees ‘Connell<br />

Red’ (5.5 scores) bloomed most abundantly, while cvs. ‘Kim’ (1.1 scores) and ‘Auksis’<br />

(1.3 scores) bloomed little (Table 2). In the fourth year of growth apple trees bloomed<br />

little (3.3 scores). During the evaluation period spring frosts in this year at the beginning<br />

of bloom injured blossoms. In the fifth year of growth apple trees bloomed better<br />

(4.5 scores). Apple trees ‘Connell Red’ (6 scores) and ‘Nyckelby’ (5.3 scores) bloomed<br />

most abundantly. On the other hand, cv. ‘Bavendorf’ (2.3 scores) bloomed little.<br />

Table 2. Blooming abundance of apple cultivars<br />

2 lentelė. Obelų žydėjimo gausumas<br />

Cultivars<br />

Veislės<br />

Babtai, 2006–2008<br />

Blooming abundance (scores)<br />

Obelų žydėjimo gausumas, balais<br />

2006 2007 2008<br />

‘Auksis’ 1.3 a* 4 bcd 4.6 ab<br />

‘Bavendorf’ 1.5 ab 2 a 2.3 a<br />

‘B<strong>ir</strong>git Bonnier’ 2.5 ab 3 ab 3.6 ab<br />

‘Connell Red’ 5.5 d 6 d 6 c<br />

‘Kim’ 1.1 a 3 ab 5 bc<br />

‘Nyckelby’ 2.5 ab 2 a 5.3 bc<br />

‘Winterbanana’ 3.5 bcd 5.6 cd 4 ab<br />

Mean<br />

2.5 3.3 4.5<br />

Veislių vidurkis<br />

* Duncan’s multiple range t-test / Means followed by the same letter are not significantly<br />

different at P = 0.05<br />

* Duomenys apskaičiuoti pagal Dunkano kriterijų / Tarp vidurkių, pažymėtų tomis pačiomis<br />

raidėmis, nėra esminių sk<strong>ir</strong>tumų, kai P = 0,05<br />

T r e e g r o w t h. In the fifth year of growth apple trees of the investigated cultivars<br />

showed that the trees of ‘B<strong>ir</strong>git Bonnier’ (36.7 cm 2 ) and ‘Kim’ (36.5 cm 2 ) grew<br />

significantly stronger, while ‘Connell Red’ (23.5 cm 2 ) – weaker, compared with the<br />

other tested apple cultivars (Fig. 1).<br />

211


Fig. 1. Trunk cross sectional area (cm 2 )<br />

1 pav. Obelų veislių kamieno skerspjūvio plotas, cm 2<br />

Babtai, 2008<br />

Y i e l d a n d p r o d u c t i v i t y. The yield per year is cumulatively presented in<br />

Fig. 2. These data show that the highest cumulative yield per hectare is from ‘Auksis’<br />

(23.7 t ha -1 ). ‘Connell Red’ (21.8 t ha -1 ) gives almost the same yield. The next in yield<br />

capacity were cvs. ‘Bavendorf’ (18 t ha -1 ) and ‘Nyckelby’ (15.1 t ha -1 ). ‘Kim’ (6.1 t ha -1 ),<br />

‘B<strong>ir</strong>git Bonnier’ (8.9 t ha -1 ) and ‘Winterbanana’ (13.3 t ha -1 ) had the lowest yield.<br />

Fig. 2. Cumulative yield of apple cultivars (t ha -1 )<br />

2 pav. Obelų veislių suminis derlius, t ha -1<br />

Babtai, 2006–2008<br />

212


The average of productivity of the investigated apple cultivars was 0.40 kg/cm 2<br />

(Fig. 3). The highest productivity was assessed for cultivar ‘Auksis’ (0.77 kg/cm 2 ).<br />

The significantly lowest productivity showed ‘B<strong>ir</strong>git Bonnier’ (0.14 kg/cm 2 ) and ‘Kim’<br />

(0.16 kg/cm 2 ). Productivity of cultivars ‘Bavendorf’ (0.42 kg/cm 2 ) ‘Winterbanana’<br />

(0.42 kg/cm 2 ) and ‘Nyckelby’ (0.50 kg/cm 2 ) was close to the average and significantly<br />

differed from cultivars discussed before.<br />

Fig. 3. Productivity of apple cultivars (kg/cm 2 )<br />

3 pav. Obelų veislių produktyvumas, kg/cm 2<br />

Babtai, 2008<br />

D i s e a s e r e s i s t a n c e. Tested apple genotypes demonstrated different field<br />

resistance to apple scab. In the fourth year in orchard, cvs. ‘Bavendorf’ (2.6 scores)<br />

and ‘Nyckelby’ (2.9 scores) were the most susceptible on leaves (Table 3). In the<br />

fifth year in orchard, ‘Kim’ (2 scores) was the most susceptible to this disease. In the<br />

sixth year in orchard, all cultivars displayed higher apple scab symptoms on leaves.<br />

More resistant to this disease on leaves was cvs. ‘Auksis’, ‘B<strong>ir</strong>git Bonnier’ and ‘Kim’<br />

(2 scores), while ‘Nyckelby’ (5 scores) was the most susceptible to apple scab.<br />

All cultivars displayed apple blotch symptoms on leaves in 2007 (Table 3).<br />

Cv. ‘Auksis’ (1.1 scores) showed high resistance. Cv. ‘Bavendorf’ (2.6 scores) was<br />

the most susceptible. In the fifth and sixth year in orchard, cvs. ‘Auksis’ and ‘Connell<br />

Red’ (1 score) were free from apple blotch symptoms on leaves. On the other hand,<br />

cv. ‘Kim’ and ‘B<strong>ir</strong>git Bonnier’ were the most susceptible to this disease.<br />

213


Table 3. Scab and apple blotch injury on apple-tree (scores)<br />

3 lentelė. Obelų pažeidimas rauplėmis <strong>ir</strong> filostiktoze, balais<br />

Scab<br />

Rauplės<br />

Apple blotch<br />

Filostiktozė<br />

Babtai, 2007–2009<br />

Cultivars<br />

Veislės<br />

2007 2008 2009<br />

Vidurkis<br />

Average<br />

2007 2008 2009<br />

Vidurkis<br />

Average<br />

‘Auksis’ 1.7 1.6 2.0 1.7 1.1 1.0 1.0 1.03<br />

‘Bavendorf’ 2.6 1.5 3.0 2.37 2.6 1.0 2.3 1.97<br />

‘B<strong>ir</strong>git Bonnier’ 1.3 1.9 2.0 1.73 2 1.5 2.0 1.87<br />

‘Connell Red’ 1.8 1.8 3.2 2.27 1.8 1.0 1.0 1.27<br />

‘Kim’ 1.8 2.0 2.0 1.93 1.6 1.5 2.6 1.9<br />

‘Nyckelby’ 2.9 1.6 5.0 3.17 1.5 1.0 2.0 1.5<br />

‘Winterbanana’ 1.4 1.8 2.2 1.80 1.8 1.7 1.8 1.77<br />

Average 1.92 1.74 2.78 2.15 1.77 1.24 1.82 1.61<br />

Veislių vidurkis<br />

LSD 05<br />

/ R 05<br />

0.49 0.26 1.10 0.51 0.38 0.13 0.51 0.36<br />

Discussion. One of the requ<strong>ir</strong>ements for successful pollination is that the pollinator<br />

must flower at the same time as the cultivar to be pollinated (Grauslund, 1996). For<br />

this purpose cultivars were divided into groups of similar blooming time. The early<br />

blooming apple cultivars suffer a great risk of being damaged by the late spring frost<br />

(Kiprijanovski et al., 2009). Results of investigation show that ‘Kim’ is characterized<br />

with the earliest start of blooming, while ‘Winterbanana’ start blooming much later.<br />

During three years of full blooming apple trees of cv. ‘Connell Red’ bloomed<br />

most abundantly. Less intensive bloom was characterized for other apple cultivars.<br />

Apple trees of cv. ‘Bavendorf’ bloomed worst.<br />

Trunk cross sectional area (TCSA) is an integral indicator of the development of<br />

the complete above ground part of the fruit-tree (Ristevski, 1986). The data of investigation<br />

showed that cvs. ‘B<strong>ir</strong>git Bonnier’ and ‘Kim’ had the largest TSCA at the end<br />

of the fifth year, whereas the ‘Connell Red’ type had the smallest.<br />

Highly significant yield differences were found among the trees of the tested apple<br />

cultivars. The highest yield and productivity showed trees of ‘Auksis’ and ‘Connell<br />

Red’. As reported earlier (Uselis et al., 2007; Sasnauskas et al., 2008), cvs. ‘Auksis’<br />

and ‘Connell Red’ were the most productive. The lowest yield and productivity was<br />

observed for ‘Kim’ and ‘B<strong>ir</strong>git Bonnier’.<br />

Resistance breeding in apple is aimed at the development of cultivars durably<br />

resistant to biotic and abiotic stresses. Resistant cultivars are suited for sustainable<br />

and ecological production methods due to less application of pesticides needed for<br />

healthy growth. Tolerance to abiotic stresses can promote a better adaptation to the<br />

env<strong>ir</strong>onment and climatic changes (Peil, 2009). Our investigation data demonstrated<br />

that ‘Auksis’ and ‘B<strong>ir</strong>git Bonnier’ were resistant to scab, ‘Auksis’ and ‘Connell Red’ –<br />

resistant to apple blotch.<br />

214


Conclusions. 1. ‘Auksis’ and ‘Connell Red’ were the best ones among the tested<br />

cultivars.<br />

2. The following apple cultivars were distinguished for particular characteristics:<br />

‘Kim’ – earliest blooming, ‘Winterbanana’ – latest blooming, ‘Connell Red’ – blooming<br />

abundance, ‘Connell Red’ – weakest growth, ‘Auksis’ and ‘Connell Red’ – yield<br />

in young orchard, ‘Auksis’ and ‘B<strong>ir</strong>git Bonnier’– resistance to scab, ‘Auksis’ and<br />

‘Connell Red’ – resistance to apple blotch.<br />

Gauta 2009 07 01<br />

Parengta spausdinti 2009 08 05<br />

References<br />

1. Gelvonauskienė D., Sasnauskas A., Gelvonauskis B. 2007. The breeding of apple<br />

tree resistant to European canker (Nectria Galligena Bres.). Sodininkystė <strong>ir</strong><br />

daržininkystė, 26 (3): 174–178.<br />

2. Grauslund J. 1996. Flowering dates of pome and stone fruit cultivars –10 years<br />

results. Acta Horticulturae, 423: 31–37.<br />

3. Intensyvios obelų <strong>ir</strong> kriaušių auginimo technologijos. 2005. N. Uselis (sudaryt.).<br />

Lietuvos sodininkystės <strong>ir</strong> daržininkystės institutas, Babtai.<br />

4. Kellerhals M., Viviani A., Goerre M., Gessler C. 1999. New challengers for<br />

apple breeding. Acta Horticulturae, 484: 131–134.<br />

5. Kellerhals M., Sauer C., Frey J., Hohn E. 2003. High fruit quality, optimal fruit<br />

set and durable disease: are these the requ<strong>ir</strong>ements for new apple varieties<br />

Proceedings Eufrin workshop on fruit quality, Bologna, Italy, 11–14 June.<br />

6. Kiprijanovski M., Arsov T., Gjamovski V., Damovski. 2009. Study of certain<br />

introduced apple cultivars in the Prespa region. Acta Horticulturae, 825:<br />

125–132.<br />

7. Parisi L., Lespinasse Y., Guillaumes J., Krüger J. 1993. A new race of Venturia<br />

inaequalis v<strong>ir</strong>ulent to apples with resistance due to the Vf gene. Phytopathology,<br />

83: 533–537.<br />

8. Peil, A., Duneman F., Flachowsky H., Hanke M.V. Update on breeding for disease<br />

resistance in apple. Proceedings of the COST Action 864: Combining traditional<br />

and advanced strategies for plant protection in pome fruit growing. 3–5<br />

June, Valencia, Spain, 22.<br />

9. Raudonis L., Valiuškaitė A. 2003. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania. Sodininkystė <strong>ir</strong> daržininkystė,<br />

22(3): 3–14.<br />

10. Ristevski B. 1986. Opsto ovostarstvo. Nasa kniga, Skopje.<br />

11. Rutkowski K. P., Kruczynska D. E., Plocharski W., Wawrzynczak A. 2005.<br />

Scab resistant apple cultivars – quality and storage. Acta Horticulturae, 682:<br />

681–686.<br />

215


12. Sansavini S., Belfanti E., Costa F., Donati, F. 2005. European apple breeding<br />

programs turn to biotechnology. Chronica Horticulturae, 45(2): 16–19.<br />

13. Sasnauskas A., Gelvonauskienė D., Gelvonauskis B., Bendokas V., Baniulis D.<br />

2006. Resistance to fungal diseases of apple cultivars and hybrids in Lithuania.<br />

Agronomy Research, 4: 349–352.<br />

14. Sasnauskas A., Gelvonauskienė D., Bendokas V., Stanys V., Rugienius R.,<br />

Bobinas Č., Baniulis D. 2007. Characterization of scab resistant Lithuanian apple<br />

cultivars. Acta Horticulturae, 760: 507–511.<br />

15. Sasnauskas A., Gelvonauskienė D., Viškelis P., Šabajevienė G., Duchovskis P.<br />

2008. Introdukuotų obelų veislių tyrimų apžvalga. Sodininkystė <strong>ir</strong> daržininkystė,<br />

27(3): 77–84.<br />

16. Sasnauskas A., Gelvonauskienė D., Šikšnianienė J. B., Šabajevienė G.,<br />

Duchovskis P., Bobinas Č. 2009. Investigation of biological traits of fifteen apple<br />

cultivars. Acta Horticulturae, 825: 97–102.<br />

17. Tarakanovas P., Raudonius S. 2003. Agronominių tyrimų duomenų statistinė<br />

analizė taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT iš paketo<br />

SELEKCIJA <strong>ir</strong> IRRISTAT. Metodinė priemonė. Akademija: 57.<br />

18. Uselis N., Duchovskis P., Kviklys D., Šabajavienė G. 2007. Effect of planting<br />

systems and canopy form on apple trees grafted on P 22. Sodininkystė <strong>ir</strong> daržininkystė,<br />

26(4): 22–29.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Obelų veislių agronominių požymių <strong>ir</strong> atsparumo<br />

grybinėms ligoms tyrimas<br />

A. Sasnauskas, D. Gelvonauskienė<br />

Santrauka<br />

2004–2009 m. Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute t<strong>ir</strong>ta septynių introdukuotų<br />

obelų (Malus × domestica Borkh.) veislių žydėjimo tarpsniai, žydėjimo gausumas, vaismedžių<br />

augumas, derlius, produktyvumas, atsparumas rauplėms (Venturia inaequalis) <strong>ir</strong> filostiktozei<br />

(Phyllosticta mali). Dvimečiai obelų sodinukai su B.118 poskiepiu pasodinti 2004 m. pavasarį.<br />

Sodinimo schema – 4 × 2,5 m, po vieną vaismedį laukelyje penkiais pakartojimais.<br />

Pagal t<strong>ir</strong>tų požymių visumą, vaismedžiai ‘Auksis’ <strong>ir</strong> ‘Connell Red’ įvertinti geriausiai.<br />

T<strong>ir</strong>tais požymiais išsiskyrė šios obelų veislės: ‘Kim’ – ankstyvu žydėjimu, ‘Winterbanana’ –<br />

vėlyvu žydėjimu, ‘Connell Red’ – žydėjimo gausumu, ‘Connell Red’ – silpniausiu augumu,<br />

‘Auksis’ <strong>ir</strong> ‘Connell Red’ – derliumi jauname sode, ‘Auksis’ <strong>ir</strong> ‘B<strong>ir</strong>git Bonnier’– atsparumu<br />

rauplėms, ‘Auksis’ <strong>ir</strong> ‘Connell Red’ – atsparumu filostoktozei.<br />

Reikšminiai žodžiai: augumas, derlius, fenologija, obelys, Phyllosticta mali, produktyvumas,<br />

veislės, Venturia inaequalis.<br />

216


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Influence of preplant and vegetable crop rotation links<br />

on carrot yield and damage of pests<br />

Roma Starkutė, Laisvūnė Duchovskienė, Vytautas Zalatorius<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail r.starkute@lsdi.lt<br />

At the Lithuanian Institute of Horticulture in 2003–2007 there were investigated the<br />

most suitable plants for green manure and evaluated the<strong>ir</strong> influence on ecologically grown<br />

carrot yield and damage of pests. Experiments were carried out in the experimental field for<br />

ecological vegetable growing, in calcaric epihypogleyic luvisol of sandy loam on light loam. It<br />

was established that biomass of the plants grown for green manure left in the ploughing layer<br />

uneven amount of organic matter. Pea and oat mixture produced the biggest amount of organic<br />

matter (43.2 t ha -1 ), barley – the least one (24.5 t ha -1 ). All the sideral plants influenced humus<br />

positively. All the preplants increased carrot yield. The biggest carrot yield (correspondingly<br />

40.4 and 41.2 t ha -1 ) was obtained growing them after barley and pea-oat mixture for green<br />

manure. In the f<strong>ir</strong>st year after harvesting of the plants for green manure, when carrot yield<br />

was gathered, there was found only very small amount of root-crops damaged by pests (Psila<br />

rosae Fabr. and Pemphigus phenax Born et Blunck). At the end of rotation, i. e. in th<strong>ir</strong>d year<br />

after plant ploughing for green manure, the percent of carrot root-crops damaged by pests<br />

increased. The least amount of damaged root-crops was found in carrot, which preplant in<br />

the beginning of rotation was barley for green manure.<br />

Key words: carrot root-crops, crop rotation, green manure, marketable yield, Pemphigus<br />

phenax, Psila rosae.<br />

Introduction. Carrot is widely grown vegetable in Lithuania especially valued<br />

because of carotene in its content (Gaučienė, 2001; Gaučienė, Viškelis, 2001). It is<br />

rather difficult to grow carrot ecologically, since they are demanding to nutrients,<br />

besides, they are attacked by diseases and pests. The most prevalent carrot pests are<br />

carrot flies, aphids and bugs.<br />

The suitable selection of preplants and creation of crop rotations is one of the most<br />

important means to supply nutrients to ecologically grown plants, to destroy weeds<br />

and to protect plants from diseases and pests. Soil preparation and sowing time, the<br />

ratio of humidity and nutrients in the soil, weediness, pest prevalence in the crop and<br />

the degree of infection by diseases depend on preplant (Danilčenko et al., 2004; Luik,<br />

1997; Lampkin, 1990).<br />

Sideral plants for green manure play important role in the crop rotation of<br />

217


ecological vegetable growing. In recent years they became especially popular, because<br />

only little amount of manure is accumulated in farms. Besides, green manure is much<br />

more cheaper and its influence in the f<strong>ir</strong>st year often is better than this of manure<br />

(Алексеев, 1996; Arlauskienė, Maikštėnienė, 2002). For green manure, leguminous<br />

plants are sown most often (Abiodun et al., 2008; Šarūnaitė et al., 2008), but as the<br />

experience of foreign countries show, cereals are good as well (Andersson, Wivstad,<br />

1992). Various plant mixtures are especially suitable. After the ploughing of the plants<br />

for green manure, the soil is enriched by much organic matter, biological soil properties<br />

improve, and because of the phytoncides present in crucials phytosanitaric condition<br />

of the soil improves also (Žekonienė, 2002; Pretty, 1995). It is recommended to select<br />

for carrot in crop rotation early preplants, in order soil structure would be regenerated.<br />

Otherwise, there are good conditions for carrot fly development (Lampkin, 1990).<br />

The aim of the study is to select the most suitable plants for green manure and<br />

to establish the<strong>ir</strong> influence on ecologically grown carrot yield and pest prevalence in<br />

the crop.<br />

Object, methods and conditions. Experiments were carried out at the Lithuanian<br />

Institute of Horticulture, in the experimental field for ecological vegetable<br />

growing in 2003–2007. Soil – calcaric epihypogleyic luvisol of sandy loam on light<br />

loam (IDg 8-k, / Calc(ar)i –Epihypogleyc Luvisols LVg-p-w-cc) (Buivydaitė et al.,<br />

2001). pH KCL<br />

of ploughing layer – 7.4, agile phosphorus (P 2<br />

O 5<br />

) – 211–370 mg kg -1 ,<br />

agile potassium (K 2<br />

O) – 151–249 mg kg -1 , humus 1.64 – 1.69 %, mineral nitrogen at<br />

a depth of 0–60 cm – 92 kg ha -1 .<br />

Two field experiments were carried out according to the same schema; one of<br />

them was started in 2003, the other – in 2004.<br />

In the f<strong>ir</strong>st year, for green manure there was grown barley, barley with clover<br />

undercrop (of the f<strong>ir</strong>st year), summer wheat, and peat-oat mixture. Black fallow was<br />

regarded as control. In the second year, after each plant for green manure there were<br />

grown vegetables of four types – carrot, red beet, onion, and cabbage. Plants were<br />

grown according to the s c h e m e:<br />

F<strong>ir</strong>st yield – Second year – Th<strong>ir</strong>d year – Fourth year<br />

Various plants for green manure – Cabbage – C a r r o t – Red beet<br />

Various plants for green manure – C a r r o t – Red beet – Onion<br />

Various plants for green manure – Red beet – Onion – Cabbage<br />

Various plants for green manure – Onion – Cabbage – C a r r o t.<br />

Investigations were carried out in four replications. Area of sideral variants (of all<br />

the plots) was 264 m 2 . Area of vegetable record plots – 14 m 2 . Preplant of the plants<br />

for green manure – black fallow.<br />

Early in the spring, when the soil is already dry, it is cultivated and harrowed. In the<br />

second decade of May for green manure there were sown summer wheat (180 kg ha -1 ),<br />

peat and oat mixture (125 : 125 kg ha -1 ) and barley (170 kg ha -1 ). When they germinated,<br />

half of barley field was sown with clover undercrop (14 kg ha -1 ). Seed rate was<br />

calculated in 100 % economical value.<br />

Pea and oat mixture was cut during mass blooming, summer wheat and barley –<br />

during spikes forming. Grass was chopped fine and ploughed up. Straw was raked<br />

218


from the plot, in which clove undercrop was sown, and late in the autumn clover was<br />

ploughed down. Black fallow was cultivated according to layer method: twice ploughed,<br />

three times cultivated. In order to establish plant fresh weight yield, in 10 m 2 area of<br />

every plot plants were cut and weighted. For determination of dry matter and yield<br />

and chemical analyses, the sample of 1 kg fresh weight was taken.<br />

Pest damages to carrot root-crops were evaluated during harvesting: the injured<br />

carrots were selected, weighted and the percent of damage from the total yield was<br />

established. During vegetation, carrot crop was observed according to the standard<br />

methods of disease and pest record (Žemės ūkio augalų kenkėjai, ligos <strong>ir</strong> jų apskaita,<br />

2002). Experimental data was statistically processed by ANOVA program (Tarakanovas,<br />

Raudonius, 2003).<br />

M e t e o r o l o g i c a l c o n d i t i o n s. The spring of 2003 was dry, but warmer<br />

than the multiannual average. Growth conditions for plants designed for green manure<br />

were average. Summer time and September were slightly warmer, but the amount of<br />

precipitation was close to the multiannual average. In 2004 a<strong>ir</strong> was cooler and more<br />

humid than the multiannual data show, but the conditions for carrot growing were<br />

favourable. In May and June of 2005, there was more precipitation than on the average.<br />

July was hot and dry. August was much more humid than usually. Conditions<br />

for carrot germination, growth and maturing were average. The summer of 2006 was<br />

hot and very dry. Average a<strong>ir</strong> temperature was almost 1 °C higher than the multiannual<br />

average, and precipitation fell 20.5 mm less than the multiannual average. July<br />

and August were especially dry and hot; September was warm in comparison with the<br />

multiannual average, but humid (there was 1.5 more precipitation than the multiannual<br />

average). In 2007 vegetation period was cool. A<strong>ir</strong> temperature in April–October was<br />

1.2 °C lower than the multiannual average, and precipitation fell 12.8 mm more than<br />

the multiannual average.<br />

Results. According to the average data of two years, pea-oat mixture produced the<br />

biggest amount (43.2 t ha -1 ) of fresh weight, and barley – the smallest one (24.5 t ha -1 )<br />

(Table). The<strong>ir</strong> fresh weight in comparison with this of pea-oat mixture decreased<br />

18.7 t ha -1 . The biggest amount of dry matter (7.3 t ha -1 ) was ploughed down with<br />

summer wheat fresh weight. The amount of barley, barley with clover undercrop,<br />

and pea-oat mixture dry matter was correspondingly smaller 1.8, 1.4, 0.8 t ha -1 . The<br />

calculation of the amount of nutrients ploughed down into soil together with fresh<br />

weight showed that 104 kg ha -1 of nitrogen got into soil together with pea-oat fresh<br />

weight. This is 42 kg ha -1 more than after barley, 17 kg ha -1 more than after barley<br />

with clover undercrop, 6 kg ha -1 more than after summer wheat. The biggest amount<br />

of phosphorus (21.0 kg ha -1 ) got into soil when barley with clove undercrop fresh<br />

weight was ploughed down, the least one (14 kg ha -1 ) – when barley fresh weight was<br />

ploughed down. The biggest amount of potassium (150 kg ha -1 ) with fresh manure<br />

was introduced by ploughing down pea-oat mixture, the least amount (79 kg ha -1 ) –<br />

by ploughing down barley.<br />

219


Table. Amount of nutrients in over-ground mass of sideral plants<br />

Lentelė. Maisto medžiagų kiekis sideratinių augalų antžeminėje masėje<br />

Variants<br />

Variantai<br />

Babtai, 2003–2004, average data of both fields<br />

Babtai, 2003–2004 m., vidutiniai abiejų laukų duomenys<br />

Organic manure<br />

Organinės trąšos (t ha -1 )<br />

natural expression<br />

natūralioji<br />

išraiška<br />

220<br />

dry matter<br />

sausosios<br />

medžiagos<br />

Nutrients<br />

Maisto medžiagos (t ha -1 )<br />

N P 2<br />

O 5<br />

K 2<br />

O<br />

Black fallow (control)<br />

Juodasis pūdymas (kontrolė)<br />

Barley for green manure<br />

24.5 4.1 62 14 79<br />

Miežiai žaliajai trąšai<br />

Barley with clover undercrop for 30.2 5.9 87 21 121<br />

green manure<br />

Miežiai su dobilų įsėliu žaliajai trąšai<br />

Summer wheat for green manure 32.5 7.3 98 19 125<br />

Vasariniai kviečiai žaliajai trąšai<br />

Pea-oat mixture for green manure 43.2 6.5 104 20 150<br />

Ž<strong>ir</strong>nių-avižų mišinys žaliajai trąšai<br />

LSD 05<br />

/ R 05<br />

3.0 0.5<br />

In the f<strong>ir</strong>st year after plant gathering for green manure (in I field – in 2004, in II<br />

field – in 2005) all the preplants increased yield. Carrot marketable yields in comparison<br />

with the yields obtained growing carrot after black fallow increased on the average<br />

12.5 t ha -1 . The biggest carrot yields (correspondingly 40.4 and 41.2 t ha -1 ) were obtained<br />

growing them after barley and pea-oat mixture for green manure (Fig. 1).<br />

Carrot marketable yields in comparison with the yields obtained growing carrot<br />

in black fallow field increased 14.2 and 14.9 t ha -1 . Summer wheat and pea with clove<br />

undercrop for green manure also significantly (correspondingly 11.4 and 9.4 t ha -1 )<br />

increased root-crop yield.<br />

Barley and barley with clove undercrop were the best preplants for carrot grown<br />

after cabbage (in the second year after green manure ploughing up, in I field – in<br />

2005, in II field – in 2006). Carrot marketable yields in comparison with the yields<br />

obtained growing carrot after cabbage in black fallow field increased 7.1 and 6.2 t ha -1 .<br />

Summer wheat for green manure also 2.2 t ha -1 increased marketable root-crop yield.<br />

Nevertheless, growing carrot after cabbage, which preplant was pea-oat mixture, there<br />

was obtained 0.8 t ha -1 smaller yield in comparison with the yield obtained growing<br />

carrot after cabbage in black fallow field.<br />

In the th<strong>ir</strong>d year after plant gathering for green manure (in I field – in 2006, in<br />

II field – in 2007), when carrot was grown after cabbage and onion, the tendency of<br />

carrot yield decrease was observed in comparison with the yields obtained in the f<strong>ir</strong>st<br />

and second years of growing.<br />

The most durable preplants were barley and summer wheat. Carrot marketable<br />

yield, growing them after cabbage and onion, increased correspondingly 5.8 and<br />

5.4 t ha -1 , in comparison with the yield, which produced carrot grown in black fallow<br />

field.


Fig. 1. Influence of preplants and crop rotation links on carrot root-crop marketable yield<br />

1 pav. Priešsėlių <strong>ir</strong> sėjomainos grandžių įtaka morkų šakniavaisių prekiniam derliui<br />

Babtai, average data of 2004–2006 and 2005–2007 /<br />

vidutiniai 2004–2006 <strong>ir</strong> 2005–2007 m. duomenys<br />

In the f<strong>ir</strong>st year after plant gathering for green manure, when carrot was harvested,<br />

there was found very small amount of root-crops damaged by pests. Only 0.2 % of<br />

damaged root-crops were found in carrot grown after black fallow and 0.1 % – after<br />

barley for green manure.<br />

Fig. 2. Influence of preplants on pest (P. rosae Fabr. and<br />

P. phenanax Born et Bunck) prevalence in carrot<br />

2 pav. Priešsėlių įtaka kenkėjų (P. rosae Fabr. <strong>ir</strong><br />

P. phenanax Born et Bunck) išplitimui morkose<br />

Babtai, average data of 2004–2006 and 2005–2007 /<br />

vidutiniai 2004–2006 <strong>ir</strong> 2005–2007 m. duomenys<br />

221


In the second year after plant gathering for green manure, on the average the<br />

biggest amount (1.8 %) of damaged root-crops in comparison with control was found<br />

in carrot grown after cabbage, which preplant – pea-oat mixture. On the average the<br />

least amount (correspondingly 0.5–0.6 %) of damaged root-crops in comparison with<br />

control was found in carrot grown after cabbage, which preplant – barley and barley<br />

with clover undercrop.<br />

In the th<strong>ir</strong>d year after plant gathering for green manure, the amount of damaged<br />

root-crops in all the plots was similar and fluctuated from 1.2 up to 1.3 %. Nevertheless,<br />

in carrot, which preplant in the beginning of crop rotation was barley ploughed up for<br />

green manure, there were only 0.6 % of damaged carrot.<br />

In the th<strong>ir</strong>d year after plant gathering for green manure the percent of damaged<br />

carrot root-crops increased and marketable root-crop yield decreased.<br />

Discussion. In Integrated Plant Protection (IPP), cultural measures like preplants<br />

and plant rotation play very important role; especially it is important in ecological<br />

farming (Glosary et al., 1997). While growing carrot ecologically, green manure is<br />

one of the means to increase the amount of nutrients in the soil and to improve vegetable<br />

productivity. In crop rotation, when plants are being fertilized with green manure,<br />

much nitrogen, phosphorus and potassium is left in the soil (Kozlova, Kaminski,<br />

1998), but different plants assigned for green manure differently enrich the soil with<br />

organic matter. The biggest amount of fresh weight produced red cloves (Šlepetienė,<br />

Kinderienė, 2007). The same tendency was observed in the investigations carried out<br />

at the LIH.<br />

Scientists (Thorup-Kristensen, Boogaar, 1999; Rosa, Jabłońska-Ceglarek, 2008)<br />

established that all the plants for green manure increased carrot root-crop and other<br />

vegetable yield, but it was difficult to control carrot pests. Organic growers have had to<br />

rely on techniques such as covering the crop with a fine-mesh netting and manipulating<br />

the time of sowing and harvest (Ellis et al., 1987; Jönsson, 1992). The former method<br />

is costly, and conditions under the netting can be favourable to the development of<br />

fungal pathogens and weeds (Eichin et al., 1987; Peacock, 1991). A delay in sowing<br />

or premature harvesting both may result in yield loses (Ellis et al., 1987). In our study<br />

effect of preplants used for green manure detectible also after three years. After one-year<br />

effect of preplants for reducing damage of pests was highest, maybe field was clean<br />

from pupa of carrot fly. The preplant barley reduced the harm of carrot pests during<br />

all the years and standard yield losses were the smallest. According to Rämert (1996<br />

b), growing vegetables ecologically predators play very important role. We suggest<br />

that in treatment with barley predators inhibited pests.<br />

Conclusions. 1. Pea and oat mixture produced the biggest amount of fresh<br />

weight (43.2 t ha -1 ), barley – the least one (24.5 t ha -1 ).<br />

2. All the sideral plants influenced the positive changes in humus.<br />

3. All the preplants increased carrot yield. The biggest carrot yields (correspondingly<br />

40.4 and 41.2 t ha -1 ) were obtained growing them after barley and pea-oat<br />

mixture for green manure.<br />

222


4. In the f<strong>ir</strong>st year after plant gathering for green manure, when carrot was harvested,<br />

there was found very small amount of root-crops damaged by pests (P. rosae<br />

and P. phenax). At the end of crop rotation, i. e. in the th<strong>ir</strong>d year, after plant gathering<br />

for green manure the percent of pest damaged carrot root-crops increased. The least<br />

amount of damaged root-crops was found in carrot, which preplant in the beginning<br />

of crop rotation was barley for green manure.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 20<br />

References<br />

1. Abiodun A. Kintomo a , Henry A. Akintoye a , Kayode O. Alas<strong>ir</strong>i a ., 2008.<br />

Communications in Soil Science and Plant Analysis, 39(9 & 10): 1 261–1 268.<br />

2. Andersson T., Wivstad M. 1992. Vallen iväxtfö ijden: Betydelsen av vallensalder<br />

och botaniskasammansältning. – Uppsala, 38: 43<br />

3. Arlauskienė A., Maikštėnienė. 2002. Molingų d<strong>ir</strong>vožemių savybių gerinimas<br />

ankštiniais augalais, jų biomasę panaudojant žaliajai trąšai. Žemd<strong>ir</strong>bystė, 79(3):<br />

229–243.<br />

4. Danilčenko H. <strong>ir</strong> kt. 2004. Ekologinė daržininkystė. Kaunas, Akademija.<br />

5. Dufault C. P., Coaker T. H. 1987. Biology and control of the carrot rust fly, Psila<br />

rosae F. Agricultural Zoology Reviews, 2: 97–134.<br />

6. Eichin R., Deiser E., Buhl R. 1987. Netze und Vliese gegen Gemüsefliegen.<br />

Deutscher Gartenbau, 41: 206–213.<br />

7. Ellis P. R., Hardman J. A., Cole R. A., Phelps K. 1987. The complementary<br />

effects of plant resistance and choice of sowing and harvest times in reducing<br />

carrot fly (Psila rosae) damage to carrots. Annuals of Applied Biology, 111:<br />

415–424.<br />

8. Gaučienė O. 2001. Morkos. Babtai.<br />

9. Gaučienė O., Viškelis P. 2001. Tinkamiausių Lietuvoje auginti morkų (Daucus<br />

carota L.) derlius <strong>ir</strong> kokybė. Sodininkystė <strong>ir</strong> daržininkystė. 20(4)–1: 17–24.<br />

10. Jönsson B. 1992. Forecasting the timing of damage by the carrot fly. IOBC/<br />

WPRS Bulletin, XVI 4: 40–43.<br />

11. Kozlova L., Kaminski J. R. 1998. Energy efficiency of crop rotations for sustainable<br />

agriculture. Agriculture, 64: 43–55<br />

12. Lampkin N. 1990. Organic farming. Farming press books, Ipswich, UK.<br />

13. Luik A. 1997. The influence of plants on insects. (In Estonian with English summary).<br />

Tartumaa k<strong>ir</strong>jastus, Tartu.<br />

14. Oskam A. J., Vijftigschild R. A. N., Graveland C. 1997. Additional EU policy<br />

instruments for plant protection products. Final report. http://glossary.eea.europa.eu<br />

15. Peacock L. 1991. Effect on weed growth of short-term cover over organically<br />

grown carrots. Biological Agriculture and Horticulture, 7: 271–279.<br />

223


16. Pretty, J. N. 1995. Regenerating agriculture: policies and practice for sustainability<br />

and self – reliance. Earthscan, London.<br />

17. Rämert B. (a) 1996. Intercropping as a strategy for reducing damage to carrots<br />

caused by the carrot fly Psila rosae (F.). Biological Agriculture and Horticulture,<br />

13: 359–369.<br />

18. Rämert B. (b) 1996. The influence of intercropping and mulches on the occurrence<br />

of polyphagous predators in carrot fields in relation to carrot fly (Psila rosae<br />

(F.) (Dipt. Psilidae) damage. Journal of Applied Entomology, 120: 39–46.<br />

19. Rosa R., Jabłońska-Ceglarek R. 2008. The consecutive effect of using green<br />

manure forecrops and manurenin ‘BLIZZARD’ leek (Allium ampeloprasum ssp.<br />

porrum) cultivation, http://www.ejpau.media.pl/volume11/issue2/art-22.html<br />

20. Szwejda J., Wrzodak R. 2007. Phytophagous entomofauna occurring on carrot<br />

and plant protection methods. Vegetable Crops Research Bulletin, 67: 95–102.<br />

21. Šarūnaitė L., Kadžiulienė Ž., Kadžiulis L. 2008. Žemės ūkio mokslai. 15(1):<br />

10–16.<br />

22. Šlepetienė A., Kinderienė I. 2007. Humuso medžiagų pokyčiai kalvoto reljefo<br />

d<strong>ir</strong>vožemyje praturtinus jį tarpinių augalų žalia mase. Žemd<strong>ir</strong>bystė. 94(1):<br />

37–50.<br />

23. Tarakanovas P., Raudonius S. 2003. Agronominių tyrimų duomenų statistinė<br />

analizė, taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT iš paketo<br />

selekcija <strong>ir</strong> IRRISTAT. Akademija, Kauno r.<br />

24. Thorup-Kristensen K., Boogaar K. R. 1999.Vertical and horizontal development<br />

of the root system of carrots fallowing green manure. Plant and soil, 212(2):<br />

143–151(9).<br />

25. Žekonienė V. 2002. Žalioji trąša. Kaunas.<br />

26. Žemės ūkio augalų kenkėjai, ligos <strong>ir</strong> jų apskaita. 2002. J. Šurkus, I. Gaurilčikienė<br />

(sudaryt.). Lietuvos žemd<strong>ir</strong>bystės institutas. Akademija, Kėdainių r.<br />

27. Алексеев С. В. П. 1996. Ппрактикум по экологии. М.: АО МДС.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Priešsėlių <strong>ir</strong> daržovių sėjomainos grandžių įtaka morkų derliui <strong>ir</strong><br />

kenkėjų daromiems pažeidimams<br />

R. Starkutė, L. Duchovskienė, V. Zalatorius<br />

Santrauka<br />

Lietuvos sodininkystės <strong>ir</strong> daržininkystės institute 2003–2007 metais ekologiškoms<br />

daržovėms auginti paruoštame bandymų lauke t<strong>ir</strong>ti žaliajai trąšai tinkamiausi augalai <strong>ir</strong> įvertinta<br />

jų įtaka ekologiškai auginamų morkų derliui bei kenkėjų daromiems pažeidimams. Nustatyta, kad<br />

žaliajai trąšai auginamų augalų biomasė armenyje paliko nevienodą organinės medžiagos kiekį.<br />

Daugiausia žaliosios masės (43,2 t ha -1 ) užaugino ž<strong>ir</strong>nių <strong>ir</strong> avižų mišinys. Vasariniai kviečiai –<br />

32,5 t ha -1 , miežiai su dobilų įsėliu – 30,2 t ha -1 . Mažiausiai žaliosios masės užaugino miežiai –<br />

24,5 t ha -1 . Humuso teigiamiems pokyčiams įtakos turėjo visi sideraliniai augalai. Visi priešsėliai<br />

224


didino morkų derlių. Didžiausias morkų derlius (atitinkamai po 40,4 <strong>ir</strong> 41,2 t ha -1 ) buvo auginant jas<br />

po miežių <strong>ir</strong> ž<strong>ir</strong>nių-avižų mišinio žaliajai trąšai. P<strong>ir</strong>mais po augalų nuėmimo žaliajai trąšai metais,<br />

nuėmus morkų derlių, kenkėjų (Psila rosae Fabr. <strong>ir</strong> Pemphigus phenax Born et Blunck) pažeistų<br />

šakniavaisių buvo rasta labai nedaug. Rotacijos pabaigoje, t. y. trečiais po augalų užarimo žaliajai<br />

trąšai metais, padidėjo kenkėjų pažeistų morkų šakniavaisių procentas. Mažiausiai pažeistų<br />

šakniavaisių rasta morkose, kurių priešsėlis rotacijos pradžioje buvo miežiai žaliajai trąšai.<br />

Reikšminiai žodžiai: morkų šakniavaisiai, Pemphigus phenax, prekinis derlius, Psila<br />

rosae, sėjomaina, žalioji trąša.<br />

225


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Effect of essential oils on fungi isolated from<br />

apples and vegetables<br />

Elena Survilienė 1 , Alma Valiuškaitė 1 , Vilija Snieškienė 2 ,<br />

Antanina Stankevičienė 2<br />

1<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail: e.surviliene@lsdi.lt; a.valiuskaite@lsdi.lt<br />

2<br />

Kaunas Botanical Garden of Vytautas Magnus University; Z. E. Žilibero 6,<br />

Kaunas, Lithuania, e-mail: v.snieskiene@bs.vdu.lt; a.stankeviciene@bs.vdu.lt<br />

The aim was to investigate the effects of volatile fraction of essential oils from Picea<br />

abies, Eucalyptus globulus, Rosmarinus officinalis and volatile fraction of Abies sib<strong>ir</strong>ica oil<br />

on fungi isolated from apple, leek, carrot, onion. Researches were made in 2008–2009. Tested<br />

fungi were as follows: Penicillium roqueforti, Aspergillus flavus, Aspergillus flavus var. oryzae,<br />

Mortierella hyalina var. hyaline, Sclerotinia sclerotiorum, Sporotrichum aurantiacum, Phoma<br />

exiqua, Clonostachys rosea f. catenulata. All parts of the plant from which fungi were isolated<br />

were injured by rot. Fungi of the tested species grew on the potato dextrose agar medium in<br />

different colonies, which grew at different speed. The oils were dripped on the covers of Petri<br />

dishes. There were three different variations taking the different portions of oil: 0.005, 0.01<br />

and 0.015 ml. It was calculated the inhibitory activeness (R). Volatile fractions of all tested<br />

oils inhibited the growth of mycelium of all 8 species fungi. The inhibiting effect depended<br />

on: 1) the amount of oil, 2) the species of the plant, from which the oil was isolated, 3) the<br />

species of the tested fungi and 4) the incubation period.<br />

Key words: essential oil, fungi, inhibitory activeness.<br />

Introduction. Essential oils – volatile substance, which consists of many components<br />

and not all of them composition is known so long. Chemically, essential<br />

oils are the mixture of various substances and the<strong>ir</strong> combinations (Йopдaнoв et al.,<br />

1976; Ragažinskienė et al., 2005). These fractions are responsible for the distinctive<br />

smell of each plant. Related plants (of the same family or genera) produce different<br />

fractions. Plants of some families are distinguished for especial richness of oils. One<br />

of these families is labiates (Labiatae Lindl.), also large amount of essential oils is<br />

isolated by conifers and eucalyptuses.<br />

Plants produce volatile fractions, which have been used for various purposes for<br />

almost 4000 years (Hansel et al., 1999). Antimicrobial features and amounts of essential<br />

oils isolated from the different plants vary; therefore, laboratory researches in vitro are<br />

constantly carried out. It is important to test the effect of essential oils of many plants<br />

227


on different microorganisms. The interest in essential oils as antimicrobial material<br />

is still growing. In Lithuania and also abroad new researches are made, the effect of<br />

essential oils of various plants on different microorganisms is tested.<br />

The essential oils of some plants are used for drugs, also as flavouring and for<br />

food (Holeman et al., 1984; Šarkinas, Šipailienė, 2003; Tуманова, 2005), in perfumery,<br />

medicine, especially in aromatherapy (Motiejūnaitė, Pečiulytė, 2004; Kühne, Friedrich,<br />

2007). The effect of essential oils was tested on fungi isolated from indoor env<strong>ir</strong>onment<br />

(Motiejūnaitė, Kalėdienė, 2003; Moтеюнайте, Пячюлите, 2004; Mickienė<br />

et al., 2007). The results suggest that the essential oils inhibit the growth of most of<br />

the microorganisms and the effect on some fungi is fungicidal.<br />

Also one of the areas where essential oils can be applied is plant protection. It is<br />

considered that among other functions essential oils are helpful to protect plants from<br />

disease agents and pests. Researches of other authors conf<strong>ir</strong>m this (Simoni et al., 1993;<br />

Klimach et al., 1996; Antonov et al., 1997; Bartynska, 1999; Snieškienė et al., 2008).<br />

Nevertheless, so far the possibilities of essential oils usage in plant protection have<br />

been less explored compared with other areas.<br />

One of the most important causes, which interrupts the usage of the essential oils<br />

for plant protection, is a quick fragmentation of volatile fraction of oils, dispersion in<br />

the env<strong>ir</strong>onment. These features are not such an impediment if oils are used in a room<br />

as fruit and vegetable storage. It is important to preserve the agricultural production<br />

using as far as possible less chemicals harmful to human health.<br />

Antimicrobial features characterize not only essential oils but also common oils<br />

of some plants. One of these oils is oil from Siberian f<strong>ir</strong> (Abies sib<strong>ir</strong>ica).<br />

The aim of work was to define the effect of volatile fraction of essential oils of<br />

Picea abies, Eucalyptus globulus, Rosmarinus officinalis and volatile fraction of Abies<br />

sib<strong>ir</strong>ica oil on fungi (8 species) isolated from apple, leek, carrot and onion.<br />

Object, methods and conditions. Research was done at the Lithuanian Institute<br />

of Horticulture and Kaunas Botanical Garden of Vytautas Magnus University<br />

during 2008–2009. The following fungi were tested: Penicillium roqueforti Thom<br />

was isolated from apple; Aspergillus flavus Link. – from leek and onion; A. flavus<br />

var. oryzae (Ahlb.) Kurzman, M. J. Smiley, Robnett Wicklow (sin. A. oryzae (Ahlb.<br />

E. Cohn) – from carrot; Mortierella hyalina var. hyalina (Harz) W. Gams (sin. Mortierella<br />

hygrophila Linnem., M. hyalina (Harr) W. Gams) – from apple; Sclerotinia<br />

sclerotiorum (Lib.) de Bary – from carrot; Sporotrichum aurantiacum (Bull.) Fr. –<br />

carrot; Phoma exiqua Sacc – from apple; Clonostachys rosea f. catenulata (J. C. Gilman,<br />

E. V. Abbott) Schroers (sin. Gliocladium catenulatum J. C. Gilman, E. V. Abbott)<br />

– from carrot. Fungi were identified according to Klich (2007); Gams, (1971);<br />

Lugauskas et al. (2002); Studies …, (1981); Samson, Pitt (2000), currant names are<br />

given according to Index Fungorum (2004).<br />

Essential oils used in the study were isolated from three plant species: Picea abies<br />

Karst., Eucalyptus globulus Labill. and Rosmarinus officinalis L. (oils manufacturer<br />

Sensient Ess. Oils GmgH, Germany). Also there was tested the volatile fraction of<br />

Siberian f<strong>ir</strong> (Abies sib<strong>ir</strong>ica) oil. The oil is extracted from thorns of young sprouts<br />

(producer “ALMEDA”, Russia). This oil is recommended as antiseptic in medicine<br />

and perfumery.<br />

2<strong>28</strong>


Fungi were grown in Petri dishes on the potato dextrose agar medium (Билай,<br />

1982). The oils were not added into the medium but dripped on the covers of Petri<br />

dishes. There were three different variations taking the different portions of oil: 0.005,<br />

0.01 and 0.015 ml. After sowing the fungi and dripping oil, the dishes were sealed using<br />

the adhesive tape, turned over and put into a thermostat (temperature 26 ± 2 °C). The<br />

tests on the effect of the oil were started by measuring the diameter of fungi colonies<br />

after four days of incubation and by comparing them to the control sample (dishes<br />

with fungi but without oil). Fungi of the tested species produce different colonies,<br />

which grow at different speed. For instance the average growth rate of mycelium after<br />

four days of incubation in the control dishes were: Penicillium roqueforti – 8.3 cm,<br />

Aspergillus flavus – 50.3 cm, Aspergillus flavus var. oryzae – 32.8 cm, Mortierella<br />

hyalina var. hyaline – 80.3 cm, Sclerotinia sclerotiorum – 85.0 cm, Sporotrichum<br />

aurantiacum – 35.0 cm, Phoma exiqua – 25.0 cm, Clonostachys rosea f. catenulate –<br />

21.0 cm. Therefore, to compare the effect of the oils on the growth of various fungi<br />

mycelium the inhibitory activeness (%) was calculated using the formula (Билай,<br />

1982):<br />

R = (Do - D) / Do × 100<br />

R – inhibitory activeness (%)<br />

Do – diameter of a control colony (cm),<br />

D – diameter of a tested colony (cm).<br />

Results. Volatile fractions of all tested essential oils and Siberian f<strong>ir</strong> oil inhibited<br />

the growth of mycelium of all eight species of fungi.<br />

The bigger concentration (amount of the oil) of volatile oil was in the sealed<br />

dishes the weaker was the radial growth of fungi mycelium. The growth of fungi of<br />

all species was the least in the dishes with the biggest oil amount used in a research<br />

(0.015 ml) (Table, Fig. 1, 2).<br />

Table. Effect of essential oils of Picea abies, Eucalyptus globulus and Rosmarinus<br />

officinalis L. on fungi isolated from vegetables and apples<br />

Lentelė. Picea abies, Eucalyptus globulus <strong>ir</strong> Rosmarinus officinalis eterinių aliejų poveikis<br />

grybams, išsk<strong>ir</strong>tiems iš daržovių <strong>ir</strong> obuolių<br />

Amount of Eucalyptus Rosmarinus Picea<br />

essential oil globulus<br />

officinalis abies<br />

Fungi<br />

Eterinio<br />

Inhibitory effect after days<br />

Grybai<br />

aliejaus kiekis<br />

Inhibicinis aktyvumas po dienų (%)<br />

(ml) 4 7 14 4 7 14 4 7 14<br />

1 2 3 4 5 6 7 8 9 10 11<br />

Aspergillus<br />

flavus<br />

A. flavus var.<br />

oryzae<br />

0.005 75.1 c 72.4 d 22.0 81.8 31.8 60.1 12.9 55.5 0<br />

0.01 89.5 d 74.4 d 33.8 100 100 18.5 18.5 81.8 3.2<br />

0.015 90.5 d 90.8 e 41.2 100 100 100 80.1 91.2 47.1<br />

0.005 41.2 a 26.2 a 0 54.9 47.5 0 4.6 3.3 0<br />

0.01 100 e 83.7 e 3.5 80.8 59.6 13.2 36.0 9.2 0<br />

0.015 100 e 91.9 e 13.8 100 100 86.1 52.7 25.9 0<br />

229


Table continued<br />

Lentelės tęsinys<br />

1 2 3 4 5 6 7 8 9 10 11<br />

0.005 66.7 b 43.5 b 51.3 100 100 77.6 60.5 51.1 40.1<br />

0.01 100 e 100 e 100 100 100 100 100 70.1 47.9<br />

0.015 100 e 100 e 100 100 100 100 100 85.6 57.8<br />

Clonostachys<br />

rosea f.<br />

catenulata<br />

Mortierella<br />

hyalina var.<br />

hyalina<br />

Penicillium<br />

roquefortii<br />

Phoma<br />

exiqua<br />

Sclerotinia<br />

sclerotiorum<br />

Sporotrichum<br />

aurantiacum<br />

0.005 75.3 c 38.2 b 0 89.4 82.0 37.1 40.8 0 0<br />

0.01 100 e 61.8 c 0 100 90.8 51.2 58.5 0 0<br />

0.015 100 e 100 e 39.6 100 95.5 60.6 71.6 0 0<br />

0.005 47.9 a 58.8 c 2.7 81.8 31.8 60.1 100 55.3 36.2<br />

0.01 75.8 c 41.2 b 29.3 100 100 100 100 72.9 50.5<br />

0.015 100 e 100 e 60.1 100 100 100 100 82.4 62.8<br />

0.005 65.5 b 49.4 b 30.1 70.0 52.0 45.0 40.7 26.9 14.0<br />

0.01 100 e 93.3 e 61.2 80.0 56.0 40.0 49.1 33.1 24.0<br />

0.015 100 e 100 e 64 90.0 60.0 32.0 67.3 46.9 30.1<br />

0.005 83.5 d 39.6 b 0 100 61.8 25.5 0 0 0<br />

0.01 100 e 91.2 e 21.2 100 100 87.9 25.3 0 0<br />

0.015 100 e 96.1 e 33.8 100 100 100 35.3 0 0<br />

0.005 100 e 83.1 e 52.9 100 100 100 27.7 21.2 19.6<br />

0.01 100 e 100 e 100 100 100 100 44.9 33.9 23.5<br />

0.015 100 e 100 e 100 100 100 100 53.4 48.3 26.1<br />

Essential oils are volatile and fissile fractions and the<strong>ir</strong> concentration in the<br />

env<strong>ir</strong>onment after some time increased, ant the inhibitory effect increased also. The<br />

effect of all three species of essential oils was the greatest after four days incubation<br />

(R from 100 %) and later decreased. After seven days M. hyalina var. hyalina and<br />

S. sclerotiorum and after fourteen days A. flavus var. oryzae (in all test treatments)<br />

the space of the mycelium in the dishes with spruce (Picea abies) essential oil and<br />

S. sclerotiorum and A. flavus var. oryzae with Siberian f<strong>ir</strong> oil have matched the mycelium<br />

area in control dishes.<br />

Volatile fraction of Rosmarinus officinalis essential oil had the strongest fungistatic<br />

and fungicidal effect on all of the investigated micromycetes. Especially sensitive<br />

to these fractions was C. rosea f. catenulata and S. aurantiacum. P. exiqua (R up to<br />

32–45 %) was the most resistant to the effect of Rosmarinus officinalis essential oil.<br />

Volatile fraction of Picea abies essential oil had the least fungistatic effect on all<br />

of the investigated fungi (Table).<br />

Fungi of different species have different reaction on different essential oils. From<br />

the investigated 8 fungi species the most resistant for all essential oil were M. hyalina<br />

var. hyaline, and sensitive for the influence of volatile fractions of all essential oils<br />

were C. rosea f. catenulate, P. roquefortii and S. aurantiacum.<br />

Volatile fractions of Siberian f<strong>ir</strong> oil affected investigated fungi not very evenly.<br />

Mycelium of P. roquefortii responded f<strong>ir</strong>mly to the volatile fraction of this oil<br />

(Fig. 1).<br />

230


Fig. 1. Effect of essential oils on the growth of Penicillium roquefortii<br />

mycelium (%)<br />

1 pav. Eterinių aliejų poveikis Penicillium roquefortii grybienos augimui, %<br />

Fig. 2. Effect of essential oils on the growth of<br />

Mortierella hyalina var. hyalina mycelium (%)<br />

2 pav. Eterinių aliejų poveikis Mortierella hyalina var. hyalina grybienos augimui, %<br />

231


A. flavus responded a little bit less negatively to the volatile fractions of this oil.<br />

The impact persisted for quite a long time: after 14 days of incubation R have increased<br />

from 47.1 % (0.005 ml) to 67.6 % (0.015 ml). The oil of Siberian f<strong>ir</strong> had almost no<br />

effect on the growth of M. hyalina var hyalina (Fig. 2). Fungus of this species was<br />

also resistant to the influence of essential oils of another conifer Picea abies. It can be<br />

hypothesized that M. hyalina var. hyalina is resistant to the volatile fractions of conifer<br />

essential oils. Investigated oils of other plants (Rosmarinus officinalis and Eucalyptus<br />

globulus) strongly inhibited the growth of this fungus (Fig. 2).<br />

The inhibiting effect volatile fractions of all the tested essential oils and Siberian<br />

f<strong>ir</strong> oil depended on: 1) the amount of oil, 2) the species of the plant, from which the<br />

oil was isolated, 3) the species of the tested fungi and 4) the incubation period.<br />

Discussion. Many authors from different countries have described in the<strong>ir</strong> works<br />

the influence of essential oils on the microorganisms. Essential oils are complex substances;<br />

therefore, various effect manners of essential oils are tested (Билай, 1982;<br />

Antonov et al., 1997; Moтеюнайте, Пячюлите, 2004). We have tested the effect of<br />

essential oils and Siberian f<strong>ir</strong> volatile fraction. Though volatile fractions stay in the<br />

env<strong>ir</strong>onment not for a long time, yet the efforts are being made to use them in practice<br />

in Lithuania – for prophylaxis against b<strong>ir</strong>d diseases (Mickienė et al., 2007). Further<br />

researches are needed to discover the proper essential oils to see the<strong>ir</strong> usage possibility<br />

in vegetable protection. According to our current and previous works (Snieskienė<br />

et al., 2003; Snieškienė et al., 2008), there can be selected effective essential oils<br />

against particular fungi species isolated from putrescent vegetables and fruits.<br />

The volatile fraction of Rosmarinus officinalis and Eucalyptus globulus most<br />

strongly inhibited the mycelium growth of all fungi (Mortierella hyalina var. hyalinea,<br />

Penicillium roquefortii and Phoma exiqua) isolated from apples. Fungi (Aspergillus<br />

flavus var. oryzae, Clonostachys rosea f. catenulate, Sclerotinia sclerotiorum and<br />

Sporotrichum aurantiacum) isolated from carrots are also strongly affected by the<br />

same essential oils. Aspergillus flavus, isolated from leeks and onions, is affected by<br />

all tested essential oils of a higher concentration (0.01 ml and 0.015 ml).<br />

Conclusions. 1. Fungi of different species have different reaction on different<br />

oils.<br />

2. Essential oils of all investigated plants (Rosmarinus officinalis, Eucalyptus<br />

globulus and Picea abies) and cedar oil had the fungistatic effect. The strongest effect<br />

(fungistaticaly and fungicidicaly) on fungi was exerted by the volatile fraction<br />

of Rosmarinus officinalis essential oils. The mentioned oil most strongly affected<br />

Sporotrichum aurantiacum Penicillium roquefortii and Clonostachys rosea f. catenulate.<br />

3. The strength of the effect of oils depended on the amount of volatile fraction in<br />

fungi area: the greater the concentration the stronger was the inhibitory effect.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 22<br />

232


References<br />

1. Antonov A., Stewart A., Walter M. 1997. Inhibition of conidium germination<br />

and mycelial growth of Botrytis cinerea by natural products. Practical 50th New<br />

Zealand Plant Protection Conference, 159–164.<br />

2. Bartynska M. 1999. Effectiveness of essential oils in the control of fungi isolated<br />

from orchid plants. Bulletin of the Polish Academy of Sciences. Biological<br />

Sciences, 47(2–4): 123–127.<br />

3. Gams W. 1971. Hyphomycetes. WEB Gustav Fischer Verlg, Jena.<br />

4. Hansel R., Sticher O., Steinegger E. 1999. Pharmacognosie-Phytopharmazie,<br />

Berlin.<br />

5. Holeman M., Berrada M., Bellakhdar J., Ilidrissi A., Pinel R. 1984. Qualitative<br />

and quantitative analysis of the essential oil of Salvia officinalis L. from Morocco.<br />

Boletim da Sociedade Broteriana, 57: 61–67.<br />

6. Index Fungorum. CABI Bioscience Databases. 2004. www.indexfungorum.org<br />

7. Klich M. A. 2007. Identification of common Aspergillus species. Centraalbureau<br />

voor Chimmelcultures, Ultrecht.<br />

8. Klimach A., Gora J., Wieczorek W. 1996. Wplyw olejkow eterycznych na organiczanie<br />

wystepowania niektorych chorob grzybowych i bakteryjnych roslin.<br />

Pestycydy. 1: 45–54.<br />

9. Kűhne S., Friedrich B. 2007. Pflanzenöle. http://www.bba.de/oekoland/oeko3/<br />

pfl-oele.htm<br />

10. Lugauskas A., Paškevičius A., Repečkienė J. 2002. Patogeniški <strong>ir</strong> toksiški mikroorganizmai<br />

žmogaus aplinkoje. Alderija, Vilnius.<br />

11. Mickienė R., Šiugždaitė J., Bakutis B. 2007. Eterinių aliejų poveikis mikromicetams,<br />

išsk<strong>ir</strong>tiems iš paukštynų oro. Veterinarija <strong>ir</strong> zootechnika, 40(62): 49–54.<br />

12. Motiejūnaitė O., Kalėdienė L. 2003. Antimicrobial activity of Lamiaceae plant<br />

essential oils on Aspergillus niger growth. Bulletin of the Polish Academy of<br />

Sciences. Biological Sciences, 51(3): 59–64.<br />

13. Motiejūnaitė O., Pečiulytė D. 2004. Pinus sylvestris L. fungicidai – patalpų oro<br />

kokybei gerinti. Medicina, 40(8): 787–794.<br />

14. Ragažinskienė O., Rimkienė S., Sasnauskas V. 2005. Vaistinių augalų enciklopedija.<br />

Lututė, Kaunas.<br />

15. Samson R. A., Pitt J. I. (ed.). 2000. Integration of modern Taxonomic methods<br />

for Penicillium and Aspergillus classification. Centraalbureau voor<br />

Chimmelcultures, Baarn.<br />

16. Simoni M., Reuveni R., Ravid U. 1993. Growth inhibition of plant pathogenic<br />

fungi by essential oils. Hassadeh, 74(3): 306–308.<br />

17. Snieškienė V., Stankevičienė A., Juronis V. 2003. Growth of micromycetes fungi<br />

in the presence of essential oils. Bulletin of the Polish Academy of Sciences.<br />

Biological Sciences, 51(3): <strong>28</strong>1–<strong>28</strong>5.<br />

18. Snieškienė V., Stankevičienė A, Varkulevičienė J. 2008. The effect of the essential<br />

oils on micromycetes isolated from plants. Žemd<strong>ir</strong>bystė, 95(3): 447–452.<br />

233


19. Studies Mycology 3. 1981. The Phoma and Ascochyta species described by<br />

Wolenweber and Hochapeel in the<strong>ir</strong> study on fruit-rotting. Centraalbureau voor<br />

Chimmelcultures, Baarn.<br />

20. Šarkinas A., Šipailienė A. 2003. Maisto saugumo didinimas natūralių medžiagų<br />

priedais. Veterinarija <strong>ir</strong> zootechnika, 22(44): 29–32.<br />

21. Билай В. И. (ред.). 1982. Методы экспериментальной микологии. Hayкoвa<br />

дyмкa, Киев.<br />

22. Йopдaнoв Д., Никoлoв П., Бoйчикoв A. 1976. Фитoтepaпия. Meдицинa и<br />

физкyльтypa, Coфия.<br />

23. Moтеюнайте О., Пячюлите Д. 2004. Фунгицидные свойства можжевельников<br />

(Juniperus). Успехи медицинской микологии. 3: 65–67.<br />

24. Tуманова Е. 2005. Состав эфирных масел растений сем. Яснотковые в<br />

среднетаежной подзоне республики Коми.


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Investigation of pesticides effect on pollination of<br />

bumblebees in greenhouse tomatoes<br />

Elena Survilienė, Laimutis Raudonis, Julė Jankauskienė<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr.,<br />

Lithuania, e-mail e.surviliene@lsdi.lt<br />

The study was conducted in three 400–800 m - ² type greenhouses: Multi Rovero 640 TR,<br />

Rovero 961 and Multispan 9.60 SR of the Lithuanian Institute of Horticulture in 2007. Trial<br />

data shows that the efficiency of tomato pollination by bumblebees during cultivation season<br />

ranged from 83.3 to 87.2 %. The pollination is effective, if there are found 60 % of flowers<br />

pollinated by bumblebees. An efficiency of pollination depends on used pesticides and number<br />

of hives. Insecticides Aztek 140 EC (triazamat) a concentration of 1.0 ml l -1 , NeemAzal-T/S<br />

(azad<strong>ir</strong>achtin A) of 5.0 ml l -1 and fungicides Previcur 607 SL (propamocarb hydrochloride) of<br />

1.5 l ha -1 had not negative affect to bumblebee activity and efficiency of pollination. The effect<br />

of pollination and activity of bumblebees was reduced due to the use of Euparen M 50 WG<br />

(tolylfluanid) at the rate of 1.5 mg l -1 .<br />

Key words: Bombus terrestris, fungicide, insecticide, Lycopersicon esculentum, pollination.<br />

Introduction. To maximize fruit set in tomatoes and other crops, plant growth<br />

bioregulator (Pak, Kim, 1999), plant or truss vibration, honeybees and bumblebees<br />

(Banda, Paxton, 1991; Ilbi, Boztok, 1994; Paydas et al., 2000; Dag, Kammer, 2001)<br />

are frequently used. In the last years the use of Bombus terrestris (L.) colonies is<br />

more and more widespread in the pollination of protected crops. The results indicated<br />

that bumblebees could be used successfully in greenhouses for tomato plant pollination.<br />

Bumblebee-pollinated tomatoes gave higher yield, higher number of seeds,<br />

better weight-size correlation, higher specific gravity and higher fruit f<strong>ir</strong>mness than<br />

other pollinating agents; plant growth bioregulator and plant vibration (Banda, Paxton,<br />

1991; Ravestijn van, Steen van der, 1991; Morandin et al., 2001; Al-Attal et al.,<br />

2003).<br />

During the<strong>ir</strong> foraging behaviour, bumblebees are exposed to the risk of poisoning<br />

due to pesticide treatments. Therefore, it is necessary to assess the possible dangerousness<br />

of pesticides. Such a research was begun in some European countries and<br />

permitted to prepare experimental protocols and to evaluate the toxicity of some of<br />

the most commonly used active compounds; the results have been recently reviewed<br />

and discussed by Thompson and Hunt (1999), Thompson (2001) and van der Steen<br />

235


(2001). The toxicity towards Bombus terrestris (L.) of various insecticides and acaricides<br />

widely used on protected crops was tested at the laboratory by oral, topic contact,<br />

and ind<strong>ir</strong>ect contact trials (Marletto et al., 2003).<br />

Knowledge of the effects of pesticides on biological control agents is requ<strong>ir</strong>ed<br />

for the successful implementation of integrated pest management (IPM) programs in<br />

greenhouse production systems.<br />

The aim of this study was to investigate the influence of pesticides widely used<br />

on protected crops on effectiveness of bumblebee (Bombus terrestris) pollination in<br />

tomato production.<br />

Object methods and conditions. The study was conducted in three 400–800 m - ²<br />

type greenhouses: Multi Rovero 640 TR, Rovero 961 and Multispan 9.60 SR of the<br />

Lithuanian Institute of Horticulture in 2007. Seedlings of tomato varieties ‘Cunero’<br />

F 1<br />

were transplanted in rockwool into Multi Rovero 640 TR and Rovero 961 on<br />

27 of March, in peat bag into Multispan 9.60 SR greenhouse on 19 of March at the<br />

density of 2.5 plants m -2 . Tomato plants were grown up to the 15 cluster, and then the<br />

apical growing points were removed to stop plant growth.<br />

The bumblebee colonies used in the experiment were got from Biobest Belgium<br />

N. V. The hives were placed by following requ<strong>ir</strong>ements: the f<strong>ir</strong>st ones were introduced<br />

on 24 of April, when 10 % of flowers were opened, and additionally – on 8 of June<br />

and 30 of July.<br />

During research time tomato plants were treated with insecticides and fungicides.<br />

A concentration of 1.0 ml l -1 of Aztek 140 EC (active ingredient triazamat) was sprayed<br />

only in Multispan 9.60 SR greenhouse on <strong>28</strong> of May; 5.0 ml l -1 of NeemAzal-T/S (a. i.<br />

azad<strong>ir</strong>achtin A) was sprayed in all greenhouse on 11 of June and 16 of July; 1.5 l ha -1<br />

Previcur 607 SL (a. i. propamocarb hydrochloride) was used by drip <strong>ir</strong>rigation system<br />

on 9 of August and 1.5 mg l -1 of Euparen M 50 WG (a. i. tolylfluanid) was sprayed<br />

on 20 of August.<br />

The control and effectiveness of pollination were estimated on 10 closed tomato<br />

flowers in 10 places every week by monitoring bite marks on flowers according to 1–5<br />

points scale: 1 – black marks, damage on the pistil possible; 2 – brown marks; very<br />

well pollinated; 3 – flowers are slightly marked; well pollinated; 4 – not all flowers<br />

are marked; poorly pollinated; 5 – no bite marks; no pollination. The f<strong>ir</strong>st observations<br />

were started on 30 of April, the last – on 23 of August.<br />

Data statistically were analyzed using Fisher LSD 0.5<br />

test.<br />

Results. I n v e s t i g a t i o n o f t o m a t o f l o w e r p o l l i n a t i o n. According<br />

to the efficiency of pollination, not only activity of bumblebees in greenhouses<br />

was analysed, but also introduction of new hives. Trial data shows that during all activity<br />

of bumblebees the effectiveness of pollination of tomato flowers was high. Efficacy<br />

of pollination in Multi Rovero 640 TR greenhouse on average reached 84.7 %<br />

(Fig. 1), Rovero 961 – 87.2 % (Fig. 2) and Multispan 9.60 SR – 83.3 % (Fig. 3). A<strong>ir</strong><br />

temperature was not higher than 25 °C, and relative humidity ranged from 78–85 %<br />

during all the investigation period.<br />

Efficiency of pollination of f<strong>ir</strong>st hive during six weeks in Multi Rovero 640 TR<br />

reached on average 81.8 %, the quality of pollination corresponded to 2–3 points, which<br />

236


mean very well and well pollination. The lowest activity of bumblebees was during<br />

sixth week, the efficiency of pollination was only 56.7 %, the quality of pollination<br />

corresponded to 4th point, which means poorly pollination (Fig. 1). After introduction<br />

of additional hive on 8 of June, efficiency of pollination increased by 31.3 %. Activity<br />

of bumblebees of this hive during seven weeks reached on average 79.9 %. The efficiency<br />

of th<strong>ir</strong>d hive activity was observed from 31 of July to 23 of August. During<br />

three weeks the efficiency of pollination was high and reached on average 92.5 %.<br />

Fig. 1. Efficiency of pollination using bumblebees in<br />

Multi Rovero 640 TR greenhouse, 2007. LSD 0.5<br />

– 7.9<br />

(treatment with NeemAzal-T/S on 11 of June, on 16 of July and<br />

with Previcur 607 SL – on 9 of August)<br />

1 pav. Pomidorų apdulkinimo efektyvumas naudojant kamanes Multi Rovero 640 TR šiltnamyje,<br />

2007 m. R 0,5<br />

– 7,9 (apdorota Nimazaliu T/S 10 g/l k.e. b<strong>ir</strong>želio 11 d., liepos 16 d. <strong>ir</strong><br />

Previkuru 607 g/l v. t. rugpjūčio 9 d.)<br />

Fig. 2. Efficiency of pollination using bumblebees in Rovero 961 greenhouse,<br />

2007. LSD 0.5<br />

– 8.61 (treatment with NeemAzal-T/S on 11 of June and<br />

Previcur 607 SL on 9 of August)<br />

2 pav. Pomidorų apdulkinimo efektyvumas naudojant kamanes Rovero 961 šiltnamyje,<br />

2007 m. R 0,5<br />

– 8,61 (apdorota Nimazaliu T/S 10 g/l k.e. b<strong>ir</strong>želio 11 d. <strong>ir</strong><br />

Previkuru 607 g/l v. t. rugpjūčio 9 d.)<br />

237


Efficiency of bumblebees from the f<strong>ir</strong>st introduced hive during six weeks in<br />

Rovero 961 greenhouse reached on average 86.1 % (2–3 pollination quality points).<br />

The lowest pollination was during sixth week of introduction, the efficiency was<br />

77.5 % or 4 points of pollination quality (Fig. 2). Second additional introduction of<br />

hive increased efficiency of pollination by 19.17 %. Efficiency of pollination during<br />

seven weeks totally reached on average 83.4 % and only later decreased to 46.3 %.<br />

The th<strong>ir</strong>d additional introduction of hive increased efficiency during three weeks from<br />

88 to 100 %.<br />

Analogical situation was in Multispan 9.60 SR greenhouse. After introduction<br />

of the f<strong>ir</strong>st hive of bumblebees, pollination efficiency during six weeks reached on<br />

average 85.8 % (2–3 pollination quality points) (Fig. 3). The activity of bumblebees<br />

decreased in the end of sixth week and the efficiency of pollination reached 76.7 %.<br />

After additional second and th<strong>ir</strong>d introduction of hives, the efficiency of bumblebee<br />

activity on average was 78.4 % and 85.7 %, respectively.<br />

Fig. 3. Efficiency of pollination using bumblebees in Multispan 9.60 SR greenhouse,<br />

2007. LSD 0.5<br />

– 15.62 (treatment with Aztek 140 EC on <strong>28</strong> of May,<br />

NeemAzal-T/S on 11 of June, Previcur 607 SL on 9 of August and<br />

Euparen M 50 WG on 20 of August)<br />

3 pav. Pomidorų apdulkinimo efektyvumas naudojant kamanes Multispan 9.60 SR šiltnamyje,<br />

2007 m. R 0,5<br />

– 15,62 (apdorota Acteku 140 g/l v. e. gegužės <strong>28</strong> d.,<br />

Nimazaliu T/S 10 g/l k. e. b<strong>ir</strong>želio 11 d., Previkuru 607 g/l v. t. rugpjūčio 9 d. <strong>ir</strong><br />

Euparenu M 50 % v. t. g. rugpjūčio 20 d.)<br />

S i d e - e f f e c t o f p e s t i c i d e s o n b u m b l e b e e s. Aficide Aztec 140 EC<br />

applied only in hot spots at the rate of 1.0 ml l -1 solution had very small side-effect<br />

on activity of bumblebees. Efficiency of pollination was reduced only by 5 %. This<br />

reduction can be explained as natural (Fig. 3). The activity of bumblebees was reduced<br />

to 56.7 % in Multi Rovero 640 TR, and to 77.5 in Rovero 961 greenhouses where<br />

Aztec 140 EC was not used (Fig. 1, 2). Insecticide NeemAzal-T/S used for the f<strong>ir</strong>st<br />

time did not has any side-effect on bumblebees or pollination of flowers. Efficacy of<br />

238


pollination of flowers after a day and later was about 90 %. The second NeemAzal-T/S<br />

application superposed with the end of bumblebee life in hive; therefore, the activity<br />

of bumblebees reached only 42 % on 23 of July (Fig. 1). Efficiency of pollination of<br />

tomato flowers in Rovero 961 and Multispan 9.60 SR greenhouses shows that activity<br />

of bumblebees depends on life time of hives, not on the NeemAzal-T/S used. Though<br />

NeemAzal-T/S was not used additionally the efficacy of pollination on 23 of July<br />

reached only 45–46 % (Fig. 2, 3).<br />

Previcur 607 SL used by drip <strong>ir</strong>rigation system on 9 of August in all types of<br />

greenhouses did not have any negative impact on activity of bumblebees. Efficiency<br />

of pollination reached about 90 % (Fig. 1–3).<br />

Euparen M 50 WG (1.5 mg l -1 ) used on 20 of August on the average reduced efficiency<br />

of tomato pollination in Multispan 9.60 SR greenhouse to 53 %; meanwhile,<br />

where Euparen M 50 WG was not used in other greenhouses efficiency was 96.7–100 %<br />

(Fig. 1, 2).<br />

Discussion. Pollination of flowers and activity of bumblebees depends on life<br />

time of hive. It was noticed the reduction of efficiency of pollination by bumblebees<br />

in greenhouse after 5–6 weeks. Efficiency of pollination on 4 of June was 56.7 %<br />

in Multi Rovero 640 TR, 77.5 % in Rovero 961 and 76.7 % in Multispan 9.60 SR<br />

greenhouses. Efficiency of pollination on 20 of July (before introduction of additional<br />

hives) was 41.7 % in Multi Rovero 640 TR, 46.3 % in Rovero 961 and 45 % in<br />

Multispan 9.60 SR greenhouses (Fig. 1–3). Additional hives should be introduced in<br />

greenhouse when efficiency of pollination is highest (Banda, Paxton, 1991; van Ravestijn,<br />

van der Steen, 1991; Morandin et al., 2001). Continuously equal pollination<br />

of flowers is available only when additional hives are introduced at the beginning of<br />

reduction of activity of pollination. In our case hives had to be changed 1–3 weeks<br />

earlier to avoid sudden reduction of pollination.<br />

Beneficial fauna and other products are used in greenhouses to control pests for<br />

high and good quality of production. It is very important to make trials to know transaction<br />

between beneficial organisms and pesticides controlling the pests according to<br />

the integrated pest management practices. It is important to select compatible fungicides<br />

and insecticides with bumblebees, which are used for pollination, because a lot of<br />

chemicals are toxic or could have repellent properties for adults, hatch of bumblebees<br />

(Hassan, 1996; Steen van der, 2001).<br />

Insecticides and acaricides both from chemical and biological origins were tested<br />

for the<strong>ir</strong> toxicity to bumblebees and beneficial organisms. All microbial compounds<br />

were very safe for all the tested species. Azad<strong>ir</strong>achtin, indoxacarb, pymetrozine and<br />

spinosad were almost completely harmless, although spinosad was moderately toxic<br />

to adult Encarsia formosa, but just like the effect on bumblebees, the persistence in<br />

practice was very short. The neonicotinoids, imidacloprid and thiamethoxam, were<br />

very toxic. Acetamiprid and thiacloprid on the other hand were safer. Fipronil was<br />

very toxic for all organisms (Sterk et al., 2003).<br />

As described in “Side effect manual” (Sterk, Put, 2004) active ingredient of<br />

propamokarb hydrochloride does not have any negative action for bumblebees.<br />

Azad<strong>ir</strong>achtin does not have side-effect on bumblebees and can be used for integrated<br />

239


pest management in vegetables. Active ingredient of triazamat when was sprayed or<br />

plants were watered with it had no negative impact on bumblebees as well. The same<br />

results were obtained in our study. Other authors stated that azoxystrobin, chlorotalonil,<br />

copper oxychloride, sulphur, mancoceb, tolylfluanid, iprodione, metalaxyl, dimetomorf,<br />

penconazole do not have adverse effect on beneficial fauna and could be safely used<br />

in integrated pest management (Sterk et al., 2003, Sterk, Put, 2004).<br />

Conclusions. Efficiency of bumblebees during all the<strong>ir</strong> activity period was high<br />

and ranged from 83.3 to 87.2 %.<br />

Efficiency of bumblebees for pollination of tomato flowers depends on additional<br />

hives and pesticides used.<br />

Insecticides NeemAzal-T/S (azad<strong>ir</strong>achtin A) 5.0 ml l -1 , Aztec 140 EC (triazamat)<br />

at the rate of 1.0 ml l -1 and fungicide Previcur 607 SL (propamocarb hydrochloride) at<br />

the rate of 1.5 l ha -1 had no negative effect on activity of bumblebees and pollination<br />

of tomato flowers.<br />

Spraying tomato with 1.5 mg l -1 solution of fungicide Euparen M 50 WG (tolylfluanid)<br />

reduced activity of bumblebees and efficiency of pollination.<br />

Acknowledgement. The study was supported by Lithuanian State Science and<br />

Studies Foundation.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 15<br />

References<br />

1. Al-Attal Y. Z., Kasrawi M. A., Nazer I. K. 2003. Influence of pollination technique<br />

on greenhouse tomato production. Agricultural and Marine Sciences, 8(1):<br />

21–26.<br />

2. Banda H. J., Paxton R. J. 1991. Pollination of greenhouse tomatoes by bees.<br />

Acta Horticulturae, <strong>28</strong>8: 194–198.<br />

3. Dag A., Kammer Y. 2001. Comparison between the effectiveness of honey bee<br />

(Apis mellifera) and bumble bee (Bombus terrestris) as pollinators of greenhouse<br />

sweet pepper (Capsicum annuum). American Bee Journal, 141(6): 447–448.<br />

4. Ilbi H., Boztok K. 1994. The effects of different truss-vibration durations on<br />

pollination and fruit set of greenhouse grown tomatoes. Acta Horticulturae, 366:<br />

73–78.<br />

5. Marletto F., Paletta A., Manino A. 2003. Laboratory assessment of pesticide toxicity<br />

to bumblebees. Bulletin of Insectology, 56(1): 155–158.<br />

6. Morandin L. A., Laverty T. M., Kevan P. G. 2001. Bumble bee (Hymenoptera:<br />

Apidae) activity and pollination levels in commercial tomato greenhouses.<br />

Journal of Economic Entomology, 94(2): 462–467.<br />

240


7. Pak H., Kim D. 1999. Effect of 4–chlorophenoxyacetic acid on fruit set and<br />

nutrient accumulation in Cucurbita moschata (Duch.) Po<strong>ir</strong>. Acta Horticulturae,<br />

483: 381–386. http://www.actahort.org/books/483/483_44.htm<br />

8. Paydas S., Eti S., Kaftanglu O., Yasa E., Derin K. 2000. ISHI Acta Horticulturae<br />

(On line). http://www.ishs.org/pub/483/513.html<br />

9. Hassan S. A. 1996. Activities of the IOBC/WPRS Working group “Pesticides<br />

and Beneficial Organisms”. 178.<br />

10. Steen J. J. M. van der. 2001. Review of the methods to determine the hazard and<br />

toxicity of pesticides to bumblebees. Apidologie, 32: 399–406.<br />

11. Sterk G., Jans K., Put K., Wulandari O. V., Uyttebroek M. 2003. Toxicity of<br />

chemical and biological plant protection products to beneficial arthropods. In:<br />

L. Roche, M. Edin, V. Mathieu, F. Laurens (eds.), Colloque international tomate<br />

sous abri, protection intégrée – agriculture biologique. Centre Technique<br />

Interprofessionnel des Fruits et Légumes Publisher.<br />

12. Sterk G., Put K. 2004. Side effect manual. Werantwoordelijke. 29.<br />

13. Thompson H. M. Hunt L. V. 1999. Extrapolating from honeybees to bumblebees<br />

in pesticide risk assessment. Ecotoxicology, 8: 147–166.<br />

14. Thompson H. M. 2001. Assessing the exposure and toxicity of pesticides to<br />

bumblebees (Bombus sp.). Apidologie, 32: 305–321.<br />

15. Ravestijn W. van, Steen J. van der. 1991. Use of bumblebees for the pollination<br />

of glasshouse tomatoes. Acta Horticulturae, <strong>28</strong>8: 204–212.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Pesticidų poveikio kamanių entomofilijai šiltnamio pomidoruose tyrimas<br />

E. Survilienė, L. Raudonis, J. Jankauskienė<br />

Santrauka<br />

Tyrimai atlikti Lietuvos sodininkystės <strong>ir</strong> daržininkystės instituto eksperimentinės<br />

bazės Multi Rovero 640 TR, Rovero 961 <strong>ir</strong> Multispan 9.60 SR šiltnamiuose 2007 m.<br />

Rezultatai rodo, kad per visą kamanių veiklos laiką jos veiksmingai apdulkino pomidorų<br />

žiedus – 83,3–87,2 %. Kamanių darbo efektyvumui <strong>ir</strong> apdulkinimo kokybei turi įtakos papildomų<br />

avilių pastatymas bei šiltnamiuose naudojami pesticidai. Panaudoti insekticidai<br />

Nimazalis T/S 10 g/l k. e. (azad<strong>ir</strong>achtinas A), išpurkštas 0,5 % normos, Actekas 140 g/l v. e.<br />

(triazamatas) – 0,1 % normos <strong>ir</strong> Previkuras 607 g/l v. t. (propamokarbo hidrochloridas) –<br />

1,5 l/ha normos neturėjo neigiamo poveikio kamanių darbingumui <strong>ir</strong> pomidorų žiedų apdulkinimui.<br />

Išpurškus pomidorus 0,15 % normos fungicidu Euparenas M 50 % v. t. g. (tolylfluanidas),<br />

pastebėtas kamanių veiklos susilpnėjimas <strong>ir</strong> apdulkinimo efektyvumo sumažėjimas.<br />

Reikšminiai žodžiai: apdulkinimas, Bombus terrestris, fungicidai, insekcitidai,<br />

Lycopersicon esculentum.<br />

241


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Effectiveness of Olejan 85 EC against<br />

chrysanthemum and willow rust<br />

Adam T. Wojdyła<br />

Research Institute of Pomology and Floriculture in Skierniewice,<br />

ul. Pomologiczna 18, 96-100 Skierniewice, Poland, e-mail awojdyla@insad.pl<br />

For the protection of chrysanthemum against Puccinia horiana, Olejan 85 EC (85 %<br />

rapeseed oil) was used at concentrations of 0.5 and 2 % and sprayed 4 times every 7 days.<br />

After four treatments Olejan 85 EC was found to have inhibited the development of Puccinia<br />

horiana from 1.4 to 3.6 times depending on the concentration and had caused sporadic, up to<br />

almost 37 % browning and decomposition of telia.<br />

Protecting willow against Melampsora epitea, Olejan 85 EC was used at concentrations<br />

of 0.5 and 2 % and sprayed 2 times every 7 days. After two treatments Olejan 85 EC was found<br />

to have inhibited the development of M. epitea from 2.6 to 13.7 times and had caused from<br />

10 to 62 % browning and decomposition of uredinia. Olejan 85 EC was significantly more<br />

effective reducing leaf infection than Saprol 190 EC. Taking into consideration the percentage<br />

of dried-up uredinia per leaf, Olejan 85 EC had also shown significantly higher efficacy in<br />

comparison with fungicide Saprol 190 EC. At neither of the concentrations used Olejan 85<br />

EC was phytotoxic to the treated plants.<br />

Key words: control, Melampsora epitea, Olejan 85 EC, Puccinia horiana, rust.<br />

Introduction. Olejan 85 EC (85 % rapeseed oil) has been recommended as an<br />

adjuvant intended for use in combination with working solutions of some plant protection<br />

products. Atpolan 80 EC and Olejan 85 EC at a concentration of 0.3 % used<br />

as additions to working solutions make it possible to reduce the dose of the emulsion<br />

fungicides recommended for controlling powdery mildew and black spot on rose as<br />

much as 30–50 % (Orlikowski, Wojdyła, 1995; Wojdyła, 1998; Wojdyła, 1999; Zdonek<br />

et al., 1986). Current literature data indicate high efficacy of the oils used to control<br />

many foliar pathogens responsible for plant diseases (Dell et al., 1998; Ko et al.,<br />

2003; Picton, Humer 2003). The author’s own studies carried out during many years<br />

have also shown high efficacy of mineral and vegetable oils used at concentrations<br />

of 0.25–4 % controlling foliar pathogens. The oils employed in the protection of rose<br />

bushes against powdery mildew (Sphaerotheca pannosa var. rosae) were from 90 to<br />

100 % effective inhibiting the development of disease symptoms (Wojdyła, 2002). In<br />

the protection of roses against black spot (Diplocarpon rosae) the<strong>ir</strong> efficacy ranged<br />

from 40 to 60 %. When used to control willow rust (Melampsora epitea) (Wojdyła<br />

243


and Jankiewicz 2004) and Puccinia pelargoni-zonalis on geraniums (Wojdyła, 2005)<br />

they significantly hampered the development of these pathogens. In the protection of<br />

roses against grey mould (Botrytis cinerea) the<strong>ir</strong> efficacy limiting the extent of necrosis<br />

on rose petals was in the range of 24–78 % depending on the oil used (Wojdyła,<br />

2003).<br />

The aim of the experiments was to evaluate the product Olejan 85 EC in terms<br />

of its efficacy controlling chrysanthemum rust (Puccinia horiana) and willow rust<br />

(Melampsora epitea).<br />

Object, methods and conditions. Control of Puccinia horiana.<br />

Seedlings of chrysanthemum cv. ‘Fiji Yellow’, susceptible to Puccinia horiana, were<br />

planted in 1 dm 3 pots filled with peat substrate. The plants were placed in a greenhouse<br />

on windowsills covered with capillary mats. A chrysanthemum with symptoms<br />

of rust sporulation was placed among the healthy, newly planted plants. In order to<br />

ensure a<strong>ir</strong> humidity above 90 % favourable to that pathogen’s development the sills<br />

were covered with a thin-foil tunnel. After the f<strong>ir</strong>st rust spots had been found on the<br />

leaves, but before the formation of telia, spraying of the plants began. The chrysanthemum<br />

plants were sprayed 4 times at 7-day intervals. Before application of the<br />

controlling agents and then after spray treatments, the percentage of infected leaves<br />

and the average number and percentage of dried-up telia were determined.<br />

Control of Melampsora epitea. Willow tree cv. ‘Iwa’ growing on a<br />

loamy soil in open field, after the f<strong>ir</strong>st signs of sporulation (clusters of uredinia) of rust<br />

(M. epitea) had been found on the underside of the<strong>ir</strong> leaves, was sprayed twice every<br />

7 days with Olejan 85 EC at a concentration of 1 % solution. Prior to the experiment<br />

and after two spray treatments, the average percentage of diseased leaves, average<br />

number of uredinia formed per leaf, and the percentage of those uredinia that had<br />

turned brown and decomposed were determined.<br />

In all the experiments undertaken, plants were sprayed in the morning using 1 dm 3<br />

of working solution per 10 m 2 of surface area. Both the upper surface and the underside<br />

of the leaf blade were thoroughly covered. Saprol 190 EC (190 g · L -1 triforine) was<br />

the standard fungicide used.<br />

The experiments were set up in a random block design in 4 replications, with 5<br />

plants (chrysanthemum) or 25 leaves (willow) per replication.<br />

Results. Control of Puccinia horiana. In the f<strong>ir</strong>st experiment, when<br />

the protection programme was finished, it was found that the average percentage of<br />

infected leaves protected with Olejan 85 EC was similar to that of the control plants<br />

(Table 1). However, the number of telia on the leaves sprayed with the product depending<br />

on its concentration was found to be from 2 to 3.6 times lower; from 1 to<br />

about 45 % of the telia had turned brown and were decomposing.<br />

In the second experiment, when spray treatments were finished, the average percentage<br />

of infected leaves of chrysanthemum plants protected with Olejan 85 EC was<br />

similar, and in the concentrations of 0.5 % and 25 % even significantly higher compared<br />

with the control chrysanthemums (Table 2). On the leaves of the plants sprayed with<br />

the product, the number of telia forming per leaf was from 1.4 to 2.1 times lower in<br />

comparison with the control plants. In the case of chrysanthemum plants sprayed with<br />

244


Olejan 85 EC at a concentration of 0.5 %, the number of telia per leaf was similar to<br />

that on the control chrysanthemums. On the plants protected with the product, from<br />

19 to almost 37 % of telia were found dried-up.<br />

Table 1. Effectiveness of Olejan 85 EC controlling Puccinia horiana on chrysanthemum<br />

cv. ‘Fiji Yellow’. Beginning of experiment – 2003.08.01<br />

1 lentelė. Olejan 85 EC efektyvumas kontroliuojant Puccinia horiana chrizantemose ‘Fiji<br />

Yellow’. Bandymo pradžia – 2003.08.01<br />

Treatment<br />

Variantas<br />

Control<br />

Kontrolė<br />

Saprol 190 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Concentration<br />

Koncentracija<br />

(%)<br />

-<br />

0.15<br />

0.5<br />

0.75<br />

1.0<br />

1.5<br />

2.0<br />

Average percentage<br />

of diseased leaves<br />

Vidutinis užkrėstų<br />

lapų skaičius<br />

62.3 b<br />

26.5 a<br />

51.1 b<br />

55.8 b<br />

54.0 b<br />

54.2 b<br />

59.1 b<br />

Average number of<br />

pustules per leaf<br />

Vidutinis pustulių ant<br />

lapų skaičius<br />

11.6 c<br />

0.7 a<br />

4.2 ab<br />

5.9 b<br />

3.4 ab<br />

3.2 ab<br />

3.3 ab<br />

Average percent of<br />

dried pustules<br />

Vidutinis sudžiūvusių<br />

pustulių procentas<br />

0.2 a<br />

0 a<br />

0.7 a<br />

4.3 ab<br />

12.5 b<br />

43.5 c<br />

41.8 c<br />

Note: Mean values marked with the same letter do not differ at the significance level p = 0.05<br />

according to the Duncan’s test<br />

Pastaba: Vidutinės reikšmės, pažymėtos ta pačia raide, pagal Dunkano kriterijų nesisk<strong>ir</strong>ia, kai<br />

p = 0,05<br />

Table 2. Effectiveness of Olejan 85 EC controlling Puccinia horiana on chrysanthemum<br />

cv. ‘Fiji Yellow’. Beginning of experiment – 2003.08.26<br />

2 lentelė. Olejan 85 EC efektyvumas kontroliuojant Puccinia horiana chrizantemose ‘Fiji<br />

Yellow’. Bandymo pradžia – 2003.08.26<br />

Treatment<br />

Variantas<br />

Control<br />

Kontrolė<br />

Saprol 190 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Olejan 85 EC<br />

Note: See Table 1<br />

Pastaba: žr. 1 lentelę<br />

Concentration<br />

Koncentracija<br />

(%)<br />

-<br />

0.15<br />

0.5<br />

0.75<br />

1.0<br />

1.5<br />

2.0<br />

Average percentage<br />

of diseased leaves<br />

Vidutinis užkrėstų<br />

lapų skaičius<br />

65.9 bc<br />

61.7 a<br />

72.0 d<br />

65.2 b<br />

67.4 bc<br />

69.0 c<br />

77.7 e<br />

Average number of<br />

pustules per leaf<br />

Vidutinis pustulių ant<br />

lapų skaičius<br />

24.2 d<br />

18.3 c<br />

24.7 d<br />

17.8 c<br />

13.4 b<br />

12.3 a<br />

11.7 a<br />

Average percent of<br />

dried pustules<br />

Vidutinis sudžiūvusių<br />

pustulių procentas<br />

0 a<br />

7.3 b<br />

25.5 d<br />

19.3 c<br />

<strong>28</strong>.9 e<br />

29.1 e<br />

36.6 f<br />

245


Control of Melampsora epitea. In the f<strong>ir</strong>st experiment, when protection<br />

programme was finished almost 92 % of leaves on the control willow were found<br />

to be infected (Fig. 1). On the other hand, on the plants protected with the product<br />

being evaluated depending on its concentration only about 44–51 % of leaves were<br />

found to be diseased. Olejan 85 EC showed similar effectiveness controlling the degree<br />

of infection on willow leaves in comparison with the product Saprol 190 EC. After<br />

two spray treatments of willow the plants protected with Olejan 85 EC were found<br />

to contain from 4.4 to 13.7 times fewer uredinia forming per leaf, almost 10–26 % of<br />

which were dried-up and decomposing.<br />

Fig. 1. Effectiveness of Olejan 85 EC controlling Melampsora epitea on willow.<br />

Beginning of experiment – 2003.08.21<br />

1 pav. Olejan 85 EC efektyvumas kontroliuojant Melampsora epitea gluosniuose.<br />

Bandymo pradžia – 2003.08.21<br />

In the second experiment, when spray treatments were finished almost 100 % of<br />

diseased leaves were found on the control willows (Fig. 2).<br />

Fig. 2. Effectiveness of Olejan 85 EC controlling Melampsora epitea on willow.<br />

Beginning of experiment – 2003.09.07<br />

2 pav. Olejan 85 EC veiksmingumas kontroliuojant Melampsora epitea ant gluosnių.<br />

Bandymo pradžia – 2003.09.07<br />

246


By contrast, on the plants protected with the evaluated product depending on its<br />

concentration there were about 42–74 % of infected leaves. Olejan 85 EC showed<br />

significantly higher efficacy controlling the extent of leaf infection than Saprol 190<br />

EC. After two spray treatments of willow, on the plants protected with Olejan 85 EC<br />

there were from 2.6 to 10 times fewer uredinia forming per leaf, 17–62 % of which<br />

had dried up and were decomposing. Also, considering the percentage of dried-up<br />

uredinia per leaf, Olejan 85 EC was significantly more effective in comparison with<br />

the fungicide Saprol 190 EC.<br />

Discussion. Earlier studies had also shown high efficacy of Olejan 85 EC controlling<br />

willow rust (Wojdyła, Jankiewicz, 2004). The evaluated compound depending<br />

on its concentration caused 2 to 14-fold reduction in the formation of uredinia<br />

clusters, about 10–16 % of which were brown and decomposing. Similar experiments<br />

on geranium conf<strong>ir</strong>med high effectiveness of Olejan 85 EC controlling Puccinia<br />

pelargonii-zonalis (Wojdyła, 2005). The author showed that the product at a<br />

concentration of 1 % after spraying geranium plants 4 times every 7 days caused an<br />

almost twofold reduction in the number of uredinia compared with control plants and<br />

23 % of uredinia were dried-up.<br />

Conclusions. 1. Olejan 85 EC used for curative spray treatments of chrysanthemum<br />

was found to significantly inhibit the development of rust. After 4 treatments<br />

depending on the concentration Olejan 85 EC caused from 1.4 to 3.6-fold reduction<br />

in the formation of telia of Puccinia horiana and sporadically caused almost 37 % of<br />

them to turn brown and decompose.<br />

2. In the protection of willow, after 2 spray treatments Olejan 85 EC caused from<br />

2.6 to 13.7-fold reduction in the formation of uredinia of Melampsora epitea and caused<br />

from 10 to 62 % of them to turn brown and decompose.<br />

3. No evidence of phytotoxicity of Olejan 85 EC towards chrysanthemum and<br />

willow cultivars in the experiment was found.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 18<br />

References<br />

1. Dell K. J., Gubler W. D., Krueger R., Sanger M., Bettiga L. J. 1998. The efficacy<br />

of JMS Style Oil on grape powdery mildew and Botrytis cinerea bunch rot and<br />

effects on fermentation. American Journal of Enology and Viticulture, 49(1):<br />

11–16.<br />

2. Ko W. H., Wang S. Y., Hsieh T. F., Ann P. J., 2003. Effects of sunflower oil<br />

on tomato powdery mildew caused by Oidium neolycopersici. Journal of<br />

Phytopathology, 151(3): 144–148.<br />

3. Orlikowski L. B., Wojdyła A. 1995. Adiuwanty w ochronie roślin ozdobnych<br />

przed chorobami. Hasło Ogrodnicze, 5: 39.<br />

247


4. Picton D. D., Hummer K. E., 2003. Oil application reduces white pine blister<br />

rust severity in black currants. Small Fruits Review, 2(1): 43–49.<br />

5. Wojdyła A. 1998. Chemical control of rose diseases: IV. Effectiveness of fungicides<br />

in the control of powdery mildew in relation to period leaves wetness or<br />

Atpolan 80 EC addition. J. Fruit Ornam. Plant Res., 6(3–4): 147–156.<br />

6. Wojdyła A. T. 1999. Możliwość wykorzystania związków olejowych w ochronie<br />

roślin ozdobnych przed chorobami. VI Konferencja Szkółkarska “Nowe tendencje<br />

w szkółkarstwie ozdobnym” Skierniewice, 18–19 listopada 1999, 169–174.<br />

7. Wojdyła A. T. 2000. Influence of some compounds on development of<br />

Sphaerotheca pannosa var. rosae. J. Plant Protection Res., 40(2): 106–121.<br />

8. Wojdyła A. T. 2002. Oils activity in the control of rose powdery mildew. Med.<br />

Fac. Landbouww. Univ. Gent, 67(2): 369–376.<br />

9. Wojdyła A. 2003. Biological activity of plant and mineral oils in the control of<br />

Botrytis cinerea on roses. Bulletin of the Polish Academy of Science – Biological<br />

Sciences 51(2): 153–158.<br />

10. Wojdyła A. T. 2005. Activity plant and mineral oils in the control of Puccinia<br />

pelargonii-zonalis. Comm. App. Biol. Sci. Ghent University, 70(3), 193–198.<br />

11. Wojdyła A. T, Jankiewicz D. 2004. Oils activity against Melampsora epitea on<br />

willow. Comm. App. Biol. Sci. Ghent University, 69(4): 697–703.<br />

12. Zdonek Z., Orlikowski L. B., Wojdyła A. 1986. Zastosowanie olejów w ochronie<br />

róż. Ogrodnictwo, 11: <strong>28</strong>–29.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Olejan 85 Ec veiksmingumas kontroliuojant chrizantemų <strong>ir</strong> gluosnių rūdis<br />

A. T. Wojdyła<br />

Santrauka<br />

Saugant chrizantemas nuo Puccinia horiana, 4 kartus kas 7 dienas buvo purkšta 0,5 <strong>ir</strong><br />

2 % koncentracijos Olejan 85 EC (85 % rapsų aliejaus). Po keturių purškimų Olejan 85 EC<br />

sustabdė Puccinia horiana vystymąsi nuo 1,4 iki 3,6 karto priklausomai nuo koncentracijos <strong>ir</strong><br />

sukėlė sporadišką beveik 37 % telia parudavimą <strong>ir</strong> su<strong>ir</strong>imą.<br />

Saugant gluosnius nuo Melampsora epitea, 0,5 <strong>ir</strong> 2 % koncentracijos Olejan 85 EC buvo<br />

purkšta 2 kartus kas 7 dienos. Po dviejų purškimų Olejan 85 EC sustabdė M. epitea vystymąsi<br />

nuo 2,6 iki 13,7 karto <strong>ir</strong> sukėlė 10–62 % uredinia parudavimą <strong>ir</strong> su<strong>ir</strong>imą.<br />

Olejan 85 EC buvo daug veiksmingesnis kovojant su lapų infekcija negu Saprol 190 EC.<br />

Atsižvelgiant į sudžiūvusios uredinia procentą, tenkantį vienam lapui, Olejan 85 EC taip pat<br />

buvo daug veiksmingesnis palyginus su fungicidu Saprol 190 EC. Jokia Olejan 85 EC koncentracija<br />

nebuvo fitotoksiška purkštiems augalams.<br />

Reikšminiai žodžiai: kontrolė, Melampsora epitea, Olejan 85 EC, Puccinia horiana,<br />

rūdys.<br />

248


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Application of biological insecticide<br />

Pecilomicine-B for greenhouse pest control<br />

Alena Yankouskaya<br />

RUC Institute of Plant Protection, Priluki, Мinsk region, Belarus,<br />

e-mail belizr@tut.by<br />

The estimation of influence of some technological parameters (terms and number of treatments,<br />

the interval between them) on biological efficiency of bioinsecticide Pecilomicine-B<br />

on greenhouse whitefly (Trialeurodes vaporariorum Wеst.) and cucumber midge (Bradysia<br />

brunnipes Mg.), and also its influence on entomophages encarsia (Encarsia formosa Gahan.)<br />

and phytoseiulus (Phytoseiulus persimilis Ath.) was carried out under greenhouse conditions.<br />

It was determined that the most expedient method of Pecilomicine-B application is at<br />

the stage of primary settling of greenhouse crop plantings by phytophage: in case with greenhouse<br />

whitefly – by the f<strong>ir</strong>st imago appearance on plant leaves carrying out 2 treatments<br />

at 7–14 days interval. Later on, Pecilomicine-B (1 % concentration) is applied up to 4 times<br />

considering greenhouse whitefly population dynamics (in case its stable increase). It allows<br />

keeping the phytophage population during 1.5–2 months at economically imperceptible level<br />

without chemical means of plant protection. Against cucumber midge one should apply the<br />

preparation (4 % concentration up to 2 times at 23–27 days interval) at the beginning of pest<br />

imago mass flight. In case of combined Pecilomicine-B application under greenhouse conditions<br />

(at 7–14 days interval) with phytoseiulus and encarsia it does not render the negative<br />

influence on survival, reproduction, parasitic and predatory activity of entomophages and<br />

does not decrease the efficiency of the<strong>ir</strong> action. Pecilomicine-B application, according to the<br />

above mentioned technological parameters, allows to constrain the phytophage populations<br />

at economic-imperceptible level.<br />

Key words: bioinsecticide efficiency, bioinsecticide influence on entomophages, Bradysia<br />

brunnipes, Cucumis sativus, Encarsia formosa, Lycopersicon esculentum, Paecilomyces fumosoroseus,<br />

Pecilomicine-B, Phytoseiulus persimilis, Trialeurodes vaporariorum.<br />

Introduction. One of the most rational approaches in greenhouse crop protection<br />

against pests is a combination of different means of action on phytophages with a<br />

maximum proportion of ecologically safe biological preparations. In this connection<br />

it is actual to extend the spectrum of biological insecticides recommended for application.<br />

The analysis of literary data shows that the entomopathogenic fungus Paecilomyces<br />

fumosoroseus (Wize) Brown et Smith (Deuteromycota: Moniliaceae) is a<br />

perspective agent for biological control of greenhouse pests (Ижевский et al., 1999;<br />

Poprawski, Jones, 2000; Wraight et al., 2000; Faria et al., 2001; Lacey et al., 2001;<br />

249


Nigroho, Ibrahim, 2004; Ахатов et al., 2004; Thungrabeab et al., 2006; Shi, Feng,<br />

2009). As a result of done screening by insecticidal activity level of P. fumosoroseus<br />

strains from the collection of the Institute of Plant Protection, there was selected<br />

P. fumosoroseus 3/1 strain possessing high v<strong>ir</strong>ulence in relation to the most noxious<br />

greenhouse phytophages in Belarus: greenhouse whitefly Trialeurodes vaporariorum<br />

Wеstw. and cucumber midge Bradysia brunnipes Mg. (Прищепа, Янковская, 2008).<br />

This strain is a basis of mycoinsecticidal preparation Pecilomicine-B (a paste with the<br />

spore titer 1.8 ·10 10 /g, manufacturer RUC “Novopolotsk Plant of Protein and Vitamin<br />

Concentrates”) (Прищепа, 2005; Янковская, 2006; Янковская, Прищепа, 2008).<br />

To develop the optimum technological techniques of preparation application we evaluated<br />

the influence of different factors (time and number of treatments, the intervals<br />

between them) on Pecilomicine-B biological efficiency and also the character of interrelation<br />

with other elements of biological protection and especially with the most<br />

frequently applied in the greenhouses of Belarus entomophages encarsia (Encarsia<br />

formosa Gahan.) and phytoseiulus (Phytoseiulus persimilis Ath.).<br />

Object, methods and conditions. The researches were carried out in greenhouses<br />

of Minsk region greenhouse farm “DorOrs”, “Zhdanovichy”, “Oziorny” and in<br />

greenhouses of the Republican Ecological Educational Center on tomato (‘Raissa’ F 1<br />

,<br />

‘Barcelona’ F 1<br />

, ‘Blagovest’ F 1<br />

), cucumber (TSHA 14-27 F 1<br />

, ‘Mystica’ F 1<br />

, ‘Turn<strong>ir</strong>’ F 1<br />

)<br />

and soybean crops. The preparation was applied by the method of spraying (preparation<br />

concentration – 1 %) against greenhouse whitefly and by the method of watering<br />

in the collar zone of cucumber (from the calculation of 50 ml/plant with preparation<br />

concentration 4 %) against cucumber midge. Time and number of treatments were<br />

determined in the course of experiments considering pest number changes. Pest number<br />

was registered every week and the biological efficiency of preparation action was<br />

evaluated according to the general methods (Прищепа et al., 2008). The record of<br />

parasitized whitefly larvae and flying out encarsia imago was done in the lab under<br />

binocular.<br />

Results. The efficiency of Pecilomicine-B application against greenhouse whitefly<br />

was evaluated under greenhouse conditions in 2002–2006. In each separate case<br />

a scheme of preparation application considering the dynamics of phytosanitary condition<br />

of greenhouse crop plantings was developed.<br />

The efficiency of Pecilomicine-B preparation application against greenhouse<br />

whitefly was evaluated under greenhouse conditions in 2002 in the greenhouse farm<br />

“DorORS” on tomato crop ‘Raissa’ F 1<br />

, (small-volume technology of cultivation on<br />

rock wool). In total for the registration period there were 3 treatments. The control plot<br />

was without any treatment. The f<strong>ir</strong>st treatment was done when the primary whitefly<br />

focus was detected: the presence of individual imago was noted on registration plants,<br />

larvae – not revealed. In Fig. 1 the dynamics of pest number is presented.<br />

The pest larvae occurrence on a control plot was noted 2 weeks earlier than in a<br />

variant with biological product application. Within the next four weeks the average<br />

whitefly number in both variants was at identical level. Later on in a control variant<br />

there was a sharp increase within a month (from 1 to 17 larvae per one leaf). In the experimental<br />

variant on 42 and 68 day from the experiment beginning there were repeated<br />

250


treatments using the biological preparation. The maximum pest number value did not<br />

exceeded 3 indiv./leaf (what was 6 times lower in comparison with the control). At the<br />

moment of researches termination (in 11 weeks after the experiment started) the larvae<br />

number has made, on the average, 10 indiv./leaf, in the experiment – 2 indiv./leaf.<br />

Fig. 1. Influence of Pecilomicine-B application on greenhouse whitefly<br />

Trialeurodes vaporariorum West. larvae number<br />

(greenhouse farm “DorOrs”, 2002 m.,<br />

tomato ‘Raissa’ F 1<br />

, small-volume technology)<br />

1 pav. Pecilomicine-B įtaka šiltadaržinių baltasparnių<br />

(Trialeurodes vaporariorum Wеst.)<br />

lervų skaičiui (šiltnamių ūkis “DorOrs”, 2002 m., pomidorai<br />

‘Raissa’ F 1<br />

, mažagabaritė technologija)<br />

Researches in the greenhouse farm “DorOrs” were continued in 2003 on tomato<br />

crop ‘Barcelona’ F 1<br />

. For the f<strong>ir</strong>st time Pecilomicine-B was applied on June 21 at pest<br />

larvae number 20 indiv./25 registration leaves. The subsequent treatments were done<br />

on June 30, August 4, September 11. The biological efficiency of a preparation has<br />

made from 60 to 88.0 %. In the control variant during the experiment whitefly larvae<br />

number has increased from 10 to 2<strong>28</strong> indiv./25 registration leaves.<br />

While carrying out the researches in 2003 in the greenhouse plant “Oziorny” on<br />

tomato crop (‘Blagovest’ F 1<br />

, soil ground) the f<strong>ir</strong>st treatment was done when the pest<br />

number in the colonization focuses has made 23–27 larvae/25 leaves. On the whole,<br />

there were 4 treatments with 7 days interval. Pecilomicine–B biological efficiency is<br />

presented in Table 1.<br />

251


Таble 1. Pecilomicine-B influence on greenhouse whitefly number (tomato<br />

‘Blagovest’ F 1<br />

, soil ground, greenhouse farm “Оziorny”, 2003)<br />

1 lentelė. Pecilomicine-B įtaka šiltadaržinių baltasparnių gausumui (pomidorai ‘Blagovest’<br />

F 1<br />

, d<strong>ir</strong>vožemis, šiltnamių ūkis „Оziorny“, 2003 m.)<br />

Whitefly larvae<br />

number on 25 leaves<br />

Greenhouse whitefly larvae number on<br />

25 leaves / Biological efficiency<br />

before treatment Šiltadaržinių baltasparnių lervų skaičius ant<br />

Variant<br />

Šiltadaržinių baltasparnių<br />

lervų skaičius days from the start of the experiment<br />

25 lapų / Biologinis efektyvumas (%)<br />

Variantas<br />

ant 25 lapų prieš dienos nuo bandymo pradžios<br />

apdorojimą 5 12 19 26<br />

Pecilomicine-B, PS 27 90/42.4 145/68.5 198/77.1 356/63.7<br />

Control (without treatment) 23 133 391 736 835<br />

Kontrolė (be apdorojimo)<br />

LSD 05<br />

/ R 05<br />

2.6 6.7 12.2 14.5<br />

In 2003 in greenhouses of the Republican Ecological Educational Center there<br />

was an estimation of efficiency of Pecilomicine-B against greenhouse whitefly on<br />

cucumber, TSHA 14-27 F 1<br />

(soil ground). The initial pest number has made 82 larvae<br />

per 25 registration leaves. There were 4 treatments by a preparation in the course of<br />

24 days. Control variant – without treatment. Data on the biological efficiency of a<br />

preparation are presented in Table 2.<br />

Таble 2. Biological efficiency of Pecilomicine-B against greenhouse whitefly,<br />

(cucumber, TSHA 14-27 F 1<br />

, soil ground, Republican Ecological Educational<br />

Center, 2003)<br />

2 lentelė. Pecilomicine-B biologinis efektyvumas nuo šiltadaržinių baltasparnių (agurkai,<br />

TSHA 14-27 F 1<br />

, d<strong>ir</strong>vožemis, Respublikinis ekologijos švietimo centras, 2003 m.)<br />

Pecilomicine-B, PS biological efficiency<br />

Pecilomicine-B biologinis efektyvumas (%)<br />

Days from the start of the experiment<br />

Dienos nuo bandymo pradžios<br />

3 6 9 13 16 24<br />

31.9 27.4 45.0 34.9 68.0 69.4<br />

In 2004 there were trials on the evaluation of the efficiency of the preparation<br />

Pecilomicine-B application against cucumber midge. Researches were carried out<br />

in greenhouse farm “Zhdanovichy” by cucumber growing using small-volume hydroponics<br />

on rockwool (‘Mystica’ F 1<br />

) and in the greenhouse farm “Oziorny” under<br />

soil ground conditions (‘Turn<strong>ir</strong>’ F 1<br />

). According to the results of records concerning<br />

cucumber midge number within 3–4 weeks after treatment, there was its stabilization<br />

(farm “Oziorny”) or a decrease (farm “Zhdanovichy”) (Table 3). Afterwards, there was<br />

an increase in imago number what was connected with the flight of a new phytophage<br />

generation. In control variant, the pest number on 14th day after treatment increased<br />

2.5 times, on 21st day – 8 times.<br />

252


Таble 3. Biological efficiency of Pecilomicine-B against cucumber midge<br />

(Bradysia brunnipes Mg.)<br />

3 lentelė. Pecilomicine-B biologinis efektyvumas nuo uodelių (Bradysia brunnipes<br />

Mg.)<br />

Imago number<br />

Pest number<br />

Suaugėlių skaičius (сm 2 )<br />

before treatment,<br />

Biological efficiency<br />

Variant<br />

imago<br />

Biologinis efektyvumas (%)<br />

Variantas<br />

Kenkėjų skaičius<br />

days after treatment<br />

prieš apdorojimą,<br />

dienos po apdorojimo<br />

suaugėliai (cm 2 )<br />

7 14 21 <strong>28</strong><br />

Cucumber ‘Mystica’ F 1<br />

, rock wool, greenhouse farm “Zhdanovichy”, 2004<br />

Agurkai ‘Mystica’ F 1<br />

, akmens vata, šiltnamių ūkis “Zhdanovichy”, 2004 m.<br />

Pecilomicine-B, PS (40 kg/hа) 0.12 0.06<br />

50.0<br />

0.02<br />

83.3<br />

0.04<br />

66.6<br />

0.03<br />

75.0<br />

Cucumber ‘Тurn<strong>ir</strong>’ F 1<br />

, soil ground, greenhouse farm “Оziorny”, 2004<br />

Agurkai ‘Тurn<strong>ir</strong> F1’, d<strong>ir</strong>vožemis, šiltnamių ūkis “Оziorny”, 2004<br />

Pecilomicine-B, PS (40 kg/ha) 0.22 0.21 0.31 0.37 -<br />

35.8 40.0 71.5<br />

Control (water <strong>ir</strong>rigation)<br />

Kontrolė (drėkinimas vandeniu)<br />

0.21 0.<strong>28</strong> 0.53 1.72 -<br />

LSD 05<br />

/ R 05<br />

- - - 0.48 -<br />

To study the influence of Pecilomicine-B application on encarsia there were the<br />

researches done under greenhouse conditions (greenhouse farm “DorOrs”) on tomato<br />

‘Raissa’ F 1<br />

. In all the area of greenhouse in the focuses of whitefly occurrence encarsia<br />

was released at the rate predator: victim = 1 : 10. In 12 days after the entomophage<br />

release, greenhouse whiteflies (110–130 indiv./leaf) were treated with Pecilomicine-B<br />

(1 %). Pecilomicine-B action on encarsia was estimated by a quantity of whitefly<br />

infected larvae and flying out encarsia imago, presented in Table 4.<br />

Таble 4. Influence of Pecilomicine-B on encarsia (Encarsia formosa Gahan.)<br />

survival (tomato ‘Raissa’ F 1<br />

, greenhouse farm “DorOrs”, 2005)<br />

4 lentelė. Pecilomicine-B įtaka enkarzijų (Encarsia formosa Gahan.) išlikimui (pomidorai<br />

‘Raissa’ F 1<br />

, šiltnamių ūkis “DorOrs”, 2005)<br />

Variant<br />

Variantas<br />

Average number of the<br />

infected larvae in the<br />

sample (indiv.)<br />

Vidutinis užkrėstų lervų<br />

skaičius pavyzdyje, individai<br />

Average number of<br />

flying out encarsia imago<br />

(indiv.)<br />

Vidutinis išskridusių<br />

enkarzijų suaugėlių skaičius,<br />

individai<br />

Survival of<br />

encarsia imago<br />

Enkarzijų suaugėlių<br />

išlikimo<br />

(%)<br />

Pecilomicine-B, PS 157 142.7 91.7<br />

Control (without treatment) 167 152.5 87.4<br />

Kontrolė (be apdorojimo)<br />

LSD 05<br />

/ R 05<br />

7.8<br />

253


The next experiment was carried out for studying the influence of Pecilomicine-B<br />

on phytoseiulus survival rate and its ability to reproduce (greenhouse farm<br />

“Zhdanovichy”, 2006). Soybean plants with the entomophage culture were treated with<br />

preparation (1 %). Phytoseiulus number in the control (without treatment) increased<br />

2.3 times (up to 134 individuals), on Pecilomicine-B treated plot – 2.6 times (up to<br />

146) for 12 days (Fig. 2).<br />

Fig. 2. Influence of Pecilomicine-B on phytoseiulus Phytoseuilus persimilis Ath.<br />

(greenhouse farm “Zhdanovichy”, soybean, 2006)<br />

2 pav. Pecilomicine-B įtaka fitoseiliams (Phytoseiulus persimilis Ath.)<br />

(šiltnamių ūkis “Zhdanovichy”, sojų pupelės, 2006 m.)<br />

Discussion. There are recommendations on the expediency of pest economic<br />

thresholds of harmfulness to use as a reference point for plant protection products<br />

application (including the biological ones) against it. So, according to the data presented<br />

by V. A. Pavlyushin and his co-workers (2001), for greenhouse whitefly it<br />

makes 40 individuals of different development stages per cucumber leaf and 10 individuals<br />

per tomato leaf. At the same time there is an opinion that the use of indicators<br />

of thresholds of harmfulness in the greenhouses where action of limiting factors<br />

of the env<strong>ir</strong>onment on dynamics of phytophage populations number is considerably<br />

weakened is inadequate to situation. Martens (1993), Osborne, Landa (1992), Faria<br />

et al. (2001) recommend for increasing the efficiency of P. fumosoroseus application<br />

to carry out mycoinsecticide treatments during occurrence of early stages of tobacco<br />

whitefly development (from the moment of the f<strong>ir</strong>st whitefly imago appearance and<br />

not more than 1 imago per plant). The results of our researches showed that the most<br />

effective Pecilomicine-B action (the biological efficiency up to 100 %) on the phytophage<br />

is observed in case of consecutive application of a preparation beginning at<br />

the initial stage of greenhouse crop plantings colonization by whitefly (right after the<br />

f<strong>ir</strong>st imago occurrence in plants). Therefore, in pest population the necessary “patho-<br />

254


genic press” is initially created. Thus, a full suppression of population development<br />

was noticed within 14–30 days, while in the control variant larvae number increased.<br />

Similar dependence was observed in the experiments on the efficiency of Pecilomicine-B<br />

on cucumber midge. As it is seen in Table 3, higher biological efficiency of<br />

a preparation (83.3 %) has been noted in case smaller initial cucumber midge number<br />

(0.12 imago/сm 2 ). Nevertheless, in case of significant initial pest larvae number<br />

(whitefly – 20–82 larvae per 25 registration leaves, cucumber midge – 0.22 imago/<br />

сm 2 ) the application of a preparation has appeared sufficient (60–88 % for whitefly,<br />

35.0–71.5 % for cucumber midge) to lower considerably speed of pest population<br />

increase.<br />

Availability of insecticidal properties in entomopathogenic fungi assumes a possibility<br />

of the<strong>ir</strong> influence not only on target objects, but also on pest entomophages<br />

and parasites. In this connection a number of authors (Павлюшин, Агансонова, 1994;<br />

Павлюшин, 1996) consider a combination of mycoinsecticides and useful insects in<br />

the protection systems problematic. There are messages on a competition between<br />

entomophage and pathogen in relation to host, resulting in efficiency decrease of both<br />

agents (Соловей, Забудская, 1985). Nevertheless, the results of many researches testify<br />

to the absence of negative action of fungi on certain useful insect species (Михневич,<br />

Климпиня, 1988; Roditakis et al., 2001; Alma et al., 2007). Also the increase of entomophage<br />

activity with the combined use of biological preparations is marked, caused<br />

by immunity decrease in noxious insects to parasites as a result of the<strong>ir</strong> organism weakening<br />

under the pathogen influence (Исаева, 1976). Our evaluation of Pecilomicine-B<br />

action on arthropods at combined application under greenhouse conditions and also<br />

the results of our preliminary laboratory and vegetative experiments (Прищепа et<br />

al., 2007) testify the absence of the negative preparation action on survival, ability to<br />

reproduce, predatory and parasitic activity of phytoseiulus and encarsia.<br />

Conclusions. 1. It is the most expedient to start the application of Pecilomicine-B<br />

at a stage of primary colonization of greenhouse crop plantings by phytophages:<br />

in case with greenhouse whitefly – at occurrence of the f<strong>ir</strong>st imago on plant leaves by<br />

carrying out 2 treatments at 7–14 days interval. Later on, Pecilomicine-B (1 % concentration)<br />

is applied up to 4 times considering the dynamics of greenhouse whitefly<br />

number, namely in case of its stable increase. It allows avoiding within 1.5–2 months<br />

the intensive increase of phytophage number without chemical plant protection products<br />

application. Against cucumber midge it is expedient to apply Pecilomicine-B<br />

(4 % concentration up to 2 times at 23–27 days interval) with the beginning of mass<br />

pest imago flight.<br />

2. Application of Pecilomicine-B in greenhouses in a combination with the release<br />

of phytoseiulus and encarsia (at 7–14 days interval) does not render a negative<br />

influence on survival, reproduction, parasitic and predatory activity of entomophages<br />

and does not decrease the efficiency of the<strong>ir</strong> action.<br />

3. Pecilomicine-B application according to the above-mentioned parameters allows<br />

constraining phytophage population number at economically imperceptible level.<br />

Gauta 2009 0630<br />

Parengta spausdinti 2009 07 27<br />

255


References<br />

1. Alma C. R., Goetell M. S., Roitberg B. D., Gillespie D. R. 2007. Combined<br />

effect of the enthomopathogenic fungus, Paecilomyces fumosoroseus Apopka-<br />

97, and the generalist predator, Dicyphus Hesperus, on the whitefly populations.<br />

BioControl, 52: 669–681.<br />

2. Faria M., Wraight S. P., Naranjo S. E., Ellsworth P. C. 2001. Biological control<br />

of Bemisia tabaci with fungi. Crop Protection, 20(9): 767–778.<br />

3. Lacey L. A., Frutos R., Kaya H. K., Vails P. 2001. Insect pathogens as biological<br />

control agents: do they have future Biological-Control, 21: 230–248.<br />

4. Martens J. A. 1993. Fungus and new crops build business in Florida. Grower<br />

Talks, 56(11): 34–41.<br />

5. Nigroho I., Ibrahim Y. 2004. Laboratory bioassay of some enthomopathogenic<br />

fungi against broad mite (Polyfagotarsonemus latus Bank.). Journal of<br />

Agriculture and Biology, 6(2): 223–225.<br />

6. Osborne L. S., Landa Z. 1992. Biological control of whiteflies with entomopathogenic<br />

fungi. Florida Entomologist, 75(4): 456–471.<br />

7. Pavlyushin V. A. 1996. Effect of entomopathogenic fungi on entomophagous<br />

arthropods. IOBC/WPRS Bulletin, 19(9): 247–249.<br />

8. Poprawski T. J., Jones W. J. 2000. Host plant effects on activity of mitosporic<br />

fungi Beauveria bassiana and Paecilomyces fumoso-roseus against two populations<br />

of Bemisia whiteflies (Homoptera: Aleyrodidae). Mycopathologia, 151:<br />

11–20.<br />

9. Roditakis N. E., Charnley K., Roditakis E. N. 2001. The green aphids Myzus persicae<br />

and its control with combined use of entomopathogenic fungus Verticillium<br />

lecanii and parasitoid Aphidius colemani under greenhouse conditions on sweet<br />

peppers in Crete. Abstracts of 8 th European meeting of the IOBC/WPRS Working<br />

Group “Insect Pathogens and Insect Parasitic Nematodes” (May–June 2001),<br />

Athens.<br />

10. Shi W.-B., Feng M.-G. 2009. Effect of fungal infection on reproductive potential<br />

and survival time of Tetranychus urticae (Acari: Tetranychidae). Expermental<br />

and Applied Acarology, 229–237.<br />

11. Thungrabeab M., Blaeser P., Sengonca C. 2006. Possibilities for biocontrol of<br />

the onion thrips Thrips tabaci Lindeman (Thys., Thripidae) using different entomopathogenic<br />

fungi from Thailand. Mitteilungen der Deutschen Gesellschaft<br />

für allgemeine und angewandte Entomologie, 15: 229–304.<br />

12. Wraight S. P., Carruthers R. I., Jaronski S. T., Bradley C. A. et al. 2000. Evaluation<br />

of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumoso-roseus<br />

for microbial control of the silverleaf whitefly Bemisia argentifolii.<br />

Biological control, 17: 203–217.<br />

13. Ахатов А. К. (ред.) 2004. Вредители тепличных и оранжерейных растений<br />

(морфология, образ жизни, вредоносность, борьба). Товарищество научных<br />

изданий КМК. Москва.<br />

256


14. Ижевский С. С. (ред.) 1999. Защита тепличных и оранжерейных растений от<br />

вредителей: Справочник (определение, видов, методы выявления и учета,<br />

биология и морфология, вредоносность, борьба). KMK Scientific press Ltd.<br />

Москва.<br />

15. Исаева Л. И. 1976. Использование биологического и новых методов защиты<br />

растений в интегрированных программах. ВНИИТЭИСХ. Москва.<br />

16. Михневич О. Ч., Климпиня А. Е. 1988. Оценка влияния энтомопатогенных<br />

грибов на коровку Cycloneda limbifer Casey. Биологическая регуляция<br />

численности вредных членистоногих. Зинатне. Рига, 56–67.<br />

17. Павлюшин В. А., Агансонова Н. Е. 1994. Совместимость энкарзии и<br />

алейцида в борьбе с оранжерейной белокрылкой на огурцах в теплицах.<br />

Экологически безопасные и безпестицидные технологии получения<br />

растениеводческой продукции: материалы Всерос. науч.-произв. совещ.<br />

(Краснодар, авг. 1994 г.). Пущино, 2: 165–168.<br />

18. Павлюшин В. А. (ред.) 2001. Система биологической защиты овощных<br />

культур от вредителей и болезней в теплицах. Всероссийский НИИ защиты<br />

растений (ВИЗР). Санкт-Петербург, 72.<br />

19. Прищепа Л. И. 2005. Опыт применения биоинсектицида пециломицин-Б в<br />

защите овощных культур от тепличной белокрылки. Ахова раслiн, 42 (5):<br />

<strong>28</strong>–30.<br />

20. Прищепа Л. И., Микульская Н. И., Войтка Д. В. 2008. Методические<br />

указания по проведению регистрационных испытаний биопрепаратов<br />

для защиты растений от вредителей и болезней. МОУП «Несвижская<br />

укрупненная типография им. С. Будного». Несвиж.<br />

21. Прищепа Л. И., Янковская Е. Н. 2008. Штамм Paecilomyces fumosoroseus<br />

БИМ—F-3<strong>28</strong>Д для производства энтомопатогенного препарата для защиты<br />

растений: пат. №10813 Республики Беларусь, МПК А 01 N 63/04. – опубл.<br />

30.06.08. Афiцыйны бюл. Нац. цэнтр iнтэлектуальн. уласнасцi, 3: 45.<br />

22. Прищепа Л. И., Янковская Е. Н., Гарко Л. С. 2007. Перспективы совместного<br />

применения Paecilomyces fumosoroseus (Wize) Brown et Smith и энтомофагов<br />

для защиты томата от вредителей. Сб. науч. тр. РУП «Институт защиты<br />

растений», 31: 325–335.<br />

23. Соловей Е. Ф., Забудская И. А. 1985. Опыт совместного применения энкарзии<br />

(Encarsia formosa Gah.) и грибов рода Aschersonia и Verticillium lecanii<br />

Zimm. в борьбе с тепличной белокрылкой на огурцах. Интегрированная<br />

защита овощных и плодовых культур. Штииница. Кишинев, <strong>28</strong>–33.<br />

24. Янковская Е. Н. 2006. Разработка технологии применения препарата<br />

пециломицин-Б для защиты огурца от огуречного комарика. Сб. научн. тр.<br />

РУП «Институт защиты растений», 30(2): 206–213.<br />

25. Янковская Е. Н., Прищепа Л. И. 2008. Исследование биотехнологических<br />

параметров получения биоинсектицидного препарата пециломицин-Б.<br />

Сб.научн.тр. РУП “Институт защиты растений”, 32: 368–377.<br />

257


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Biologinio insekticido Pecilomicine-B poveikis šiltnamio kenkėjams<br />

A. Yankouskaya<br />

Santrauka<br />

Šiltnamio sąlygomis buvo įvertinta kai kurių technologinių parametrų (terminų, apdorojimų<br />

skaičiaus <strong>ir</strong> intervalų tarp jų) įtaka biologiniam bioinsekticido Pecilomicine-B poveikiui<br />

šiltadaržinio baltasparniui (Trialeurodes vaporariorum Wеstw.), uodeliams (Bradysia brunnipes<br />

Mg.), entomofagams – enkarzijoms (Encarsia formosa Gahan.) <strong>ir</strong> fitoseiliams (Phytoseiulus persimilis<br />

Ath.). Nustatyta, kad efektyviausia naudoti Pecilomicine-B, vos tik ant šiltnamio augalų<br />

pas<strong>ir</strong>odo fitofagai: šiltadaržinio baltasparnio atveju – kai ant lapų pas<strong>ir</strong>odo p<strong>ir</strong>mieji suaugėliai,<br />

kas 7–14 dienų apdorojant juos du kartus. Vėliau 1 % koncentracijos Pecilomicine-B naudojamas<br />

iki 4 kartų, priklausomai nuo šiltadaržinio baltasparnio populiacijos gausumo (jeigu jų gausumas<br />

didėja). Tai leidžia 1,5–2 mėnesius be cheminių augalų apsaugos priemonių išlaikyti fitofagų<br />

populiaciją ekonomiškai nežalingame lygyje. Nuo uodelių šiuo preparatu (4 % koncentracijos)<br />

reikėtų apdoroti iki 2 kartų kas 23–27 dienos suaugėlių masinio skraidymo pradžioje. Kai<br />

Pecilomicine-B naudojamas šiltnamio sąlygomis (kas 7–14 dienų) kartu su fitoseiliais <strong>ir</strong> enkarzijomis,<br />

jis nedaro neigiamos įtakos entomofagų išlikimui, dauginimuisi, parazitinei bei grobuoniškai<br />

veiklai <strong>ir</strong> nesumažina jų efektyvumo. Naudojant Pecilomicine-B pagal minėtuosius technologinius<br />

parametrus, galima išlaikyti fitofagų populiacijas ekonomiškai nežalingame lygyje.<br />

Reikšminiai žodžiai: bioinsekticidų efektyvumas, bioinsekticidų įtaka entomofagams,<br />

Bradysia brunnipes, Cucumis sativus, Encarsia formosa, Lycopersicon esculentum,<br />

Paecilomyces fumosoroseus, Pecilomicine-B, Phytoseiulus persimilis, Trialeurodes vaporariorum.<br />

258


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Optimization of time and expediency of<br />

Incurvaria capitella Cl. number regulation<br />

Svetlana Yarchakovskaya, Natallia Kaltun<br />

RUC Institute of plant protection p. Priluki, Мinsk region, Belarus,<br />

e-mail belizr@tut.by<br />

Investigations were conducted in black currant plantations (Minsk district) in 1994–2008.<br />

The objects of researches were black currant cultivars growing in Belarus and currant bud<br />

moth (Lampronia (Incurvaria) capitella Cl.).<br />

The objective of researches was to develop currant bud moth monitoring system in<br />

black currant plantations based on phenological forecast of pest development. There was applied<br />

original synthetic phytophage sex pheromone considering a degree of different currant<br />

cultivar damage.<br />

An algorithm of phenological forecast of currant bud moth development was worked out.<br />

It gave an opportunity to determine beforehand the optimum time of registering of caterpillars<br />

leaving the<strong>ir</strong> wintering places, imago flight dynamics and carrying out a complex of chemical<br />

and agrotechnical measures. The attractiveness of the original synthetic phytophage sex<br />

pheromones was studied. It was determined that as a dispenser for the synthetic sex pheromone<br />

it is preferable to use the insulin cork or rubber black tube with a. i. content 1 mg/dispenser.<br />

It is determined that mid-early cultivars (‘Minay Shmyrev’, ‘Partisanka’) under conditions of<br />

Belarus are damaged by black currant moth much stronger than the mid and mid-late ones.<br />

The least pest-damaged cultivar is mid-late ‘Zolushka’.<br />

Key words: attractiveness, black currant, cultivar damage, development forecast,<br />

Incurvaria capitella, monitoring, pheromone.<br />

Introduction. Currant bud moth Lampronia (Incurvaria capitella) Cl. is a constant<br />

representative of currant fauna in all the regions of this crop cultivation. The<br />

phytophage damages both black and red currant, however, prefers a black one (Labanowska,<br />

2003). Black currant bud damage do not using the protective measures<br />

in years of mass pest development can reach 80–100 %, what practically leads to<br />

full crop loss. Basing on literary data, the most strongly damaged are early cultivars<br />

(Савздарг, 1960). Some features of the phytophage development complicate<br />

its monitoring, abundance and spread restriction. Already during black currant bud<br />

swelling, which depending on weather conditions can be observed even in February,<br />

the f<strong>ir</strong>st wintering caterpillars leave the shelter places and bite into currant buds. To<br />

catch visually the beginning of pest appearance from wintering places it is necessary<br />

259


to carry out periodic (in 3–4 days) observations in plantations since February and<br />

prior to the beginning of currant bud breaking. This is rather laborious and expensive<br />

(Крикунова и др., 2007). It shows an urgency of investigations, which would improve<br />

the methods of doing records and optimize the terms of protective measures.<br />

Being in buds the caterpillars feed prior to the beginning of black currant blossoming.<br />

The pest pupation starts in the top soil layer during the period of floral racemes<br />

advancing before mass black currant blossoming. The butterfly flight starts in May<br />

and coincides with black currant blossoming termination. As currant bud moth imago<br />

are active for a very short period of time, that is from 6.30 to 9.30, certain difficulties<br />

monitoring the<strong>ir</strong> abundance and timely revealing the focuses of the<strong>ir</strong> distribution<br />

are created. The female lays eggs in pulp of green berries. The hatched caterpillars<br />

within several days eat seeds of berries, and then disappear in shelters for wintering<br />

(Ярчаковская, 2000).<br />

So, high phytophage harmfulness, the latent way of life of a harmful stage, low<br />

and short imago activity determine the expediency of carrying out the researches on<br />

working out the methods and techniques of its monitoring on different by maturation<br />

cultivars.<br />

For terms optimization and the expediency of realization of these or the other<br />

actions for plant protection by working out the modern strategies of insect pest population<br />

control a great attention is given to the development and use of phenological<br />

forecasts of phytophage development and also studying host-plant cultivars infection.<br />

The use of synthetic sexual pest pheromones (SSP) for the<strong>ir</strong> number monitoring is<br />

also rather perspective.<br />

In connection with the above-stated, the purpose of our researches was working<br />

out the algorithm of phenological forecast of currant bud moth development for optimization<br />

the terms of conducting pest abundance assessments and protective measures,<br />

creation of the synthetic sexual phytophage pheromone for timely revealing the<br />

focuses of its occurrence, an estimation of various currant cultivars infestation by the<br />

phytophage for determining the expediency of carrying out sprayings.<br />

Objects, methods and conditions. The observations of currant bud moth development<br />

phenology, collection of biological material, field and farming trials were<br />

conducted in black currant plantations of fruit-growing farms, Minsk district (“Zubki”,<br />

“Agroconcern Kletsky”, “Uzdensky”), in 1994–2006. The observations on the<br />

assessment of black currant cultivars phytophage infestation were started on an experimental<br />

plot of Fruit-growing Institute (Minsk district) in 2003–2004. The attractiveness<br />

of local samples of currant bud moth synthetic sex pheromones was evaluated in<br />

fruit-growing plantations of the farm “Zubki” (Minsk district) in 2007 and 2008.<br />

The objects of researches were the regionalized in Belarus black currant cultivars<br />

(‘Мinaj Shmyrev’, ‘Partizanka’, ‘Kаtyusha’, ‘Оdzhebin’, ‘Каntate’, ‘Belarusskaya<br />

sladkaya’) and currant bud moth (Lampronia (Incurvaria) capitella Cl.).<br />

Investigation of migration dynamics of currant bud moth wintered caterpillars<br />

from wintering places to buds, the<strong>ir</strong> harmful activity period, dynamics of leaving<br />

for pupation was done by daily observations of ten registered black currant bushes<br />

colonized by moth. From the moment of buds swelling 50 buds were inspected on<br />

260


tops of branches of each registered bush and the number of pest caterpillars feeding<br />

in them was recorded. The observations of caterpillar development were done by<br />

the<strong>ir</strong> individual maintenance on currant branches free of other pests (1 caterpillar on<br />

a branch). The duration of pupae development was studied by the<strong>ir</strong> individual development<br />

in not less than 20 test tubes with soil. An establishment of butterflies fly out<br />

dynamics was done in entomological insect cages. Insect cage size was 30 x 30 x 50<br />

cm and it was in a form of a wooden frame fitted from three sides by a kapron sieve<br />

and from the fourth side glazed by sliding glass, cage’s bottom and top – from wood.<br />

The cage’s bottom was filled with 5–6 cm volume sifted soil layer. Black currant branches<br />

colonized by bud moth last age caterpillars (400–500 individuals) were placed<br />

in each cage. Every 2 days from the moment of fly out beginning butterfly number<br />

was recorded. Observations on imago life duration, female fecundity were done on<br />

currant branches under gauze insulators put on a w<strong>ir</strong>e frame, where the just flied out<br />

individuals were placed (15 insulators having 1 female and 2 male in an insulator).<br />

The insulators were daily inspected. After butterflies were killed by opening berries,<br />

the number of eggs laid by a female was recorded. Dynamics of caterpillars hatching,<br />

the<strong>ir</strong> feeding duration in berries and periods of diapause leaving were determined by<br />

periodic (every three days from the beginning of egg laying) 100 berries opening taken<br />

from the pest-infested plantation.<br />

The evaluation of black currant cultivar damage by bud moth was done by inspecting<br />

50 buds on each of 10 registration bushes of each cultivar and recording the<br />

pest-damaged buds after the phytophage brought full damage.<br />

The itinerary inspections and estimation of currant plantation phytosanitary condition<br />

were done by the standard methods (Алехин и др., 1988; Грин и др., 1996).<br />

Systematization, generalization and statistic processing of the collected material<br />

for creating the algorithm of phenological forecast of currant bud moth development<br />

were done by the method of correlation and regression analysis (Zar, 1996; Уланова,<br />

Забелин, 1990). Relations between constant indicators and the application of the investigated<br />

relationships for the forecasting equations were done by multiple regression<br />

analysis method. Reliability of the developed evaluations was verified by F – Fisher’s<br />

criterion and t – Student’s criterion, supposing 95 % significance level. The meteorological<br />

data necessary for the calculations have been obtained from agrometeorological<br />

stations, located close to the place of the researches.<br />

For doing a primary estimation of attractiveness of currant moth synthetic sexual<br />

pheromone (SSP) samples before black currant blossoming the plots were selected<br />

with a high pest number. During blossoming on selected plots pheromone-glue traps<br />

of the type Atrakon-A with various samples of synthetic sex pheromones provided by<br />

the employees of Elementary Synthesis Scientific-Research Laboratory of Belarussian<br />

State University were hung out. The experiments were accomplished in 5–7 repetitions<br />

(1 repetition – 1 trap). Traps were numbered and hung out in the top part of black<br />

currant bush. The traps were located along the plot in a randomized way in a distance<br />

of not less than 30 m from each other and from planting edge. The trap records were<br />

done regularly every 7 days. The caught butterflies were recorded and taken away<br />

from a sticky surface. For experiments a sticky mass “Vinilon” was used. Glutinous<br />

261


loose leaves in traps were replaced as requ<strong>ir</strong>ed. Attractiveness of all the presented SSP<br />

samples was estimated by average number of caught butterflies.<br />

Results. Based on systematization and statistic analysis of results of 13 summer<br />

observations on bud moth biology and phenology, the algorithm of pest development<br />

forecast, i.e., periods of phytosanitary situation monitoring in black currant plantations,<br />

was developed.<br />

By working out logic forecasting model of currant bud moth development the<br />

influence of different env<strong>ir</strong>onmental factors on speed of the pest development (relative<br />

a<strong>ir</strong> humidity, rainfall sum, photoperiod duration, and minimum, maximum and<br />

average daily a<strong>ir</strong> temperature) was evaluated. It is determined that the main predictors<br />

of forecast are a<strong>ir</strong> temperature (minimum, maximum and average daily), rainfall sum<br />

and also photoperiod duration.<br />

Mathematical forecasting model of currant bud moth development is expressed by<br />

a series of multifactorial and monofactorial linear and polynominal regression equations<br />

depicting quantitative characteristics of relations of forecasted phenomena and<br />

the env<strong>ir</strong>onmental conditions. The close relations between the investigated phenomena<br />

were evaluated as reliable, if correlation coefficients (r y, x<br />

and R y, x 1, x 2…xi<br />

) were equal to<br />

0.7 and more. By predictors selection for mathematical forecasting model development<br />

the chosen indicators should not correlate among themselves (r x, x1<br />

< 0.4).<br />

It is determined that a primary point for phenological forecast development is a<br />

date of maximum temperatures transition through +5 °С.<br />

It is established that the forecast predictors of the phytophage development beginning<br />

(1-st stage of the forecast) are maximum a<strong>ir</strong> temperatures and photoperiod<br />

duration. Time of bud moth caterpillars leaving from wintering places is caused by the<br />

accumulation of certain amount of positive temperatures. It is calculated that caterpillars<br />

start to leave the<strong>ir</strong> wintering places if for each 100 minutes of a light day, on the average,<br />

1 °C warmth comes in April, 1.2–1.5 °C – in March and 2–2.5 °C – in February.<br />

So, the earlier (at much shorter light day) the higher maximum a<strong>ir</strong> temperatures are<br />

necessary for the pest to start development.<br />

The pest caterpillars start leaving the<strong>ir</strong> wintering places if at the end of February<br />

a light day length is 600 minutes and daily a<strong>ir</strong> temperatures reach +15 °C, in the<br />

beginning of March (about 650 minutes) – +13 °С, in the beginning of April (about<br />

750 minutes) – +9 °С.<br />

The calculated forecasting equation depicting the interdependence of maximum<br />

a<strong>ir</strong> temperature, providing the beginning of pest development and photoperiod duration<br />

looks like parabola with 97 % level of correlation dependence with an error of<br />

determination coefficient 0.8 % and registers as follows:<br />

Y = 0.0001097 х 2 - 0.1896414 х + 90.6988633, D = 0.97 (1)<br />

Using the calculated regression equation, it is possible to define the exact date<br />

of bud moth leaving the wintering places, i. e., the optimum time of doing the pest<br />

records and sprayings against the phytophage.<br />

It is also established that the duration of currant bud moth caterpillars feeding in<br />

buds (2-nd stage of the forecast) is determined by a<strong>ir</strong> temperature parameters. For all<br />

years of observations depending on developing weather conditions the pest caterpillars,<br />

262


which have left the<strong>ir</strong> wintering places, have been eating the broken buds from 20 to 50<br />

days. The main factors influencing the period of currant moth feeding (Y 1<br />

) are average<br />

daily temperature (х 1<br />

) and the sum of minus a<strong>ir</strong> temperatures (х 2<br />

) for the feeding period.<br />

The equation reflecting quantitative interrelation of the above-mentioned parameters<br />

registers as follows:<br />

У 1<br />

= 23.88 - 0.422 х 1<br />

+ 0.496 х 2 , D = 0.70 (2)<br />

The obtained equation allows predicting terms of pest feeding and the beginning<br />

of caterpillars leaving for pupation, i. e., time of inter-row hoeing, whenever possible<br />

close to bushes for decreasing the pupae number.<br />

The period of currant bud moth development (3-rd stage of forecast) and terms of<br />

oviposition by females (4-th stage of forecast) are defined by a<strong>ir</strong> temperature indicators<br />

and moisture content.<br />

For all the years of observations, depending on weather conditions currant bud<br />

moth pupae developed from 12 to 36 days. The main predictors influencing the duration<br />

of the<strong>ir</strong> development (Y 2<br />

) are maximum a<strong>ir</strong> temperature (x) and the rainfall sum (х 3<br />

) for<br />

the period of pupae development. The equation depicting the quantitative interrelation<br />

of the above-mentioned indicators registers as follows:<br />

Y 2<br />

= 65.1 - 2.29 х + 0.05 х 3<br />

, D = 0.71 (3)<br />

Using the obtained equation, it is possible to predict terms of pest butterflies flight<br />

beginning and, hence, terms of hanging out pheromone-glue traps for the purpose of<br />

monitoring phytosanitary condition of black currant plantations and revealing the<br />

focuses of its spread.<br />

It is also established that from the beginning of currant bud moth flight up to<br />

the start of laying eggs by females can pass from 2 to 12 days, what also depends on<br />

prevailing weather conditions. However, in this case the basic defining factor is the<br />

minimum a<strong>ir</strong> temperature (x 4<br />

) and also as in the 3-rd stage, rainfall sum (х 3<br />

) for summer<br />

period. The quantitative interrelation of the above-named indicators is defined<br />

by equation Y 3<br />

= 17.0 - 1.12 х 4<br />

+ 0.07 х 3<br />

, D = 0.73 (4), i. е. the higher minimum a<strong>ir</strong><br />

temperature and less rainfall, the quicker females start laying eggs.<br />

The basic indicators defining the duration of egg development period (Y 4<br />

) and<br />

terms of the phytophage larvae leaving for wintering in shelters (Y 5<br />

) also are the<br />

minimum a<strong>ir</strong> temperature (х 4<br />

) and rainfall sum (х 4<br />

). For all years of inspections the<br />

duration of egg development period varied from 8 to 30 days and the duration of hatched<br />

from eggs caterpillars before the<strong>ir</strong> leaving for wintering in shelters – from 4 to<br />

14 days, what was defined f<strong>ir</strong>st of all by rainfall sum and minimum a<strong>ir</strong> temperatures.<br />

The regression equations reflecting the quantitative interrelation of the above-named<br />

indicators register as follows:<br />

Y 4<br />

= 7.3 - 0.44 х 4<br />

+ 0.11 х 3<br />

, D = 0.67 (5) and<br />

Y 5<br />

= 4.2 - 0.41 х 4<br />

+ 0.05 х 3<br />

, D = 0.69 (6).<br />

Thus, based on done researches an algorithm of phenological forecast of 6 stages<br />

of currant bud moth development was developed beginning from terms of caterpillar<br />

appearance from wintering places up to the beginning of the<strong>ir</strong> leaving in shelters. The<br />

consecutive use of the calculated equations allows to define beforehand the optimum<br />

terms of number records of caterpillars appearing from wintering places, imago flight<br />

263


dynamics and realization of a complex of chemical (against caterpillars) and agrotechnical<br />

(against pupae) measures.<br />

For timely revealing of I. сapitella focuses the workers of the Belarussian Institute<br />

of Plant Protection together with the employees of the scientific-research laboratory<br />

of elementary synthesis of Belarus State University (BSU) carried out the researches<br />

on working out the pest synthetic sex pheromone (SSP). For primary evaluation of the<br />

pest SSP the workers of the BSU have manufactured 14 experimental samples under<br />

the conventional name “Lavabat”, differing by the active ingredient content (0.1, 0.2,<br />

1 mg/dispenser) and the dispenser type (black and white rubber tubes, blue sponge,<br />

insulin cork). Among all the tested samples the attractiveness in relation to currant bud<br />

moth males have shown 8. It is determined that as a dispenser for currant bud moth<br />

SSP it is more preferable to use the insulin cork or rubber black tube with a. i. amount<br />

1 mg/dispenser. Using these samples for the period of pest flight 21.05–17.06 has<br />

resulted in 11.0–60.6 butterflies caught (Table 1).<br />

Таble 1. Attractiveness of SSP experimental samples for currant bud moth<br />

(Lampronia (Incurvaria) capitella Cl.), Мinsk district, 2007–2008 (currant age<br />

6–7 years)<br />

1 lentelė. Eksperimentinių serbentinės kandies (Lampronia (Incurvaria) capitella Cl.) sintetinio<br />

lytinio feromono pavyzdžių patrauklumas, Minsko regionas, 2007–2008 (serbentų<br />

amžius 6–7 metai)<br />

Experimental<br />

sample<br />

Eksperimentinis<br />

pavyzdys<br />

Active ingredient<br />

content<br />

(mg/dispenser)<br />

Veikliosios<br />

medžiagos kiekis,<br />

mg/dalytuvas<br />

Dispenser type<br />

Dalytuvo tipas<br />

Butterflies caught during<br />

flight period<br />

(the average per one trap)<br />

Drugiai, pagauti vieno<br />

skridimo laikotarpiu, vidutiniškai<br />

vienose gaudyklėse<br />

10.4<br />

Lavabat Т 1 1.5 сm of white rubber tube<br />

0.1 1,5 cm baltos guminės žarnelės<br />

1.8<br />

Lavabat D 1 4.0<br />

0.1 1.2<br />

Lavabat ТG 1 Blue sponge c<strong>ir</strong>cle<br />

5.0<br />

Mėlynos kempinės ratas<br />

Lavabat TP 1 Insulin cork<br />

60.6<br />

Lavabat P 0.2 Insulino kamštis<br />

11.0<br />

Lavabat ТR 0.2 2 сm of black rubber tube<br />

2 cm juodos guminės žarnelės<br />

11.2<br />

To determine the expediency of conducting the protective measures, besides,<br />

timely revealing of the phytophage incidence focuses, its abundance assessments, it<br />

is also necessary to have the information concerning host plant cultivar infestation.<br />

For this purpose, the infestation studies on 7 black currant cultivars differing by maturation<br />

time were carried out in 2003–2004. Bud damage records were done after a<br />

full damage during buds advancing.<br />

264


Table 2. Black currant cultivars damaged by currant bud moth, Samokhvalovichi<br />

2 lentelė. Serbentinės kandies pažeistos juodųjų serbentų veislės, Samokhvalovichi<br />

Cultivar<br />

Veislė<br />

Maturation time<br />

Sunokimo laikas<br />

Bud damage<br />

Pumpurų pažeidimas (%)<br />

2003 2004<br />

26.2 24.2<br />

‘Мinay Shmyrev’ Mid-early<br />

Vidutiniškai ankstyva<br />

‘Partizanka’<br />

Mid-early<br />

24.0 18.0<br />

Vidutiniškai ankstyva<br />

‘Каtyusha’<br />

Mid-ripening<br />

10.5 8.2<br />

Vidutiniška<br />

‘Odzebin’<br />

Mid-ripening<br />

10.3 7.9<br />

Vidutiniška<br />

‘Каntata’<br />

Mid-ripening<br />

2.7 9.0<br />

Vidutiniška<br />

‘Belorusskaya sladkaya’ Mid-ripening<br />

1.8 4.0<br />

Vidutiniška<br />

‘Zolushka ’<br />

Mid-late<br />

1.4 2.4<br />

Vidutiniškai vėlyva<br />

LSL 05<br />

/ R 05<br />

11.46 8.13<br />

It is determined that mid-early cultivars were damaged by currant bud moth much<br />

stronger than mid-ripening and mid-late. The mid-early ripening cultivars ‘Мinay<br />

Shmyrev’ and ‘Partizanka’ bud damage has reached 18–26 %, what is two and more<br />

times higher than the mid-ripening cultivars (Table 2). The least bud damage was<br />

noticed in mid-late cultivar ‘Zolushka’.<br />

Discussion. World literature analysis concerning the questions of time optimization<br />

on carrying out one or another measure in plant protection showed that the<br />

similar researches were carried out mainly in the d<strong>ir</strong>ection of phenological forecasts<br />

of agricultural host plant development. In Bulgaria, Slovenia, Japan, USA, Canada<br />

different regression models of apple, pear, plum (Hricovsky et al., 1994; Jonaitis,<br />

1994; Kajfez-Bogataj, Bergant, 1998; Morgan, Solomon, 1993), citrus (Ono, Konno,<br />

1999), red currant (Вандова, 2000) development based on the use of quantitative and<br />

qualitative characteristics of agrometeorological parameters were worked out. Based<br />

on the results of researches, the main forecast predictors are a<strong>ir</strong> temperature and<br />

rainfall sum. In Russia the investigations are carried out in modeling d<strong>ir</strong>ection and<br />

forecast of the main productive processes of grain, fodder, vegetable and technical<br />

crop field agrocoenosises ( Бородий, Зубков, 2001; Полуэктов, 2001).<br />

The data show that in all existing models a task of the qualitative relation establishment<br />

of the calendar time with the physiological one is solved by similar methods<br />

differing by some details. As a leading factor influencing the current speed of<br />

the studied object, in the developed models a sum of the effective and average daily<br />

a<strong>ir</strong> temperature is used. As an additional predictor, authors consider water regime or<br />

water-capacity (rainfall sum, relative a<strong>ir</strong> humidity and etc.). Nearly all the authors<br />

265


indicate that the duration of the light period is rather important to the individual object<br />

development, however, they consider this parameter as proceeding automatically in<br />

a certain location and not taken into account in the developed models. In the researches<br />

authors (Koltun, et al., 2003) determined that at initial stages of both the studied<br />

phytophage and black currant development, the light period duration as well as a<strong>ir</strong><br />

temperature was the main predictor of the developed model of phenological forecast<br />

of currant bud moth Lampronia (Incurvaria capitella Cl.).<br />

Similar researches are done in Poland by Barbara Labanowska (2003), who<br />

indicated a close relation of caterpillars leaving the wintering places with daily a<strong>ir</strong><br />

temperature and also the possibility of phytophage development beginning in February<br />

under a<strong>ir</strong> temperatures 10–15 °C and the necessity of carrying out 2–3 sprayings<br />

against the pest. Her recommended protective measures are determined basing on<br />

field records and observations. The f<strong>ir</strong>st treatment should be done when the pest leaves<br />

the wintering places by pyrethroid group preparations. When the repeated sprayings<br />

are necessary against the larvae bitten into buds it is recommended to use contact<br />

and systemic preparations. However, in the indicated researches it is not mentioned<br />

clearly determined the most optimum time of carrying out the protective measures,<br />

what does not allow to provide with efficiency higher than 55–78 % even when such<br />

high-toxic synthetic pyrethroids as Decis and Fastac are used. Moreover, carrying out<br />

2–3 treatments against one pest makes protection significantly expensive, increases<br />

the energy resources, decreases the profitability of the crop growing and negatively<br />

affects the env<strong>ir</strong>onmental safety.<br />

As a result of our researches a method of instrumental optimum time of spraying<br />

against the pest is proposed at the start of Incurvaria capitella Cl. caterpillars leaving<br />

the<strong>ir</strong> wintering places using the regression equation of dependence between maximum<br />

a<strong>ir</strong> temperature parameters and photoperiod duration.<br />

Conclusions. An algorithm of the pest Lampronia (Incurvaria) capitella Cl., development<br />

forecast an opportunity to determine beforehand the optimum time of doing<br />

records of caterpillars leaving the<strong>ir</strong> wintering places, imago flight dynamics and<br />

carrying out a complex of chemical (against caterpillars) and agrotechnical (against<br />

pupae) measures in black currant plantations.<br />

For timely revealing of I. capitella focuses distribution in black currant plantations<br />

the attractiveness and possibility of the phytophage original synthetic sex pheromones<br />

is studied. It is determined that as a dispenser for currant bud moth synthetic<br />

sex pheromone it is more preferable to use insulin cork or rubber black tube with a.<br />

i. amount 1 mg/dispenser.<br />

To determine the expediency of conducting the protective measures the phytophage<br />

damage of 7 black currant cultivars is evaluated differing by maturity time. It is<br />

determined that mid-early cultivar (‘Minay Shmyrev’, ‘Partisanka’) under conditions<br />

of Belarus are damaged by currant bud moth much stronger than the mid and mid-late<br />

cultivars. The least pest-damaged cultivar is a mid-late ‘Zolushka’.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 08 15<br />

266


References<br />

1. Hricovsky I., Spanik F., Repa S. 1994. Analyticka metoda prognoz nastupu fenofag<br />

cervenej ribezle. Acta fytotechnology, 49: 71–75.<br />

2. Jonaitis V. 1994. Some aspects of long-term dynamics of phonological situation<br />

of the various biological systems functioning in different ecosystems. Acta entomologica<br />

Lituanica, 12: 64–72.<br />

3. Kajfez-Bogataj L. Bergant K. 1998. Prediction of blossoming of apple tree<br />

(Malus domestica Borkh.) in phenological models. Zb. Biotehn. Fak. Univ. v<br />

Ljubljani. Kmetijstvo. Ljubljana. Letn, 71: 83–89.<br />

4. Koltun N. E., Jarcakovskaja S. I., Supranovich R. V. 2003. Prognosa fenologiczna<br />

podstawa integrowanej ochrony roslin. Progress in Plant Protection (Postepy<br />

w Ochronie Roslin). Poznan, 43 (1): 192–199.<br />

5. Labanowska B. 2003. Krzywik porzeczkowiaczek przypomina o sobie. Haslo<br />

ogronicze, 2.www.ho.haslo.pl/index/phprok=2003& numer=02-22k.<br />

6. Morgan D., Solomon M. G. 1993. PEST-MAN: a forecasting system for apple<br />

and pear pests. Bull. OFPP, 23 (4): 601–605.<br />

7. Ono S., Konno T. 1999. Estimation of flowering date and temperature characteristics<br />

of fruit trees by DTS method. JARQ, 33 (2): 105–108.<br />

8. Zar H. J. 1996. Biostatistical analysis. Prentice-Hall Int. London.<br />

9. Алехин В. Т., Ермаков А., Черкашин В. И. 1988. Контроль фитосанитарного<br />

состояния садов и виноградников. Защита и карантин растений, 2: 54–57.<br />

10. Бородий, С. А., Зубков А. Ф. 2001. Имитационно-статистическое моделирование<br />

биоценотических процессов в агроэкосистемах. Санкт-Петербург.<br />

11. Вандова М. 2000. Прогнозиране на цъфтежа при някои овощни видове по<br />

средната месечна температура. Зумеделие плюс, 5: 11–12.<br />

12. Грин Н., Стаут У., Тейлор Д. 1996. Количественная экология. В кн.:<br />

Биология, 2: 127–150.<br />

13. Крикунова Н. И., Супранович Р. В., Ярчаковская С. И. 2007. Вредители<br />

и болезни плодово-ягодных, овощных культур и картофеля. Минск:<br />

Белорусская наука.<br />

14. Полуэктов Р. А. 2001. Полевой опыт и динамические модели продуктивного<br />

процесса. В кн. Современные проблемы опытного дела, 1: 29–35.<br />

15. Савздарг Э. Э. 1960. Вредители ягодных культур. Москва: Госиздат с. х.<br />

лит.<br />

16. Уланова Е. С., Забелин В. Н. 1990. Методы корреляционного и<br />

регрессионного анализа в агрометеорологии. Ленинград.<br />

17. Ярчаковская С. И. 2000. Вредители смородины и крыжовника. Ахова<br />

раслiн, 1: 20–21.<br />

267


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Incurvaria capitella Cl. kontroliavimo laiko <strong>ir</strong> tikslingumo optimizavimas<br />

S. Yarchakovskaya, N. Kaltun<br />

Santrauka<br />

Tyrimai atlikti Minsko regiono juodųjų serbentų plantacijose 1994–2008 metais. Tyrimų<br />

objektas buvo Baltarusijoje augančios juodųjų serbentų veislės <strong>ir</strong> serbentinės kandys (Lampronia<br />

(Incurvaria) capitella Cl.). Tyrimų tikslas – remiantis fenologinėmis kenkėjų vystymosi<br />

prognozėmis, sukurti serbentinių kandžių kontroliavimo sistemą juodųjų serbentų plantacijose.<br />

Atsižvelgiant į sk<strong>ir</strong>tingą serbentų veislių pažeidimą, buvo panaudotas fitofagų p<strong>ir</strong>minis<br />

sintetinis lytinis feromonas. Sukurtas fenologinių serbentinių kandžių vystymosi prognozių<br />

algoritmas. Jis suteikė galimybę iš anksto nustatyti optimalų žiemojimo vietas paliekančių<br />

vikšrų registravimo laiką, drugių skraidymo dinamiką bei imtis viso komplekso cheminių <strong>ir</strong><br />

agrotechninių priemonių. Išt<strong>ir</strong>tas p<strong>ir</strong>minių sintetinių fitofago lytinių feromonų patrauklumas.<br />

Nustatyta, kad kaip sintetinio lytinio feromono dalytuvą geriausia naudoti insulino kamštį arba<br />

juodą guminę žarnelę su 1 mg/dalytuve aktyviosios medžiagos kiekiu. Nustatyta, kad Baltarusijos<br />

sąlygomis vidutiniškai ankstyvos veislės (‘Minay Shmyrev’, ‘Partisanka’) serbentinių kandžių<br />

pažeidžiamos daug labiau negu vidutinės arba vidutiniškai vėlyvos. Mažiausiai kenkėjų pažeista<br />

veislė buvo vidutiniškai vėlyva ‘Zolushka’.<br />

Reikšminiai žodžiai: feromonas, Incurvaria capitella, juodieji serbentai, kontroliavimas,<br />

patrauklumas, raidos prognozės, veislių pažeidimas.<br />

268


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Biological activity of plant extracts and the<strong>ir</strong><br />

application as ecologically harmless biopesticide<br />

Ivars Zarins 1 , Maris Daugavietis 2 , Julija Halimona 1<br />

1<br />

Institute of Biology of University of Latvia, Miera street 3, Salaspils, LV-2169<br />

Latvia, e-mail iz@email.lubi.edu.lv<br />

2<br />

Latvian State Forest Research institute “Silava”, Riga Street 111, Salaspils,<br />

LV-2169 Latvia, e-mail maris.daugavietis@silava.lv<br />

The use of plant extracts in the management of plant diseases is gaining importance.<br />

Different phytopreparations, which were made on the basis of extractive substances originated<br />

from natural and cultivated plant extracts, are described in this study. Collection of<br />

phytopreparations consisted of 9 new ones with insecticidal and 8 – with fungicidal properties.<br />

Phytopreparations were prepared in different forms: liquid, semi-fluid and paste.<br />

Phytopreparations were tested to be ecologically harmless.<br />

The fungicidal and insecticidal properties of the phytopreparations were detected under<br />

laboratory conditions, in the experimental fields, greenhouses and under conditions of peasant<br />

farm. An efficiency of the tested preparations was found to be 55–81 % in experimental<br />

fields.<br />

Besides, an insecticidal activity of “Fitoekols-IF” (liquid and paste form) was tested on<br />

nine sucking insect species wintering on the bark of fruit trees trunk and basal branches. This<br />

activity reached 40–78 %.<br />

New phytofungicides were used against distribution of the pathogenic fungus infections<br />

on vegetable culture in greenhouses; the<strong>ir</strong> efficiency was in the ranges of 65–88 % and<br />

60–80 % under laboratory and field conditions, respectively.<br />

Fruits, vegetables and planting material may be successfully protected during the<strong>ir</strong><br />

long-time storage in storehouses against pathogenic fungus infections with selected phytopreparations,<br />

e. g. “Fitoekols-IF”, “Fitosativum”, and “Fitocapsicum”. Protection efficiency<br />

is 58–80 %.<br />

Key words: bioinsecticide, ecology, phytofungicide, phytoinsecticide, plant extracts,<br />

plant protection.<br />

Introduction. Nowadays there still are different chemical pesticides applied in<br />

plant protection – insecticides, fungicides, herbicides, which provide the fastest and<br />

highest effect, but at the same time bring on essential ecological damage: pollute soil<br />

and water sources, destroy entomological communities, cause pathologic changes<br />

in b<strong>ir</strong>d and many warm-blooded animal populations. Wide and persistent usage of<br />

chemical pesticides is dangerous to human health and causes unhealthy env<strong>ir</strong>onment<br />

269


to human work. Especially negative consequences it may cause in fruit and vegetable<br />

growing, because these products are mostly consumed fresh. Intensive usage of<br />

chemicals is not suitable in Latvian climatic zone in particular where low intensity of<br />

sun prolongs distribution of chemical substances in ecosystems.<br />

To protect different cultural plants from harmful activity of pests and diseases,<br />

more attention should be paid to developing and establishment of env<strong>ir</strong>onment friendly<br />

regulation actions. The quality of products is determined mainly by harmless growing<br />

techniques applied, which conforms to standards of “ecologically clean” and harmless<br />

to consumers production.<br />

Literature studies and our experience suggest that phytopreparations are one of<br />

the most perspective biological plant protection aids. The<strong>ir</strong> impact is effective enough,<br />

extraction is not so complicated and time-consuming, they are harmless to env<strong>ir</strong>onment<br />

and people, decompose fast in agrocenosis, the<strong>ir</strong> usage usually pays off. Basic principle<br />

of receiving a preparation is adding plant extractive components, which are received<br />

from plant species immune to pests or diseases. Usually donor plants for receiving<br />

extract substances are genetically different species, which are widespread in nature or<br />

cultivated artificially. There is certain success reached in many countries in development<br />

and practical establishment of new, ecologically safe plant protection aids.<br />

There are references in literature about fungicidal and insecticidal efficiency of<br />

different plants, including conifers, and the<strong>ir</strong> perceptiveness for production of biological<br />

preparations (Micales et al., 1994; Biever, 2003; Mares et al., 2004).<br />

For the last several years Latvian State Forest Research Institute “Silava” and<br />

LU Institute of Biology have been working at inventing new phytopreparations; besides,<br />

LFI “Silava” and biological production unit A/S “Biolat” in Piltene, Ventspils<br />

district, where experimental materials are obtained, improved preparation production<br />

technology.<br />

With financial support of Latvian Ministry of Science and Education we produced<br />

new phytopreparations (“Fitoekols-IF”, “Fitorodents”, “Bembijs”, “Ausma”, “Eko-<br />

Fit”, etc.), which contain conifer extracts (Daugavietis, 2000 a; Daugavietis, 2000 b;<br />

Daugavietis, 2001; Daugavietis et al., 2002; Zariņš, Daugavietis, 2002; Daugavietis<br />

et al., 2005; Зариньш, 2002).<br />

Our researches suggest, that there are enough wild plant resources and plenty of<br />

possibilities to grow technical culture of raw material for receiving plant extractive<br />

substances. By extending this work to make it comply with EU d<strong>ir</strong>ective requ<strong>ir</strong>ements,<br />

it is possible to fully ensure “biological farming” with plant kingdom phytopreparations<br />

and also to develop the production of preparations for export purposes.<br />

Object, methods and conditions. Nine phytoinsecticides against sucking pest<br />

insects were created and tested, which include various extractive substances of wild<br />

and artificially cultivated plants: “Fitoekols-IF” – (improved form) on pine (Pinus<br />

sylvestris) and spruce (Picea abies) extracts; “Fitostruts” – greater celandine (Chelidonium<br />

majus) extracts; “Fitoguns” – on different Ranunculaceae family (Ranunculus<br />

auricomus, R. polyanthemus, R. scleratus) plant extracts; “Fitoklingerium” – royal<br />

marigold (Calendula officinalis) extracts; “Fitosamts” – French marigold (Tagetes<br />

padula, T. erecta) extracts; “Fitopelargonium” – geranium (Pelargonium sp.)<br />

270


leaf extract; “Fitosinepium” – white mustard (Sinapis alba) plant and seed extract;<br />

“Fitorusticanum” – wild horse radish (Armoracia rusticana) extract; “Fitotabacum”<br />

– tobacco (Nicotiana tabacum, N. rustica) extracts.<br />

Composition of insecticidal preparations: plant extract (in connection with extract<br />

agent), “Progress” (alkaline product) and sticky substance, in relation 7 : 2 : 1.<br />

Phytoinsecticides may contain other components – emulgators, cohesive substance,<br />

etc. Preparations pH is 6.5–7.5.<br />

The fungicidal properties of preparations were tested under laboratory conditions,<br />

in greenhouses, experimental fields and under conditions of peasant farm. Activity<br />

of phytopreparations for limiting numerical composition of pest insect populations<br />

was determined on following vegetable plants: onion, carrot, cabbage, and pea.<br />

Prophylactic treatment of plants was begun on 7 th –10 th day after sprouting of seedlings<br />

and repeated after every 10–14 days, thus managing 3–4 treatments during vegetation<br />

season. Working concentration of preparations was 1.0–1.5 %. For treating 1 m 2 of<br />

area 0.5–0.7 l of working suspension is requ<strong>ir</strong>ed. For more precise determination of the<br />

number of insects on model plants and prevention of the<strong>ir</strong> migration in agrobiocenosis,<br />

they are isolated with nylon net. If necessary, supplementary insects are added on<br />

experimental plants, avoiding exceeding of pest average density on plant. Counting of<br />

insect numerical composition on both treated and control plants was started on 3 rd –5 th<br />

day after applying the preparation, and continued throughout vegetation season.<br />

Many experiments were carried out in fruit-tree gardens. The goal was to find<br />

out whether these preparations can be used for limiting the population size of sucking<br />

insects, which overwinter on tree bark or main branches. Liquid forms of preparations<br />

are brought up on tree by spraying, paste form – with brush. For treatment of<br />

one 3–5 years-old tree it is necessary approximately 0.4–0.8 l of working suspension<br />

(depending on the height of tree and the number of main branches). Treatment was<br />

carried out during autumn period just after leaves fall off.<br />

The effectiveness of phytopreparations is appraised in spring – April and May –<br />

visually estimating species density of each pest on the branches and trunk of model<br />

plants, applying perforated insect-perceptive belts and other methods. In experimental<br />

variants received data were compared with control results of not treated plants.<br />

Investigations were carried out in 2000–2008.<br />

Different sucking pests were examined – aphids, thrips, white flies and spider<br />

mites in greenhouse (Table 1), in vegetable fields (Table 2, 3) and in fruit tree gardens<br />

(Table 4).<br />

Eight phytofungicides were invented to limit infections, caused by phytopathogenic<br />

fungi on vegetable cultures both in greenhouses and in field, as well as in<br />

locations of fruit and vegetable crop, decorative cultures and plant material. Active<br />

component are extracts of various wild and artificially cultivated plants in combination<br />

with additives – matrixes.<br />

Plant extracts used for production of phytofungicides were as follows: “Fitoekols-<br />

IF” – pine (Pinus sylvestris) and spruce (Picea abies) greens extract; “Fitosativum” –<br />

garlic (Allium sativum) extract; “Fitocapsicum” – chili pepper (Capsicum annuum)<br />

extract; “Fitokrisanthemium” – chrysanthemum (Chrisanthemum sp.) leaf extract;<br />

271


“Fitoarmoracium” – wild horse radish (Armoracia rusticana) root and leaf extract;<br />

“Fitotabacum” – tobacco (Nicotiana tabacum, N. rustica) extracts; “Fitopelargonium” –<br />

geranium (Pelargonium sp.) leaf extract and “Fitosinepium” – white mustard (Sinapis<br />

alba) plant and seed extract.<br />

Fungicidal phytopreparations are produced in different forms – concentrate, liquid,<br />

paste and dry form. pH of preparations is 8.8–9.0.<br />

At the same time studies were carried out with already approbated fungicides<br />

“Bordo”, “Mycostop” and “Timorex”.<br />

Phytofungicides activity in greenhouses was tested on three vegetable cultures:<br />

tomatoes, cucumbers and sweet peppers. Five most common infections caused by<br />

phytopathogenic fungi were chosen: downy mildew Pseudoperonospora cubensis,<br />

grey mold Botrytis cinerea, leaf mould Cladosporium sp., fusarium wilt Fusarium sp.,<br />

dry leaf spot Macrosporium sp.<br />

To determine fungicidal preparation effectiveness in vegetable fields, infections<br />

caused by different phytopathogenic fungi were chosen.<br />

Working concentration of phytopreparations was 1.0–1.5 %; for treatment of 1 m 2<br />

area 0.8–1.5 l of working suspension was used. Development stage and intensity of<br />

fungal infection in test variants was monitored regularly with 4–6 days interval comparing<br />

received data with control results. Stage of limiting fungal infection development<br />

was expressed in percents, comparing with plants, which did not undergo treatment.<br />

On the basis of phytopreparation “Fitoekols-IF” improved preparative form was<br />

developed – paste, which consists of extractive substance (mixed with extractive<br />

agent), alkaline product (“Progress”), sticky substance (“PVA-M”), lime or chalk<br />

powder, CuSO 4<br />

, KMnO 4<br />

and emulgator “Tween-7”. Preparation was applied against<br />

tree cancer – infection, which is caused by phytopatogenic fungus Neustria galligena,<br />

as well as for prevention of fungal spore spreading in agroecosystem. The effectiveness<br />

of phytofungicide in fruit gardens is appraised visually estimating the percentage of<br />

tree cancer comparing to untreated trees.<br />

Opportunity of applying phytofungicide was clarified to protect fruits and vegetables,<br />

multiplication material of decorative cultures (flower bulbs, tubers, etc.) from<br />

fungi caused infections during long-time storage (+5°–+10 °C). Preservation material<br />

should be treated prophylactically before storage. Seven phytofungicides were tested<br />

and the<strong>ir</strong> protective effect was compared with universal fungicide “Bordo”. Control<br />

contained material that was not treated with phytopesticides.<br />

Results. The best results limiting population density of sucking insects on vegetable<br />

cultures in greenhouses showed phytopreparation “Fitoekols-IF”: technical<br />

effectiveness on tomatoes and cucumbers was 65–90 %; limiting whitefly population<br />

size usually it is 95 %. Phytopreparations “Fitostruts”, “Fitosamts” and “Fitosinepium”<br />

showed a little lower insecticidal activity – 60–91 %. Effectiveness of applying<br />

preparations “Fitoguns”, “Fitoklingerium” and “Fitopelargonium” on aphids,<br />

thrips and spider mites did not exceed 65–70 % (Table 1).<br />

272


Table 1. Insecticidal activity of phytopreparations in greenhouses<br />

1 lentelė. Insekticidinis fitopreparatų poveikis šiltnamiuose<br />

Phytopreparations<br />

Fitopreparatai<br />

Aphis<br />

frangulae<br />

aphids<br />

amarai<br />

Myzus<br />

persicae<br />

Technical efficiency<br />

Techninis efektyvumas (%)<br />

thrips whiteflies<br />

tripsai baltasparniai<br />

Heliothrips Parthenothrips<br />

Trialeurodes<br />

haemorrhoidalis<br />

vaporario-<br />

dracaenae rum<br />

spider mites<br />

erkės<br />

Tetranychus<br />

telarius<br />

Tomatoes<br />

Pomidorai<br />

Fitoekols- -IF 65.8 ± 0.4 91.0 ± 2.2 68.8 ± 2.4 72.2 ± 4.4 95.7 ± 3.2 88.7 ± 3.7<br />

Fitostruts 70.0 ± 2.3 89.2 ± 3.2 71.3 ± 2.2 75.5 ± 2.5 99.0 ± 5.1 70.6 ± 2.4<br />

Fitosamts 78.3 ± 3.2 68.0 ± 2.5 70.0 ± 1.3 67.7 ± 2.3 91.0 ± 5.1 66.5 ± 2.8<br />

Fitoguns 66.2 ± 2.8 70.1 ± 2.4 56.7 ± 3.2 50.5 ± 3.0 71.0 ± 2.4 58.2 ± 1.1<br />

Fitotabacum 85.5 ± 4.1 80.0 ± 3.2 98.5 ± 2.1 98.0 ± 2.6 98.3 ± 4.0 90.0 ± 3.2<br />

Fitosinepium 88.3 ± 3.2 75.5 ± 2.3 81.3 ± 2.1 90.3 ± 4.0 94.5 ± 3.2 88.3 ± 3.5<br />

Fito-klingerium 62.0 ± 2.4 67.3 ± 2.1 61.2 ± 3.0 55.3 ± 1.3 74.7 ± 2.3 57.7 ± 3.1<br />

Fito-pelargonium 67.3 ± 2.1 79.5 ± 3.1 75.0 ± 3.2 70.8 ± 2.0 78.3 ± 3.2 67.5 ± 2.4<br />

Cucumbers<br />

Agurkai<br />

Fitoekols- -IF 72.2 ± 3.1 90.7 ± 4.2 65.5 ± 2.3 70.0 ± 1.3 88.2 ± 2.5 95.5 ± 4.1<br />

Fitostruts 82.2 ± 4.2 91.5 ± 4.0 78.2 ± 4.7 71.8 ± 2.4 87.5 ± 3.2 73.8 ± 2.4<br />

Fitosamts 75.0 ± 2.5 61.2 ± 2.0 - - 82.2 ± 4.2 60.8 ± 1.7<br />

Fitoguns 60.3 ± 1.8 67.5 ± 2.6 51.5 ± 1.4 47.7 ± 0.2 69.8 ± 3.2 50.8 ± 1.7<br />

Fitotabacum 69.3 ± 2.4 78.8 ± 2.2 88.2 ± 3.2 90.2 ± 2.1 95.5 ± 2.2 85.5 ± 2.3<br />

Fitosinepium 81.2 ± 4.1 76.7 ± 3.2 78.6 ± 2.9 88.5 ± 2.2 88.2 ± 2.4 90.0 ± 2.7<br />

Fito-klingerium 56.5 ± 1.3 65.5 ± 1.5 55.7 ± 2.2 50.0 ± 2.3 77.3 ± 1.3 60.3 ± 1.5<br />

Fito-pelargonium 76.5 ± 3.1 85.7 ± 2.5 81.2 ± 2.5 66.5 ± 3.2 87.6 ± 2.0 69.8 ± 2.1<br />

Results in limitation population density of sucking insects on vegetable cultures<br />

under field conditions in experimental fields and farm were alike previous ones. The<br />

highest activity showed improved “Fitoekols-IF”, “Fitosinepium”, “Fitostruts” and<br />

“Fitoklingerium” – the<strong>ir</strong> effectiveness fluctuates between 55 % and 81 %. Little lower<br />

effectiveness was observed after using “Fitoguns” and “Fitopelargonium” – technical<br />

activity doesn’t exceed 50–70 %, the last preparation works more like repellent<br />

(Table 2, 3).<br />

Dry forms of preparations “Fitotabacum”, “Fitorusticum” and “Fitosinepium” are<br />

the most functional against early and late cabbage fly, onion and carrot fly: technical<br />

efficiency reaches 78–92 %. Observations report, that these preparations not only cause<br />

death of pest insects on treated plants, but also significantly limit the<strong>ir</strong> development.<br />

273


Table 2. Insecticidal activity of phytopreparations limiting sucking pest insect<br />

populations in experimental fields<br />

2 lentelė. Insekticidinis fitopreparatų poveikis mažinant vabzdžių kenkėjų populiacijas<br />

eksperimentiniuose laukuose<br />

Phyto-preparations<br />

Fitopreparatai<br />

Aeumerus<br />

strigatus<br />

onion<br />

svogūnai<br />

Delia<br />

antiqua<br />

Delia<br />

brassicae<br />

cabbage<br />

kopūstai<br />

Delia<br />

floralis<br />

Fitoekols-IF (op) 67.8 ± 2.4 53.7 ± 2.3 72.3 ± 2.3 68.5 ± 2.0 65.5 ± 3.2 81.2 ± 2.5 70.0 ± 2.4<br />

Fitostruts 69.0 ± 2.3 57.8 ± 1.5 76.2 ± 3.2 70.0 ± 2.4 68.8 ± 1.9 74.5 ± 2.5 63.3 ± 2.3<br />

Fitoguns 57.3 ± 4.0 52.0 ± 3.2 67.7 ± 2.2 63.5 ± 2.2 56.3 ± 2.2 60.0 ± 3.1 51.2 ± 2.6<br />

Fitosamts 68.2 ± 2.5 65.0 ± 2.2 69.8 ± 2.5 64.2 ± 2.8 60.8 ± 1.9 68.2 ± 2.0 57.7 ± 1.6<br />

op – original preparation / originalus preparatas<br />

Table 3. Insecticidal activity of phytopreparations limiting sucking pest insect<br />

populations under field conditions (farm experiment)<br />

3 lentelė. Insekticidinis fitopreparatų poveikis mažinant vabzdžių kenkėjų populiacijas<br />

lauko sąlygomis (gamybinis bandymas)<br />

Phyto-preparations<br />

Fitopreparatai<br />

Fitoekols-IF (liquid form<br />

skystas)<br />

Fitostruts (liquid form<br />

skystas)<br />

Fitosinepium (liquid form<br />

skystas)<br />

Fitorusticanum (liquid form<br />

skystas)<br />

Fitotabacum (dry form<br />

sausas)<br />

Technical effectiveness<br />

Techninis efektyvumas (%)<br />

carrot<br />

morkos<br />

Brevicoryne<br />

Trioza Psila<br />

v<strong>ir</strong>idula rosae<br />

brassicae<br />

Technical effectiveness (%) after treatment three times per<br />

vegetative period<br />

Techninis efektyvumas (%) apdorojus tris kartus per vegetaciją<br />

onion carrot beat bean peas<br />

svogūnai morkos burokėliai pupelės ž<strong>ir</strong>niai<br />

Acyrthosiphon<br />

Delia Psila Trioza Pegomyia Aphis<br />

antiqua rosae v<strong>ir</strong>idula hyoscyami fabae<br />

onobrichis<br />

42.2 ± 0.5 57.5 ± 1.9 66.7 ± 2.2 42.7 ± 0.9 70.8 ± 3.1 75.5 ± 2.8<br />

49.8 ± 1.1 48.8 ± 0.8 70.0 ± 3.0 55.3 ± 1.5 67.3 ± 2.4 70.0 ± 2.5<br />

52.8 ± 1.8 52.2 ± 2.3 62.2 ± 2.0 44.3 ± 0.7 72.2 ± 3.2 80.0 ± 2.3<br />

57.5 ± 1.2 47.7 ± 0.9 68.8 ± 2.3 49.8 ± 1.6 65.5 ± 2.7 67.7 ± 3.1<br />

85.5 ± 2.4 82.7 ± 3.1 58.8 ± 2.1 77.4 ± 2.5 55.5 ± 1.6 46.2 ± 0.9<br />

“Fitoekols-IF” (liquid form) decreases sucking insect population density under<br />

critical threshold on fruit trees – 40–67%. Little higher results were given after using<br />

preparation paste – 61–78 % (Table 4). Oscillations of insecticide effectiveness between<br />

variants can be explained with treatment quality, insect species, and steadiness of preparations<br />

on treated plant surface and other factors. It should be pointed out, that usage<br />

of phytopreparations significantly diminishes development of pests in ecosystem.<br />

274


Table 4. Insecticidal activity of “Fitoekols-IF” phytopreparation (liquid and paste<br />

forms) limiting sucking pest insect populations on fruit trees during overwintering<br />

4 lentelė. Insekticidinis fitopreparato “Fitoekols-IF” (skysto <strong>ir</strong> pastos pavidalo) poveikis<br />

mažinant vabzdžių kenkėjų populiacijas vaismedžiuose žiemojimo laikotarpiu<br />

Protective effect compared to control<br />

Pest insect<br />

Teigiamas poveikis, palyginus su kontroliniu variantu (%)<br />

Vabzdžiai kenkėjai<br />

liquid form<br />

skystas<br />

paste<br />

pasta<br />

Lepidosaphes ulmi 62.6 ± 2.2 75.8 ± 3.5<br />

Plesiocoris rugicollis 51.1 ± 2.4 68.3 ± 2.9<br />

Lygus pratensis 47.3 ± 2.3 64.2 ± 3.3<br />

Psylla mali 67.0 ± 3.7 78.0 ± 3.5<br />

Aphis pomi 56.4 ± 2.5 77.5 ± 4.0<br />

Cydia pomonella 38.0 ± 2.0 57.0 ± 2.8<br />

Tmetocera ocellana 43.4 ± 2.1 61.2 ± 3.1<br />

Yponomeuta malinellus 67.5 ± 2.4 67.5 ± 2.4<br />

Panonychus ulmi 48.0 ± 2.4 63.0 ± 2.8<br />

Effectiveness of preparations limiting diseases caused by fungi in greenhouses:<br />

• “Fitoekols-IF”: limitation of mildew on tomatoes – 75–79 %, on cucumbers –<br />

75–90 %, on peppers (sweet) – 70–85 %; of grey rot on tomatoes – 68–77 %, on cucumbers<br />

– 65–68 % and peppers – 70–85 %; of leaf mould on tomatoes – 65–71 %,<br />

on cucumbers – 65–68 %, of fusarium wilt on tomatoes – 66–68 %, of dry leaf spot<br />

on tomatoes – 67–76 %, on cucumbers – 58–61 %.<br />

• “Fitosativum” diminishes mildew on tomatoes for 93–98 %, on cucumbers –<br />

for 88–90 %, on peppers – for 71–78 %; grey rot on tomatoes – for 89–91 %, on<br />

cucumbers – for 80–89 % and on peppers – for 85–86 %.<br />

• “Fitokrisanthemium”: limitation of mildew on tomatoes – 69–77 %, on cucumbers<br />

– 65–68 %, on sweet peppers – 56–61 %; of grey rot on tomatoes – 75–79 %, on<br />

cucumbers – 68–69 % and peppers – 53–58 %; of leaf mould on tomatoes – 69–76 %,<br />

on cucumbers – 64–76 %; of fusarium wilt on tomatoes – 69–76 %; of dry leaf spot<br />

on tomatoes and cucumbers – 77–81 % and 65–69 %.<br />

• “Fitoarmoracium” showed effectiveness in fighting mildew on tomatoes is<br />

90–99 %, on cucumbers – 86–88 %, on peppers – 68–77 %; leaf mould on tomatoes –<br />

87–95 %, on cucumbers – 77–82 % and on peppers – 67–71 %; fusarium wilt on<br />

tomatoes 80–89 % and dry leaf spot on tomatoes – 87–90 %.<br />

• “Fitotabacum” protective effect of fighting mildew on tomatoes is 71–88 %,<br />

on cucumbers – 73–80 %, on peppers – 65–67 %; grey rot on tomatoes – 71–79 %,<br />

on cucumbers – 71–80 %, on peppers – 57–60 %; leaf mould on tomatoes – 67–77 %,<br />

on cucumbers – 64–75 %; fusarium wilt on tomatoes– 67–79 % and dry leaf spot on<br />

tomatoes – 68–77 %.<br />

• Using “Fitopelargonium” mildew infection was limited on tomatoes – for<br />

68–77 %, on cucumbers – for 62–76 %, on peppers – for 66–68 %; grey rot infection on<br />

tomatoes – 67–73 %, on cucumbers – 74–77 %; fusarium wilt on tomatoes– 74–80 %<br />

and dry leaf spot on tomatoes – 68–73 %.<br />

275


• “Fitosinepium” activity limits mildew on tomatoes for 90–99 %, on cucumbers<br />

– 89–100 %; grey rot on tomatoes – for 96–98 %, on cucumbers – for 90–98 %;<br />

leaf mould on tomatoes – for 96–99 %, on cucumbers – 90–98 %; fusarium wilt on<br />

tomatoes – for 85–88 % and dry leaf spot on tomatoes – for 80–86 %.<br />

From the results of studies it can be concluded that many fungicides (“Fitoekols-<br />

IF”, “Fitosativum”, “Fitoarmoracium” and “Fitosinepium”) show considerable effectiveness<br />

in limitation of fungi caused infections on vegetable cultures in greenhouses,<br />

exceeding 80–95 %. At the same time studies were carried out with already approbated<br />

fungicides “Bordo”, “Mycostop” and “Timorex”, which showed that the<strong>ir</strong> effect doesn’t<br />

differ significantly from that of newly invented phytopreparations. In many cases new<br />

phytopreparation effect was even stronger for 12–20 %.<br />

Comparing effect of phytofungicides under field conditions it can be concluded<br />

that after the<strong>ir</strong> repeated usage during vegetative season in the majority of cases the<br />

development of disease and its further dispersal is completely stopped. The highest<br />

efficacy showed “Fitoekols-IF”, “Fitosativum” and “Fitocapsicum” (Table 5). Newly<br />

invented phytopreparation efficacy doesn’t differ significantly from already existent<br />

fungicides – “Bordo” and “Timorex”.<br />

Table 5. Fungicidal activity of phytopreparations limiting infections caused by<br />

fungi on vegetable cultures under field conditions<br />

5 lentelė. Fungicidinis fitopreparatų poveikis mažinant grybų sukeltas infekcijas daržovėse<br />

lauko sąlygomis<br />

Phytopreparations<br />

Fitopreparatai<br />

Technical effectiveness<br />

Techninis efektyvumas (%)<br />

Phoma Botrytis Olpidium Phoma Peronospora<br />

pisi deni<br />

P. schlei-<br />

P. brassicae<br />

lingam cinerea brassicae betae<br />

Fitoekols-IF 65–70 60–75 75–85 70–80 55–65 75–80 65–75<br />

Fitotabacum (df / s) 70–75 70–75 60–75 60–65 65–70 65–72 60–70<br />

Fitosinepium (df / s) 65–73 55–70 55–70 64–75 50–58 60–65 55–65<br />

Fitosativum (lf / sk) 70–88 85–90 70–82 72–78 62–70 60–73 56–70<br />

Fitoarmoracium (lf / sk) 70–77 75–80 72–78 63–70 65–78 62–70 55–65<br />

Fitosinepium (lf / sk) 55–75 62–68 65–75 50–65 57–70 63–68 58–65<br />

Fitocapsicum (lf / sk) 72–78 65–70 70–78 75–90 62–68 70–75 65–75<br />

Fitokrisanthemum (lf / sk) 50–65 55–60 65–70 58–65 50–58 53–58 60–75<br />

Bordo 70–75 65–70 70–85 65–75 60–75 65–75 55–70<br />

Timorex 55–68 60–75 58–65 68–72 58–65 60–65 50–65<br />

df – dry form; lf – liquid form / s – sausas; sk – skystas<br />

Improved form of “Fitoekols-IF” with good results can be applied fighting against<br />

fruit tree cancer (caused by N. galligena). Efficacy of preparation is 65–75 %. It should<br />

be pointed out that phytofungicide also for 70–85 % suppresses fern and lichen growing<br />

on fruit tree trunks.<br />

Study results suggest that phytofungicide can be applied to protect fruits and<br />

vegetables, multiplication material of decorative cultures (flower bulbs, tubers, etc.)<br />

from fungi caused infections during long-time storage (+5 °–+10 °C).<br />

276


Table 6. Phytofungicidal activity of phytopreparations limiting infections caused<br />

by fungi during long-time storage of vegetables, fruits and multiplication<br />

material<br />

6 lentelė. Fitofungicidinis fitopreparatų poveikis mažinant grybų sukeltas infekcijas ilgo<br />

daržovių, vaisių <strong>ir</strong> dauginimo medžiagos laikymo metu<br />

Phytopreparations<br />

Fitopreparatai<br />

Botrytis<br />

allii<br />

Technical effectiveness<br />

Techninis efektyvumas (%)<br />

Botrytis cinerea<br />

grey rot on cabbage<br />

kekerinis puvinys ant<br />

kopūstų<br />

Alternaria<br />

radicina<br />

Phoma<br />

rostrupii<br />

B. cinerea<br />

on carrot<br />

ant morkų<br />

Fitoekols-IF<br />

77.3 ± 2.5 75.0 ± 2.5 68.3 ± 2.4 77.8 ± 2.5 80.5 ± 2.7<br />

(improved form<br />

patobulintas)<br />

Fitotabacum (df / s) 60.0 ± 2.3 54.7 ± 3.1 53.3 ± 2.4 60.2 ± 1.9 65.5 ± 2.1<br />

Fitosinepium (df / s) 64.3 ± 2.7 59.2 ± 2.0 59.8 ± 1.7 65.5 ± 2.1 76.5 ± 2.5<br />

Fitosativum (lf / sk) 65.8 ± 2.6 71.5 ± 2.4 69.0 ± 3.2 74.8 ± 2.5 78.2 ± 2.8<br />

Fitocapsicum (lf / sk) 66.5 ± 2.1 60.2 ± 2.3 57.4 ± 1.7 67.8 ± 2.4 77.3 ± 3.0<br />

Fitoarmoracium (lf / sk) 61.7 ± 2.5 57.3 ± 1.8 55.8 ± 1.7 64.0 ± 2.1 63.2 ± 2.9<br />

Fitopelargonium (lf / sk) 55.0 ± 0.7 59.2 ± 2.4 58.5 ± 0.8 60.3 ± 2.0 61.2 ± 2.1<br />

Bordo (original 7.2 ± 2.1 70.3 ± 2.3 65.7 ± 2.0 68.81.6 80.0 ± 2.3<br />

originalus)<br />

df – dry form; lf – liquid form / s – sausas; sk – skystas<br />

Table 6 shows protective effect of seven phytofungicides to prevent rot infection<br />

development on different vegetables. The best effect (58–80 %) was reached using<br />

“Fitoekols-IF” (improved form), “Fitosativum” and “Fitocapsicum”. The effectiveness<br />

of other phytofungicides was lower – 50–70 %. “Bordo” activity didn’t differ significantly<br />

from that of newly invented preparations. Applying of preparations in liquid<br />

form is more time-consuming, because material needs drying after its treatment.<br />

Discussion. The philosophy of plant protection using plant extracts is to transfer<br />

organic substances from one plant to another and from one ecosystem to another to<br />

destroy and exchange the properties of habitual culture medium of pests and fungus.<br />

The transfer of organic substances between genetic distant kindred plants and<br />

distant ecosystems may be most effective. The method is more effective against pests<br />

and diseases with narrow habitual medium.<br />

Without exchange of the habitual culture phytopreparation layer, which covers<br />

plant leaf surface, makes it difficult for sucking insects to get to plant cell sap. Stickiness<br />

of preparation fixates pests to leaf surface, reduces the<strong>ir</strong> migration and paralyzes<br />

physiological processes – feeding, breathing, etc. That is why phytoinsecticides can<br />

be considered as contact-preparations, and at the same time – as antifeedants, which<br />

suppress insects feeding and multiplying instincts, as well as the<strong>ir</strong> dispersal in env<strong>ir</strong>onment.<br />

Fungicidal phytopreparations work owing to the<strong>ir</strong> specific properties – alkaline<br />

medium, stickiness, viscosity and others. Plant absorbs active substances and they<br />

277


join cell sap c<strong>ir</strong>culation system. Thus, phytofungicides work as systemic or intoxication<br />

preparations and at the same time as contact preparations. Fungal material gets<br />

suppressed by slowing down the development of spores. Laboratory examinations<br />

suggest that plant photosynthesis, humidity, a<strong>ir</strong> balance and other physiological processed<br />

are not affected significantly (Theander, 1982; Vyrodov et al., 1987; Zariņš<br />

and Daugavietis, 2002).<br />

The insecticidal and fungicidal activity of proposed phytopreparations is similar<br />

to the preparations elaborated in other countries on the basis of different plant extracts<br />

(Buver, 2003; Mares, Tosi et al., 2004; Micales, Han et al., 1994).<br />

Conclusions. Nine phytopreparations with insecticidal properties were worked<br />

out for limitation of pest insect population size on vegetable cultures and fruit trees<br />

both in field and greenhouses. The effectiveness of phytoinsecticides in greenhouses<br />

was 65–95 % depending on vegetable culture, preparation form quality of treatment<br />

and other factors.<br />

Phytopreparation effectiveness under field conditions was checked on ten pest<br />

species and it was 55–81 %.<br />

Activity of phytoinsecticide “Fitoekols-IF” (liquid and semi-liquid form) was<br />

defined on nine sucking insect species, which overwinter on fruit tree trunk and main<br />

branches. It was 40–78 %, depending on preparative form.<br />

Eight preparations were invented with fungicidal properties for limitation of fungi<br />

caused infections on vegetables and fruit trees. The<strong>ir</strong> effectiveness in greenhouses<br />

was 65–88 % (checked on 5 fungal infections); under field conditions it was 60–80 %<br />

(checked on 7 fungal infections).<br />

Protective effect of vegetables, fruits and multiplication material of decorative<br />

cultures from fungal infections in storage places for preparations “Fitoekols-IF”,<br />

“Fitosativum” and “Fitocapsicum” was 58–80 %, for phytofungicides “Fitotabacum”,<br />

“Fitosinepium”, “Fitoarmoracium” and “Fitopelargonium”, as well as for “Bordo”<br />

was a little lower – 50–70 %.<br />

Phytofungicide “Fitoekols-IF” (paste) supplied with different specific components<br />

can be successfully applied for limitation of tree cancer (approximately for 60–75<br />

%), as well for protection from solar radiation and growing of ferns and lichens on<br />

tree bark.<br />

All the invented preparations as active substances include extracts, which are<br />

received from wild or artificially cultivated plants and are supplied with different<br />

matrixes – cohesive substances, sticky substances, emulgators, etc. Phytopreparations<br />

are ecologically safe, do not leave negative effect on treated plants, the<strong>ir</strong> usage pays<br />

off and they are suitable for prophylactic treatment.<br />

Gauta 2009 06<br />

Parengta spausdinti 2009 08 13<br />

278


References<br />

1. Biever C. 2003. Herb extracts wrap up lethal food bugs. New Scientist,<br />

178(2 399): 26–27.<br />

2. Daugavietis M. 2001. Experience of pine and spruce needle” s extractive using<br />

for plants protections. In: Proceedings of the International Conference. Estonia,<br />

Tartu, 11–13.<br />

3. Daugavietis M. 2000 a. Non-wood, tree biomass – a raw material of coming century.<br />

In: Proceeding of World Congress “State of knowledge report for IUFRO<br />

XVI World Congress, 3 rd division”, Malaysia, 117–121.<br />

4. Daugavietis M. 2000 b. Tree biomass as raw material for active substance. In:<br />

Proceedings of International Conference “Wood-material for all times”. Poland.<br />

Rogovo. 93–97.<br />

5. Daugavietis M., Polis O., Korica A. 2002. Priede –augstvērtīgu bioloģiski aktīvu<br />

dabas vielu avots. LLU Raksti, 5: 59–67.<br />

6. Daugavietis, M., Polis, O., Korica, A. 2005. Egles vainaga biomasas izmantošanas<br />

iespējas. LLU Raksti, 14(309): 72–75.<br />

7. Mares D., Tosi B., Poli F., Andreotti E., Romagnoli C. 2004. Antifungal activity<br />

of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence<br />

on Pythium ultimum. Microbiology Research, 159(3): 295–304.<br />

8. Micales I. A., Han I. S., Davis I. L., Young R. A. 1994. Chemical composition<br />

and fungitoxic activities of pine cone extractives. Biodeterior, 4: 317–332.<br />

9. Theander Olof. 1982. Hydrophilic activities from the needles of Scots pine and<br />

Norwey spuce. Upsala, Sweden. Journal General Review Papperstidn, 85(9):<br />

64–68.<br />

10. Vyrodov V. A., Solodkaja G. F., Nikolaeva M. A., Sm<strong>ir</strong>nova L. D. 1987.<br />

Fungicidal properties of preparations extracted from pine and spruce with isoprophyl<br />

alcohol. (In Russian, from Ref. Zh., Khim. Abstract, 24–37).<br />

11. Zariņš I., Daugavietis M. 2002. The “Fitorododents-RF” – new env<strong>ir</strong>onmentally<br />

friendly repellent of animals in the garden and agrobiocenoses. In: Env<strong>ir</strong>onmental<br />

and Crop Production, 21–27.<br />

12. Zariņš, I., Daugavietis, M. 2002. The “Fitorododents-RF” – new env<strong>ir</strong>onmentally<br />

friendly repellent of animals in the garden and agrobiocenoses. In book:<br />

“Env<strong>ir</strong>onmental and Crop Production”, 21–27.<br />

13. Зариньш И. А. 2002. Эффективность некоторых новых биопрепаратов в<br />

защите растений. Защита растений, 6: 35–36.<br />

279


SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Augalų ekstraktų biologinis efektyvumas <strong>ir</strong> jų naudojimas kaip ekologiškai<br />

nekenksmingų biopesticidų<br />

I. Zarins, M. Daugavietis, J. Halimona<br />

Santrauka<br />

Augalų ekstraktų naudojimas, siekiant apsaugoti augalus nuo ligų, darosi vis svarbesnis.<br />

Šiame straipsnyje aprašyti įva<strong>ir</strong>ūs fitopreparatai, pagaminti iš gamtoje augančių <strong>ir</strong> sukultūrintų<br />

augalų ekstraktų. Fitopreparatų rinkinys susidėjo iš 9 naujų fitopreparatų su insekticidinėmis<br />

savybėmis <strong>ir</strong> 8 – su fungicidinėmis savybėmis. Fitopreparatai buvo paruošti sk<strong>ir</strong>tingų formų –<br />

skysti, pusiau skysti <strong>ir</strong> pastos pavidalo. Buvo patikrinti, ar yra ekologiškai nekenksmingi.<br />

Fungicidinės <strong>ir</strong> insekticidinės fitopreparatų savybės t<strong>ir</strong>tos laboratorijoje, eksperimentiniuose<br />

laukuose, šiltnamiuose <strong>ir</strong> ūkininko ūkyje. Eksperimentiniuose laukuose t<strong>ir</strong>tų preparatų<br />

efektyvumas buvo 55–81 %.<br />

Be to, insekticidinis “Fitoekols-IF” (skysto <strong>ir</strong> pastos pavidalo) poveikis buvo išbandytas<br />

su devynių rūšių vabzdžiais kekėjais ant vaismedžių žievės <strong>ir</strong> pagrindinių šakų. Šis poveikis<br />

siekė 40–78 %.<br />

Nauji fitofungicidai buvo naudoti, siekiant išvengti patogeninės grybinės infekcijos<br />

plitimo ant daržovių šiltnamiuose. Jų veiksmingumas laboratorijos sąlygomis buvo 65–88 %,<br />

laukuose – 60–80%.<br />

Ilgalaikio laikymo saugyklose metu vaisiai, daržovės <strong>ir</strong> sodinukai gali būti sėkmingai<br />

apsaugoti nuo patogeninės grybinės infekcijos pas<strong>ir</strong>inktais fitopreparatais, pvz., “Fitoekols-IF”,<br />

“Fitosativum”, <strong>ir</strong> “Fitocapsicum”. Apsaugos efektyvumas – 58–80 %.<br />

Reikšminiai žodžiai: augalų apsauga, augalų ekstraktai, bioinsekticidai, ekologija,<br />

fitofungicidai, fitoinsekticidai.<br />

<strong>28</strong>0


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. 2009. <strong>28</strong>(3).<br />

Detection and characterization of Cucumber mosaic<br />

v<strong>ir</strong>us isolated from sweet peppers<br />

Irena ZITIKAITĖ, Marija SAMUITIENĖ<br />

Institute of Botany, Žaliųjų Ežerų 49, LT-08406, Vilnius, Lithuania,<br />

e-mail: <strong>ir</strong>ena.zitikaite@botanika.lt; marija.samuitiene@botanika.lt<br />

Cucumber mosaic v<strong>ir</strong>us (CMV) causing v<strong>ir</strong>al diseases in forage, fruit, ornamental and<br />

vegetable crops worldwide has been isolated in Lithuania from sweet pepper (Capsicum annuum<br />

L.) plants exhibiting mottle-mosaic and distortion of leaves and fruits, and plant stunt<br />

symptoms. The plant material was collected in the private gardens of Vilnius, Kaišiadorys,<br />

Kėdainiai regions. The identification of CMV has been performed on the basis of determination<br />

of host range, symptom expression on the test plant species and morphological properties<br />

of the v<strong>ir</strong>us particles by the methods of test plants and transmission electron microscopy,<br />

and by using of specific oligonucleotide primers in reverse transcription-polymerase chain<br />

reaction (RT-PCR). In this work the primers designed on the basis of published sequences<br />

were applied for amplification of CMV RNA fragments in RT-PCRs using experimentally<br />

CMV infected host plants. The detection of CMV in inoculated test plants was conf<strong>ir</strong>med<br />

by RT-PCR technique. Analysis of PCR products in acrylamide gel electrophoresis revealed<br />

amplification of about 540 bp (base pa<strong>ir</strong>) fragments which were in agreement with size of the<br />

fragment expected from the sequence data.<br />

Key words: Cucumber mosaic v<strong>ir</strong>us, isolation, RT-PCR, sweet pepper.<br />

Introduction. Sweet pepper (Capsicum annuum L.) is now grown worldwide<br />

under various env<strong>ir</strong>omental and climatic conditions and is the second most important<br />

crop among solanaceous fruits. Observation showed that the production of this crop<br />

has been banned with v<strong>ir</strong>al infection. V<strong>ir</strong>al diseases are the major limiting factors for<br />

successful pepper cultivation in the world (Francki, 1979; Fujisawa et al., 1986; Florini,<br />

Zitter, 1987). V<strong>ir</strong>uses that may occur on peppers include Tobacco mosaic, Cucumber<br />

mosaic, Potato Y, Tomato spotted wilt, Alfalfa mosaic, Pepper mottle, Pepper<br />

veinal mottle, Pepper ringspot and others (Šutic et al., 1999; Hiskias et al., 1999; Buzkan<br />

et al., 2006; Ryu et al., 2009). In order of importance are Cucumber mosaic v<strong>ir</strong>us<br />

(CMV). It as a type species of Cucumov<strong>ir</strong>uses is reported to infect 1<strong>28</strong>7 plants species<br />

in 518 genera belonging to 100 families (Edwardson, Christie, 1997). It is geographically<br />

wide spread and has been reported in Europe, Australia, North America. It is one<br />

of the most important v<strong>ir</strong>us disease agent of pepper worldwide. It is transmitted by numerous<br />

species of aphid in a non-persistent manner (Francki et al., 1979; Kaper, Wa-<br />

<strong>28</strong>1


terworth. 1981). CMV is not transmitted through pepper seeds. It also has an extremely<br />

wide host range and causes fern leaf, stunting of pepper and malformation of fruits.<br />

Morphologically CMV has rather characteristic about 30 nm polyhedral particles<br />

with hollow center (Palukaitis et al., 1992). CMV particles contain about 18 % RNA.<br />

The v<strong>ir</strong>ions are not stable to freezing. Long-term storage of CMV is most reliable in<br />

the form of v<strong>ir</strong>al RNA, which is highly infectious, and very stable at -20 ° C (Foster,<br />

Taylor, 1998). Great number of different CMV strains and serogroups has been described<br />

(Kaper, Waterworth, 1981; Perry et al., 1993). In Lithuania, this v<strong>ir</strong>us spread<br />

on leguminous (Staniulis, 1994), ornamental (Navalinskienė, Samuitienė, 2006),<br />

cucumber and tomato (Zitikaitė, 2002; Zitikaitė et al., 2006) plants.<br />

The purpose of this work was to study properties of v<strong>ir</strong>us isolates extracted from<br />

sweet pepper samples and to identify the causal agent.<br />

Object, methods and conditions. Twelve leaf samples of cultivated sweet<br />

pepper were collected by visual screening of greenhouses and grown fields under<br />

plastic on presence of symptoms of v<strong>ir</strong>al etiology. Leaves showing disease symptoms<br />

were collected in plastic bags, kept at 4 °C, when triturated in 0.1 M sodium<br />

phosphate buffer at pH 7.0–7.1 and rubbed on 600 mesh carborundum dusted leaves<br />

of test plants for v<strong>ir</strong>us propagation. For investigation of v<strong>ir</strong>us host range and induced<br />

symptoms about twenty herbaceous plant species from families of Solanaceae<br />

Juss., Cucurbitaceae Juss., Aizoaceae Rudolphi, Chenopodiaceae Vent. were tested<br />

as indicator plants (Table) (Matthews, 1993). Copper grids were floated on drops<br />

of crude extract of v<strong>ir</strong>us infected plants for 1 to 2 minutes, rinsed with bidistilled<br />

water and subsequently stained with 3 % uranyl acetate. Grids were examined under<br />

a JEOL-100S transmission electron microscope (EM) (Dijkstra, de Jager, 1998).<br />

For detection of CMV isolated from sweet pepper plants by RT-PCR technique<br />

the frozen plant material was used. Nucleic acids of CMV were extracted using the<br />

small-scale procedure as proposed for extraction of nucleic acids from woody plants<br />

(Zhang et al., 1998) with slight modifications. Tissue samples of infected test-plants<br />

were ground in liquid nitrogen and transferred to microtubes. 600 µl 1 × STE buffer<br />

(0.1 M Na Cl, 0.001 M Tris, 0.001 EDTA, pH 6.9), 80 µl of 10 % SDS and and 800 µl<br />

of 2 × STE-saturated phenol was added to the powdered tissues. The mixture was<br />

centrifuged 5 min at 16 000 g. Aqueous phase was removed and transferred to a clean<br />

microfuge tube. Ethanol to a final concentration of 30 % was added, then ~ 10 mg<br />

cellulose (whatman CF-11). Cellulose CF-11 was washed by vortexing 3 times with<br />

1 ml of 1 × STE/30 % ethanol, collecting cellulose by centrifugation between washes<br />

and discarding supernatants. RNA from cellulose CF-11 was eluted by adding 200 µl<br />

of 1 × STE buffer, and centrifugation for 5 min. Supernatant was transferred to a clean<br />

tube. For precipitation of the RNA 40 µl of 3 M sodium acetate and 1 ml of ethanol was<br />

added. The tube was incubated at -20 °C for 2 h., centrifuged for 10 min at 16 000 g,<br />

and the pellet was incubated with 80 % of ethanol at -20 °C, and a<strong>ir</strong>-dried.<br />

Primer pa<strong>ir</strong> for CMV detection by RT-PCR was used: D, 5‘ – GCG CGA AAC<br />

AAG CTT CTT ATC – 3‘ (nt 633 to 653) and U, 5‘ – GTA GAC ATC TGT GAC GCG<br />

A – 3‘ (nt 114 to 132) (de Blass et al., 1994). Pellets of total RNA were resuspended in<br />

the solution containing 1 % RNAse inhibitor, 0.4 µM primer Reverse and PCR water<br />

<strong>28</strong>2


and incubated at 70 °C for 10 min. For the f<strong>ir</strong>st strand copy DNA synthesis the RNA<br />

pellet solutions to the mixture containing 5 × Reaction buffer, RNAse inhibitor, dNTP<br />

mixture and RevertAid TM M-MuLV Reverse Ttranscriptase (MBI Fermentas, Lithuania)<br />

were added. The f<strong>ir</strong>st strand cDNA synthesis was carried out at 37 °C for 60 min and<br />

70 °C for 10 min. DNA amplifications were performed in reaction mixtures containing<br />

PCR water, 10 mM dNTP mixture, both primers, 10 × PCR buffer with MgCl 2<br />

and recombinant Taq polymerase (MBI Fermentas) using Eppendorf Mastercycler<br />

Personal. PCRs were carried out for 40 cycles using the following parameters: 1 min<br />

at 94 °C (4 min for the f<strong>ir</strong>st cycle), 2 min at 55 °C and primers extension for 2 min<br />

(10 min in the final cycle) at 72 °C (Saiki et al., 1988). DNA fragment size standard<br />

was × 174DNA/BsuRI(HaeIII) digest (MBI Fermentas) (from top to bottom: 1 353,<br />

1 078, 872, 603, 310, <strong>28</strong>1, 271, 234, 194, 118, 72 bp). Resulting PCR products were<br />

analysed by electrophoresis through 5 % polyacrylamide gel, stained with etidium<br />

bromide (EB), and DNA bands were visualized under UV light.<br />

Results. Symptoms of naturally affected sweet pepper (C. annuum L.) plants<br />

vary widely. One of the most common expressions was a severely stunted. Plants<br />

have light green foliages. In some cases the leaves become narrow and no longer<br />

expand, while in other cases small necrotic spots with oak leaf patterns develop.<br />

Leaves were smaller than normal and mild mottled (Fig. 1). Older plants of sweet<br />

pepper show foliar mottling followed by diffuse chlorosis or no symptoms on foliage<br />

or fruit. Fruits of some sweet pepper were deformed and reduced in size and form.<br />

Fig. 1. Sweet pepper leaves affected with CMV<br />

1 pav. CMV pažeisti saldžiųjų paprikų lapai<br />

CMV infected practically all of 20 mechanically inoculated test plants in four isolates<br />

(Table). The pathogen caused vein brightening, mottling and various deformations<br />

of growing leaves of Nicotiana glutinosa L., N. rustica L. (Fig. 2). Systemic reaction<br />

in the form of growth disorder, mosaic or mottling and deformation of young leaves of<br />

infected N. tabacum L. ‘Samsun’ was also noticed. CMV infection developed the most<br />

<strong>28</strong>3


conspicuous symptoms on the leaves of Datura stramonium L. – diffusive changeable<br />

light and dark green areas (Fig. 3). In the leaves of test plant of Chenopodium L. genus<br />

a local reaction in the form white or chlorotic lesions was revealed (Fig. 4). Under<br />

the influence of CMV only local necrotic lesions appeared on the leaves of Nicandra<br />

physalodes (L.) Gaertn (Fig. 5). V<strong>ir</strong>us developed diffusive chlorotic spots, which later<br />

formed up a clear mosaic picture on the upper leaves of Cucumis sativus L.<br />

Numerous isometric particles with hollow center were commonly observed in leaf<br />

dip EM preparations of leaf samples of infected plants. They were about <strong>28</strong>–30 nm<br />

in diameter (Fig. 6).<br />

Fig. 2 / 2 pav. Nicotiana rustica (S)<br />

Fig. 3 / 3 pav. Datura stramonium (S)<br />

Fig. 4 / 4 pav. Chenopodium<br />

amaranticolor (chlLL)<br />

Fig. 5 / 5 pav. Nicandra<br />

physalodes (nLL)<br />

Table. Test plant reaction to CMV isolated from sweet peppers<br />

Lentelė. Augalų indikatorių reakcija į CMV, izoliuotą iš saldžiųjų paprikų<br />

V<strong>ir</strong>us isolates and symptoms<br />

Test plants<br />

Izoliatai <strong>ir</strong> simptomai<br />

Augalai indikatoriai<br />

9007 9707 0211 0413<br />

1 2 3 4 5<br />

Amaranthus caudatus<br />

Capsicum annuum ‘Kristal’,<br />

‘Podarok Moldovy’<br />

L: nLL S:<br />

Mo, Ma;<br />

S: Mo, Dis<br />

-<br />

S: VC, Cr;<br />

S: M, Mo<br />

0<br />

S: VC, Mo<br />

S: Mo, Dis<br />

L: nLL<br />

S: VC, Ru;<br />

S: VN, Cr<br />

<strong>28</strong>4


Table continued<br />

Lentelės tęsinys<br />

1 2 3 4 5<br />

- L: nLL L: nLL<br />

L: chlLL L: chlLL L: chlLL<br />

L: nLL 0<br />

L: nLL<br />

L: chlLL L: chlLL L: chlLL<br />

S: M, Ma S: VC, Ru, Mo S: VC, Mo<br />

S: M, chlMo S: VC, Cr S: yM<br />

L: nLL L: nLL L: nLL<br />

S: Mo, Dis S: Mo, Ru S: Mo, TW<br />

L: nLL L: nLL 0<br />

S: Mo S: VC, Dis S: Ru, St<br />

S: VC, M, Ru S: VC, Mo, Dis S: M, Ru<br />

S: VC, Cr 0<br />

S: Mo, Ru<br />

S: VC, Mo S: M, Mo S: Cr, Dis<br />

L: difSp; S: Epi S: chlSp S: difSp<br />

S: chlMo S: difMo S: M, Mo<br />

L: chlLL L: chlLL L: chlLL<br />

S: Mo S: Mo S: VC<br />

Celosia argentea f. сristata<br />

Chenopodium amaranticolor<br />

C. ambrosioides<br />

C. quinoa<br />

Cucumis sativus ‘Visconsin’<br />

Datura stramonium<br />

Gomphrena globosa<br />

Lupinus albus<br />

Nicandra physalodes<br />

Nicotiana debneyi<br />

N. glutinosa<br />

N. rustica<br />

N. tabacum ‘Xanthi’<br />

Phaseolus vulgaris ‘Bataaf’<br />

Pisum sativum ‘Žalsviai’<br />

Tetragonia expansa<br />

Vicia faba ‘Aušra’<br />

L: nLL<br />

L: chlLL<br />

L: nLL<br />

L: chlLL<br />

S: difMo<br />

S: M, Mo<br />

L: nLL<br />

-<br />

L: nLL<br />

S:VC, difMo<br />

S: M, Mo<br />

S: difMo<br />

S: VN, Mo<br />

S: VC, Mo<br />

S: chlMo<br />

L: chlLL<br />

S: Mo<br />

Abbreviations: L – local reaction, S – systemic reaction, nLL – necrotic local lesions, chlLL –<br />

chlorotic local lesions, whLL – white local lesions, M – mosaic, Mo – mottling, Ma – malformation,<br />

VC – vein clearing, VN – vein necrosis, Dis – distortion, dif – diffuse, Cr – crincling,<br />

Ru – rugosity, Epi – epinasty, TW – top wilting, y – yellow, Sp – spotting, St – stunt, 0 – no<br />

symptoms, ─ - not tested.<br />

Santrumpos: L – vietinė reakcija, S – sisteminė reakcija, nLL – nekrotinės vietinės žaizdos, chlLL – chlorotinės<br />

vietinės žaizdos, whLL – balkšvos vietinės žaizdos, M – mozaika, Mo – margumas, Ma – neišsivystęs,<br />

VC – gyslų išryškėjimas, VN – gyslų nekrozė, Dis – išsikraipymas, dif – išskydęs, Cr – garbanė,<br />

Ru – raukšlėtumas, Epi – išaugos, TW – v<strong>ir</strong>šūnės vytimas, y – geltonas, Sp – dėmėtumas, St – žemaūgė,<br />

0 – be simptomų, - – netestuota.<br />

Fig. 6. CMV particles<br />

6 pav. CMV dalelės<br />

<strong>28</strong>5


Fig. 7. DNA products amplified in PCRs from pepper infected by CMV:<br />

1 and 11 – DNA Ladder; 2 – healthy plant; 3 and 5 – CMV infected test plants;<br />

4 – control<br />

7 pav. PGR amplifikuoti DNR produktai iš CMV pažeistų paprikų: 1 <strong>ir</strong> 11 – DNR markeris;<br />

2 – sveikas augalas; 3 <strong>ir</strong> 5 – CMV užkrėsti augalai; 4 – kontrolė<br />

RT-PCR using specific primer pa<strong>ir</strong> for CMV detection primed amplification of<br />

about 540 bp DNA sequences from two CMV samples from refrigerated symptomatic<br />

D. stramonium and N. glutinosa plant tissues (Fig. 7). A sample of non-infected D. stramonium<br />

plant did not yield visible specific DNA band. Amplification was not observed<br />

in sample with negative control (PCR buffer and PCR water), too. The molecular<br />

investigation conf<strong>ir</strong>med that sweet pepper plants have been infected by the CMV.<br />

Discussion. The experimental host range and specific symptoms on all test plants<br />

indicated that the v<strong>ir</strong>us isolated from sweet pepper crop most closely correspond with<br />

the CMV (Francki et al., 1979). Based on particles size and morphology, the v<strong>ir</strong>us was<br />

considered to be a member of the Cucumov<strong>ir</strong>us genus (Kaper, Waterworth, 1981). RT-<br />

PCR data conf<strong>ir</strong>med identification obtained by investigation of the host range, symptomotology<br />

and v<strong>ir</strong>us morphology. RT-PCR product size of CMV isolates from sweet<br />

pepper showed identity with CMV isolates, identified in other plants in Lithuania.<br />

CMV is among the most economically damaging pathogens in cucurbits and other<br />

vegetable crops. Besides cucumber and pepper plants, CMV naturally affects tomato,<br />

parsley, celery, potato, pea, bean, lupine, clover, fruit and ornamental plants. Several<br />

aphids readily transmit CMV non-persistently in nature. Among more than 60 aphid<br />

species vectors, the most efficient are Myzus persicae Sulz., Aphis gossypii Glov.,<br />

A. craccivora Koch. and A. fabae Scop. The large population of aphis vectors is one<br />

reason for the widespread nature of CMV. CMV spreads through the sap of infected<br />

plants by leaf contact, through the seeds of 19 plant species and dodder (Francki et al.,<br />

1979; Brunt et al., 1996).<br />

<strong>28</strong>6


Conclusions. The v<strong>ir</strong>us disease agent detected in sweet peppers in Lithuania has<br />

been identified as a CMV by using of different v<strong>ir</strong>ological methods. Sweet pepper is<br />

a new natural host of CMV in Lithuania.<br />

Gauta 2009 06 30<br />

Parengta spausdinti 2009 07 20<br />

References<br />

1. Brunt A. A., Crabtree K., Dallwitz M. J., Gibbs A. J., Watson L. 1996. V<strong>ir</strong>uses of<br />

plants. Descriptions and Lists from VIDE Database. Cambridge.<br />

2. Buzkan N., Den<strong>ir</strong> M., Oztekin V., Mart C., Caglar B. K., Yilmaz M. A. 2006.<br />

Evaluation of the status of capsicum v<strong>ir</strong>uses in the main growing regions of<br />

Turke. Bulletin OEPP, 36(1): 15–19.<br />

3. De Blas C., Borja M. I., Saiz M., Romero J. 1994. Broad spectrum detection of<br />

cucumber mosaic v<strong>ir</strong>us (CMV) using the polymerase chain reaction. Journal of<br />

Phytopathology, 141: 323–329.<br />

4. Dijkstra J., de Jager C. P. 1998. Practical Plant V<strong>ir</strong>ology. Protocols and Exercises.<br />

Springer.<br />

5. Edwardson J. R., Christie R. G. 1987. V<strong>ir</strong>uses infecting forage legumes.<br />

Cucumov<strong>ir</strong>uses. Gainesville, University of Florida Press.<br />

6. Edwardson J. R., Christie R. G. 1997. V<strong>ir</strong>uses infecting peppers and other<br />

Solanaceous crops. Gainesville. University of Florida Press.<br />

7. Florini D. A., Zitter T. A. 1987. Cucumber mosaic v<strong>ir</strong>us (CMV) in peppers<br />

(Capsicum annuum L.) in New York and associeted yield losses. Phytopathology,<br />

77: 652.<br />

8. Forster G. D., Taylor S. C. 1998. Plant V<strong>ir</strong>ology Protocols from v<strong>ir</strong>us isolation<br />

to transgenic resistance. Methods in Molecular Biology. Totowa, New Jersey,<br />

81: 571.<br />

9. Francki R. I. B., Mossop D. W., Hatta T. 1979. Cucumber mosaic v<strong>ir</strong>us. CMI/<br />

AAB Descriptions of plant v<strong>ir</strong>uses.<br />

10. Fujisawa I., Hanada T., Saharan A. 1986. V<strong>ir</strong>us diseases occuring on some vegetable<br />

crops in Spain. Journal of Phytopathology, 125: 67–76.<br />

11. Hiskias Y., Lesemann D. E., Vetten H. J. 1999. Occurrence, distribution and relative<br />

importance of v<strong>ir</strong>uses infecting hot pepper and tomato in the major growing<br />

areas of Ethiopia. Journal of Phytopathology, 147: 5–11.<br />

12. Kaper J. M., Waterworth H. E. 1981. Cucumov<strong>ir</strong>uses. In: Kurstak E. (ed.)<br />

Handbook of plants v<strong>ir</strong>us infections. Elsevier/North Holland Biomedical Press,<br />

257–332.<br />

13. Matthews R. E. E. (ed.) 1993. Diagnosis of plant v<strong>ir</strong>us diseases. Boca Raton Ann<br />

Arbor London Tokyo, CRC Press.<br />

14. Navalinskienė M., Samuitienė M. 2006. Dekoratyvinių augalų v<strong>ir</strong>usinės ligos <strong>ir</strong><br />

jų sukėlėjai Lietuvoje. Lututė, Kaunas.<br />

<strong>28</strong>7


15. Palukaitis P., Roossinck M. J., Diecgen R. G., Francki R. I. B. 1992. Cucumber<br />

mosaic v<strong>ir</strong>us. Advances in V<strong>ir</strong>us Research, 41: <strong>28</strong>0–348.<br />

16. Perry K. L., Habili N., Dietzgen R. G. 1993. A varied population of cucumber<br />

mosaic v<strong>ir</strong>us from peppers. Plant Pathology, 42: 806–810.<br />

17. Ryu J. G., Ko S. J., Lee Y. H., Kim M. K., Kim K. H., Kim H. T., Choi H. S.<br />

2009. Incidence and distribution of v<strong>ir</strong>us diseases on paprika (Capsicum annuum<br />

var. grossum) in Jeonnam province of Korea. Plant Pathology Journal, 25(1):<br />

95–98.<br />

18. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T.,<br />

Mullis K. B., Erlich H. A. 1988. Primer-d<strong>ir</strong>ected enzymatic amplification of<br />

DNA with a thermostabile DNA polymerase. Science. 239: 487–491.<br />

19. Staniulis J. 1994. Ankštinių augalų v<strong>ir</strong>usinių <strong>ir</strong> geltos tipo ligų sukėlėjai Lietuvoje<br />

(Gamtos mokslų habilitacinis darbas). Vilnius.<br />

20. Šutic D. D., Ford R. E., Tošic M. T. 1999. Handbook of Plant V<strong>ir</strong>us diseases.<br />

New York. CRC Press.<br />

21. Zhang J. P., Uyemoto J. K., K<strong>ir</strong>kpatrick B. C. 1998. A small-scale procedure for<br />

extracting nucleic acids from woody plants infected with various phytopathogens<br />

for PCR assay. Journal of V<strong>ir</strong>ological Methods, 71: 45–50.<br />

22. Zitikaitė I. 2002. V<strong>ir</strong>oses of cucumber plants and identification of the<strong>ir</strong> agents.<br />

Biologija, 2: 42–46.<br />

23. Zitikaitė I., Survilienė E., Būtaitė G. 2006. Pomidorų (Lycopersicon esculentum<br />

Mill.) v<strong>ir</strong>usų diagnostika elektronomikroskopiniu <strong>ir</strong> molekuliniu metodais.<br />

Sodininkystė <strong>ir</strong> daržininkystė, 25(4): 230–239.<br />

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. <strong>28</strong>(3).<br />

Iš saldžiųjų paprikų izoliuoto agurkų mozaikos v<strong>ir</strong>uso<br />

nustatymas <strong>ir</strong> charakterizavimas<br />

I. Zitikaitė, M. Samuitienė<br />

Santrauka<br />

Pasaulyje pašarinius, vaisinius-uoginius, dekoratyvinius <strong>ir</strong> daržovinius augalus pažeidžiantis<br />

agurkų mozaikos v<strong>ir</strong>usas (Cucumber mosaic v<strong>ir</strong>us, CMV) buvo izoliuotas iš saldžiųjų<br />

paprikų (Capsicum annuum L.) Lietuvoje. Augalai buvo žemaūgiai, margai mozaikiškais <strong>ir</strong><br />

deformuotais lapais bei vaisiais. Tyrimams medžiaga surinkta privačiuose daržuose Vilniaus,<br />

Kaišiadorių, Kėdainių rajonuose. V<strong>ir</strong>usas identifikuotas pagal simptomų pas<strong>ir</strong>eiškimą augaluose<br />

indikatoriuose, pažeidžiamų augalų spektrą <strong>ir</strong> v<strong>ir</strong>ionų morfologiją, panaudojant augalų indikatorių,<br />

peršviečiamosios elektroninės mikroskopijos bei atv<strong>ir</strong>kštinės transkriptazės-polimerazės<br />

grandininės reakcijos (AT-PGR) testus. Nustatytas platus v<strong>ir</strong>uso pažeidžiamų augalų spektras.<br />

Labai specifinė simptomatika <strong>ir</strong> v<strong>ir</strong>ionų morfologija yra būdingi CMV. Šiame darbe pritaikius<br />

publikuotų nukleotidinių sekų pagrindu parinktą specifinių oligonukleotidų porą, elektroforezės<br />

akrilamidiniame gelyje išryškėję kopijinės DNR PGR produktų fragmentai (~ 540 bp<br />

dydžio) atitiko panaudotus pradmenis <strong>ir</strong> patv<strong>ir</strong>tino CMV saldžiosiose paprikose infekciją.<br />

Reikšminiai žodžiai: agurkų mozaikos v<strong>ir</strong>usas, AT-PGR, izoliavimas, saldžioji paprika.<br />

<strong>28</strong>8


ATMINTINĖ AUTORIAMS, RAŠANTIEMS<br />

Į MOKSLO DARBUS „SODININKYSTĖ IR DARŽININKYSTĖ“<br />

Straipsnio rankraščio pateikimo–priėmimo procedūra<br />

Straipsnius redakcijai gali pateikti bet kurie Lietuvos ar užsienio šalies mokslo<br />

darbuotojai bei asmenys, d<strong>ir</strong>bantys mokslinį darbą. Ne mokslo darbuotojo straipsnis<br />

turi būti parašytas kartu su mokslo darbuotoju.<br />

Rankraštis redakcijai siunčiamas paštu dviem egzemplioriais, atspausdintas<br />

kompiuteriu popieriuje, laikantis toliau tekste nurodytų reikalavimų. Pateiktas<br />

straipsnio rankraštis užregistruojamas <strong>ir</strong> perduodamas redaktorių kolegijos nariui,<br />

kuruojančiam šią sritį. Jis įvertina, ar rankraščio turinys <strong>ir</strong> forma atitinka<br />

svarbiausius periodiniams straipsniams keliamus reikalavimus. Rankraščiai, kurie<br />

buvo atmesti p<strong>ir</strong>mojo vertinimo metu, su aiškinamuoju raštu grąžinami autoriui.<br />

Jeigu straipsnio tinkamumas nekelia abejonių, redaktorių kolegijos narys sk<strong>ir</strong>ia<br />

du recenzentus.<br />

Pataisytą rankraštį autorius turi atsiųsti el. paštu arba paštu redakcijai kartu su<br />

elektronine laikmena (diskeliu arba kompaktiniu disku) per dešimt dienų.<br />

Struktūra <strong>ir</strong> apimtis<br />

Rankraščio reikalavimai<br />

Rankraščio forma turi atitikti periodiniams moksliniams straipsniams keliamus<br />

reikalavimus. Teksto <strong>ir</strong> jo sudedamųjų dalių seka tokia:<br />

– Straipsnio pavadinimas (ne daugiau kaip 10 žodžių)<br />

Pavadinimas rašomas mažosiomis raidėmis paryškintu šriftu (Augalų adaptacijos<br />

prie šalčio molekulinio mechanizmo aspektai).<br />

– Autoriaus vardas, pavardė<br />

Vardas, pavardė – mažosiomis raidėmis paryškintu šriftu (Vyktor Sharma).<br />

Jeigu yra keli autoriai, rašoma mažėjančia jų autorystės indėlio tvarka.<br />

– Institucija, adresas, elektroninis paštas<br />

Rašomi mažosiomis raidėmis kursyvu (Italic) (Lietuvos sodininkystės <strong>ir</strong><br />

daržininkystės institutas).<br />

Pagrindinis tekstas<br />

– Santrauka (iki 1 400 rašybos ženklų, arba 250 žodžių)<br />

Labai glaustai pateikiami tikslai, sąlygos, svarbiausi rezultatai.<br />

– Reikšminiai žodžiai (ne daugiau kaip 10)<br />

– Įvadas<br />

Trumpai išdėstoma nagrinėjama problema, ankstesni kitų panašių tyrimų<br />

rezultatai, darbo reikalingumas, originalumas. Nurodomas darbo tikslas.<br />

– Tyrimo objektas, metodai <strong>ir</strong> sąlygos<br />

<strong>28</strong>9


– Rezultatai<br />

Trumpai išdėstomi tyrimų metu surinkti duomenys, dokumentai (lentelės,<br />

grafikai).<br />

– Aptarimas<br />

Aptariami, bet ne kartojami „Rezultatų“ skyrelyje pateikti duomenys, palyginami<br />

su kitų autorių duomenimis, aiškinamos t<strong>ir</strong>tų reiškinių priežastys, keliamos<br />

naujos idėjos, hipotezės.<br />

– Išvados<br />

– Padėka (neprivaloma)<br />

– Literatūra<br />

Rekomenduojama į sąrašą įtraukti ne mažiau kaip 10 naujausių literatūros<br />

šaltinių rašoma tema.<br />

– Santrauka lietuvių <strong>ir</strong> anglų kalbomis (600–1 400 sp. ženklų)<br />

Straipsnių, kurie parašyti remiantis netradiciniais bandymų duomenimis <strong>ir</strong> jų<br />

rezultatais, struktūrinės teksto dalys gali būti <strong>ir</strong> kitokios.<br />

Straipsnis turi būti ne daugiau kaip 10 puslapių apimties kompiuteriu rinkto<br />

teksto, įskaitant lenteles <strong>ir</strong> paveikslus (didesnės apimties straipsniai derinami su<br />

redaktorių kolegijos p<strong>ir</strong>mininku).<br />

Teksto parengimas<br />

Straipsnis rašomas lietuvių <strong>ir</strong> anglų kalbomis <strong>ir</strong> spausdinamas Microsoft<br />

WORD teksto redaktoriumi Windows 2000, XP ar VISTA operacinėse sistemose.<br />

Tekstas rašomas Times New Roman 12 dydžio šriftu, A4 formato<br />

(210 × 297 mm) lape, atstumas tarp rankraščio eilučių – 1 (single), išlyginamas iš<br />

abiejų pusių. Paraščių plotis: v<strong>ir</strong>šuje – 2 cm, apačioje – 2 cm, dešinėje –1,5 cm,<br />

ka<strong>ir</strong>ėje – 3 cm. Straipsnis pateikiamas elektronine laikmena.<br />

Paryškintai (Bold) rašoma: straipsnio pavadinimas visomis kalbomis, antraštės<br />

bei svarbiausi struktūros elementai (įvadas, tyrimo objektas, metodai <strong>ir</strong> sąlygos,<br />

rezultatai, aptarimas, išvados, padėka, literatūra, santrauka). Kursyvu (Italic)<br />

rašomi lotyniškieji augalų rūšių, genčių, ligų, kenkėjų, mikroorganizmų <strong>ir</strong> kitų<br />

biologinių objektų pavadinimai. Augalų veislių pavadinimai rašomi viengubose<br />

kabutėse (pvz., ‘Auksis’).<br />

Cituojamas šaltinis tekste nurodomas lenktiniuose skliaustuose (autoriaus<br />

pavardė, metai).<br />

Lentelės<br />

Lentelėse neturi būti kartojama paveiksluose ar kitose iliustracijose pateikta<br />

informacija.<br />

Lentelių tekstas rašomas lietuvių <strong>ir</strong> anglų kalbomis Times New Roman<br />

12 dydžio šriftu, jeigu parašyti tekstai talpinami vienoje eilutėje, tarp jų dedamas<br />

ženklas /. Lentelės teksto dalys vertikaliomis <strong>ir</strong> horizontaliomis linijomis neatsk<strong>ir</strong>iamos.<br />

Horizontaliomis linijomis atsk<strong>ir</strong>iamos tik lentelės metrikos dalys <strong>ir</strong> lentelės<br />

pabaiga. Lentelės padėtis puslapyje tik vertikali (Portrait).<br />

290


Bandymų veiksnių gradacijos lentelėse neturi būti žymimos skaičiais, sudėtingomis<br />

santrumpomis, o pateikiamos visa arba suprantamai sutrumpinta aprašo<br />

forma. Pateikiama santrumpa turi būti paaiškinama p<strong>ir</strong>mosios lentelės (paveikslo)<br />

apraše.<br />

Statistiniai duomenys, skaičiai <strong>ir</strong> skaitmenys<br />

Pageidautina detaliai aprašyti taikytus tyrimų metodus <strong>ir</strong> nurodyti jų originalius<br />

šaltinius. Labai svarbi informacija apie lauko, vegetacinių <strong>ir</strong> kt. bandymų<br />

išdėstymo schemą <strong>ir</strong> jos pas<strong>ir</strong>inkimo motyvus. Lentelėse <strong>ir</strong> paveiksluose pateikiami<br />

duomenys privalo būti statistiškai įvertinti. Rodiklių žymėjimo santrumpos turi<br />

būti paaiškintos, jeigu jos neatitinka tarptautinių ISO standartų.<br />

Paveikslai<br />

Visa iliustracinė medžiaga – brėžiniai, grafikai, diagramos, fotografijos, piešiniai<br />

<strong>ir</strong> kt. – vadinami bendru paveikslų vardu. Tekstas juose rašomas lietuvių <strong>ir</strong><br />

anglų kalbomis.<br />

Paveikslai turi būti nespalvoti, padaryti Microsoft Office 2000, 2003, XP,<br />

VISTA paketų elektroninėje lentelėje EXCEL su suderintomis programomis <strong>ir</strong><br />

pradine informacija. Redakcija pasilieka teisę keisti jų formatą pagal straipsnio<br />

ar viso leidinio dizainą.<br />

Įrašai <strong>ir</strong> simboliai paveiksluose turi būti parašyti ne mažesniu kaip 10 dydžio<br />

TIMES NEW ROMAN šriftu. Paveikslų blokų dalys turi būti sužymėtos<br />

raidėmis a, b, c <strong>ir</strong> t. t.<br />

Literatūra<br />

1.<br />

2.<br />

Į literatūros sąrašą turi būti įtraukiamos tik mokslinės publikacijos.<br />

Citavimo pavyzdžiai:<br />

Vieno autoriaus knyga:<br />

Brazauskienė M. D. 2004. Agroekologija <strong>ir</strong> chemija. Naujasis lankas,<br />

Kaunas.<br />

Blažek J. 2001. Pìstujeme jablonì. Nakladatelství Brázda, s. r. o., Praha.<br />

Kelių autorių knyga:<br />

1.<br />

2.<br />

Kawecki Z., Łojko R., Pilarek B. 2007. Mało znane rośliny sadownicze.<br />

Wydawnictwo UWM, Olsztyn.<br />

Žemės <strong>ir</strong> miškų ūkio augalų pesticidų katalogas. 2005. G. Rimavičienė (sudaryt.).<br />

Lietuvos žemės ūkio konsultavimo tarnyba, Akademija, Kėdainių r.<br />

291


Straipsnis knygoje:<br />

1. Streif J. 1996. Optimum harvest date for different apple cultivar in the<br />

‘Bodensee’ area. In: A. de Jager, D. Johnson, E. Hohn (eds.), Determination and<br />

Prediction of Optimum Harvest Date of Apples and Pears. COST 94. European<br />

Commission. Luxembourg, 15–20.<br />

2. Byme D. H., Sherman W. B., Bacon T. A. 2000. Stone fruit genetic pool and<br />

its exploitation for growing under warm winter conditions. In: A. Erez (ed.),<br />

Temperature Fruit Crops in Warm Climates. Kluwer Academic Publishers,<br />

Netherlands, 157–230.<br />

3. Keller R. R. J. 2002. Cryopreservation of Allium sativum L. (Garlic). In:<br />

L. E. Towill, Y. P. S. Bajas (eds.), Biotechnology in Agriculture and Forestry.<br />

Springer-Verlag, Berlin, Heidelberg, 50: 38–47.<br />

1.<br />

1.<br />

1.<br />

2.<br />

Straipsnis konferencijos medžiagoje:<br />

Kampuss K., Strautina S. 2004. Evaluation of blackcurrant genetic resources<br />

for sustainable production. Proceedings of the International Workshop<br />

on Protection of Genetic Resources of Pomological Plants and Selection of<br />

Genitors with Traits Valuable for Sustainable Fruit Production. 22–25 August,<br />

Skierniewice, Poland, 147–158.<br />

Vieno autoriaus žurnalo straipsnis:<br />

Korban S. S. 1986. Interspecific hybridization in Malus. Hort. Science, 21(1):<br />

41–48.<br />

Žurnalo straipsnis (du <strong>ir</strong> daugiau autorių):<br />

Sasnauskas A., Gelvonauskienė D., Gelvonauskis B. 2002. Evaluation of<br />

new scab resistance apple in the f<strong>ir</strong>st-fifth years in orchard. Sodininkystė <strong>ir</strong><br />

daržininkystė, 21(3): 29–37.<br />

Balan V., Oprea M., Drosu S., Ch<strong>ir</strong>eceanu C., Tudor V., Petrisor C. 2006.<br />

Maintenance of biodiversity of apricot tree phenotypes in Romania. Acta<br />

Horticulturae, 701: 207–214.<br />

Straipsnis e. žurnale:<br />

1. Stanys V., Mažeikienė I., Stanienė G., Šikšnianas T. 2007. Effect of phytohormones<br />

and stratification on morphogenesis of Paeonia lactiflora Pall.<br />

isolated embryos. Biologija, 18(1). http://images.katalogas.lt/maleidykla/<br />

Bio71/Bio_027_030.pdf<br />

Duomenų bazė:<br />

FAO Stat Database. 2005. http://faostat.fao.org/faostat/<br />

Disertacijos santrauka:<br />

1. Čižauskas A. 2003. Valgomųjų svogūnų ( Allium cepa L.) auginimo iš sėklų<br />

technologijos elementų tyrimai: daktaro disert. santr. Babtai.<br />

292


GUIDELINES FOR THE PREPARATION AND SUBMISSION<br />

OF ARTICLES TO THE VOLUMES OF SCIENTIFIC WORKS<br />

“SODININKYSTĖ IR DARŽININKYSTĖ“<br />

Rules for Submission – Acceptance of Papers<br />

Papers can be contributed by any Lithuanian and foreign scientific workers<br />

and persons carrying out scientific research. The latter’s paper will be accepted<br />

only when the co-author is scientific worker.<br />

Manuscripts should be sent by mail typed on computer printed in two copies<br />

on paper taking in account following instructions. The manuscript will be registered<br />

and submitted to the member of the Editorial Board in charge. He (she) will<br />

evaluate if the contents and the form corresponds to the main requ<strong>ir</strong>ements for<br />

periodical articles. Manuscripts rejected during the f<strong>ir</strong>st evaluation will be returned<br />

to the author with explanatory remarks. If the article is approved the member of<br />

the Editorial Board appoints two reviewers.<br />

The author must return the corrected manuscript to the Editorial Board in ten<br />

days by e-mail or by mail in a diskette or CD.<br />

Requ<strong>ir</strong>ements to the manuscript<br />

Structure and length<br />

The form of a manuscript has to correspond to the requ<strong>ir</strong>ements for periodical<br />

scientific articles. The paper should be organized in the following order:<br />

– Title (should not exceed 10 words)<br />

Title should be written in small letters in bold (Aspects of plant color acclimation<br />

molecular mechanism).<br />

– Author(s)’ name, surname<br />

The name and surname should be written in small letters in bold. If there is<br />

more than one author they are listed according to the<strong>ir</strong> input to the paper.<br />

– Institution(s), address, email address<br />

Should be written in small letters in Italic (Lithuanian Institute of<br />

Horticulture).<br />

The main text<br />

– Abstract (should not exceed 1400 characters or 250 words)<br />

Should contain the statement of the aims, methods and main results in<br />

short.<br />

– Key words (should not exceed 10 words)<br />

– Introduction<br />

Should present the investigated subject, results of earlier related research,<br />

reasons of the study, innovation. Should indicate the aim of the investigation.<br />

293


– Object, methods and conditions<br />

– Results<br />

Should present concisely the collected data during investigation, documentation<br />

(tables, figures).<br />

– Discussion<br />

Should not repeat results presented in “Results” but should interpret them<br />

with reference to the results obtained by other authors, explain the reasons of the<br />

investigated phenomena and raise new ideas, hypotheses.<br />

– Conclusions<br />

– Acknowledgements (optional)<br />

– References<br />

Should be kept to a minimum of 10 latest references on this theme.<br />

– Summary in Lithuanian and English (600–1 400 characters)<br />

Articles written based on non-traditional trial data and the obtained results<br />

may have other than traditional structural parts of a paper.<br />

The article should not exceed 10 pages of computer text, tables and figures<br />

included (longer articles are agreed with the cha<strong>ir</strong>man of the Editorial Board).<br />

Text preparation<br />

The manuscripts should be submitted in Lithuanian and English, typed on a<br />

PC, used Microsoft WORD for Windows 2000 XP or VISTA word-processor<br />

format. The font to be typed – TIMES NEW ROMAN size 12, on A4 paper<br />

(210 × 297 mm), single spaced, justified. Margins: top – 2 cm, bottom – 2 cm,<br />

right – 1.5 cm, left – 3 cm. Article should be submitted in electronic carrier.<br />

In bold there are written the title of the paper in all languages, headings and all<br />

main structural elements (introduction, object, methods and conditions, results,<br />

discussion, conclusions, acknowledgements, references, abstract). In Italic there<br />

are written Latin names of species, genera, diseases, pests micro-organisms and<br />

other biological objects. Names of plant cultivars should be placed within single<br />

quotation marks (for example, ‘Auksis’).<br />

The quoted reference in the text is indicated in round brackets (author’s surname,<br />

year).<br />

Tables<br />

Information given in figures or other illustrations, should not be repeated in<br />

tables.<br />

Text in tables is written in Lithuanian and English languages. If Lithuanian<br />

and English texts are in one line they are separated by /. Do not use vertical and<br />

horizontal lines to separate parts of the text. A horizontal line separates only headings<br />

of columns and the end of the table. Orientation in a page only vertical<br />

(Portrait).<br />

Trial variants in tables should not be numbered or submitted in complicated<br />

abbreviations. Tables should be self explanatory, and if there are abbreviations,<br />

294


they should be understandable. The used abbreviation should be explained in the<br />

description of f<strong>ir</strong>st table (figure).<br />

Statistical data, figures, numerals<br />

It is des<strong>ir</strong>able to describe in detail the applied research methods and indicate<br />

the<strong>ir</strong> original references. The information on the scheme (design) of field,<br />

vegetative and other trials and motivation of the<strong>ir</strong> choice is very important. Data<br />

presented in tables and figures must be statistically processed. Abbreviations<br />

of parameters should be explained if they do not correspond to the international<br />

standard abbreviations (ISO).<br />

Figures<br />

All illustrations – drawings, graphs, diagrams, photographs, pictures, etc. are<br />

considered as figures. The text in them is written in Lithuanian and English.<br />

Figures must be drafted in black colour in Microsoft Office 2000, 2003, XP,<br />

VISTA package, EXCEL electronic table with conformed programs and initial<br />

information. Editorial Board has the right to change the<strong>ir</strong> format according to the<br />

design of the article or the whole publication.<br />

Letters and symbols in figures should be not smaller than size 10 TIMES<br />

NEW ROMAN. Block parts of figures should be numbered consecutively by<br />

letters a, b, c, etc.<br />

References<br />

Into references it may be included scientific publications.<br />

Titles of foreign journals, volumes of conference articles, etc., are not abbreviated.<br />

The reference list should be arranged in alphabetical order.<br />

Examples of quotation:<br />

Book of one author:<br />

1.<br />

2.<br />

1.<br />

2.<br />

Brazauskienė M. D. 2004. Agroekologija <strong>ir</strong> chemija. Naujasis lankas,<br />

Kaunas.<br />

Blažek J. 2001. Pìstujeme jablonì. Nakladatelství Brázda, s. r. o., Praha.<br />

Books of several authors:<br />

Kawecki Z., Łojko R., Pilarek B. 2007. Mało znane rośliny sadownicze.<br />

Wydawnictwo UWM, Olsztyn.<br />

Žemės <strong>ir</strong> miškų ūkio augalų pesticidų katalogas. 2005. G. Rimavičienė (sudaryt.).<br />

Lietuvos žemės ūkio konsultavimo tarnyba, Akademija, Kėdainių r.<br />

295


Article in book:<br />

1. Streif J. 1996. Optimum harvest date for different apple cultivar in the<br />

‘Bodensee’ area. In: A.de Jager, D. Johnson, E. Hohn (eds.), Determination<br />

and Prediction of Optimum Harvest Date of Apples and Pears. COST 94.<br />

European Commission. Luxembourg, 15–20.<br />

2. Byme D. H., Sherman W. B., Bacon T. A. 2000. Stone fruit genetic pool and<br />

its exploitation for growing under warm winter conditions. In: A. Erez (ed.),<br />

Temperature Fruit Crops in Warm Climates. Kluwer Academic Publishers,<br />

Netherlands, 157–230.<br />

3. Keller R. R. J. 2002. Cryopreservation of Allium sativum L. (Garlic). In:<br />

L. E. Towill, Y. P. S. Bajas (eds.), Biotechnology in Agriculture and Forestry.<br />

Springer-Verlag, Berlin, Heidelberg, 50: 38–47.<br />

Article in conference material:<br />

1.<br />

1.<br />

2.<br />

3.<br />

1.<br />

Kampuss K., Strautina S. 2004. Evaluation of blackcurrant genetic resources<br />

for sustainable production. Proceedings of the International Workshop<br />

on Protection of Genetic Resources of Pomological Plants and Selection of<br />

Genitors with Traits Valuable for Sustainable Fruit Production. 22–25 August,<br />

Skierniewice, Poland, 147–158.<br />

Article in scientific journal:<br />

Korban S. S. 1986. Interspecific hybridization in Malus. HortScience, 21(1):<br />

41–48.<br />

Sasnauskas A., Gelvonauskienė D., Gelvonauskis B. 2002. Evaluation of<br />

new scab resistance apple in the f<strong>ir</strong>st-fifth years in orchard. Sodininkystė <strong>ir</strong><br />

daržininkystė, 21(3): 29–37.<br />

Balan V., Oprea M., Drosu S., Ch<strong>ir</strong>eceanu C., Tudor V., Petrisor C. 2006.<br />

Maintenance of biodiversity of apricot tree phenotypes in Romania. Acta<br />

Horticulturae, 701: 207–214.<br />

Article in e. journal:<br />

Stanys V., Mažeikienė I., Stanienė G., Šikšnianas T. 2007. Effect of phytohormones<br />

and stratification on morphogenesis of Paeonia lactiflora Pall.<br />

isolated embryos. Biologija, 18(1). http://images.katalogas.lt/maleidykla/<br />

Bio71/Bio_027_030.pdf<br />

Database:<br />

FAO Stat Database. 2005. http://faostat.fao.org/faostat/<br />

Thesis abstract:<br />

Čižauskas A. 2003. Valgomųjų svogūnų (<br />

1. Allium cepa L.) auginimo iš sėklų<br />

technologijos elementų tyrimai: daktaro disert. santr. Babtai.<br />

296


Contents – Turinys<br />

V. Arnaudov, H. Kutinkova<br />

Controling pear psylla with Abamectin in Bulgaria....................................................3<br />

Kriaušių blakučių naikinimas Abamektinu Bulgarijoje..............................................9<br />

G. Bimsteine, L. Lepse, B. Bankina<br />

Possibilities of integrated management of onion downy mildew..............................11<br />

Svogūnų netikrosios miltligės integruotos kontrolės galimybės...............................17<br />

D. Bridžiuvienė, J. Repečkienė<br />

Interspecific relation peculiarities between soil and phytophatogenic fungi ........... 19<br />

D<strong>ir</strong>vožemio <strong>ir</strong> fitopatogeninių mikromicetų tarprūšinės sąveikos ypatumai............ <strong>28</strong><br />

O. Bundinienė<br />

Influence of boron fertilizer and meteorological conditions on red beet infection<br />

with scab and productivity ........................................................................................29<br />

Boro trąšų <strong>ir</strong> meteorologinių sąlygų įtaka burokėlių užsikrėtimui rauplėmis <strong>ir</strong><br />

derlingumui................................................................................................................40<br />

L. Duchovskienė, L. Raudonis, R. Karklelienė, R. Starkutė<br />

Toxicity of insecticides to predatory mite Phytoseuilus persimilis in cucumber...... 41<br />

Insekticidų toksiškumas grobuoniškoms erkėms Phytoseuilus persimilis agurkuose...<br />

...................................................................................................................................46<br />

L. Duchovskienė, E. Survilienė<br />

Effect of Abamectin on two-spotted spider mite and leaf miner flies in greenhouse<br />

cucumbers......................................................................................................47<br />

Abamektino poveikis paprastosioms voratinklinėms erkėms <strong>ir</strong> minamusėms<br />

šiltnamio agurkuose...................................................................................................56<br />

M. Eihe, R. Rancane, L. Vilka<br />

Different fungicide combinations against apple scab helping to avoid fungus<br />

resistance .................................................................................................................57<br />

Įva<strong>ir</strong>ūs fungicidų deriniai nuo obelų rauplių, padedantys išvengti rauplėgrybio<br />

atsparumo..................................................................................................................67


J. Jankauskienė, E. Survilienė<br />

Influence of growth regulators on seed germination energy and biometrical<br />

parameters of vegetables...........................................................................................69<br />

Augimo reguliatorių įtaka daržovių sėklų dygimo energijai <strong>ir</strong> daigų vystymuisi.........<br />

...................................................................................................................................77<br />

S. Jarmoliča, B. Bankina<br />

Powdery mildew of strawberries in Latvia under field conditions............................79<br />

Braškių netikroji miltligė Latvijoje lauko sąlygomis................................................83<br />

K. Jõgar, L. Metspalu, K. Hiiesaar, L. Loorits,<br />

A. Ploomi, A. Kuusik, A. Luik<br />

Influence of neemazal-T/S on Mamestra brassicae L.............................................85<br />

Nimazalio T/S poveikis Mamestra brassicae L........................................................92<br />

V. Kamardzina<br />

Sensitivity of Venturia inaequalis populations to krezoxym methyl.........................93<br />

Venturia inaequalis populiacijų jautrumas krezoksym metilui ..............................100<br />

D. Kavaliauskaitė<br />

Efficacy of herbicide Lentagran WP for control of annual dicotyledonous weeds in<br />

cabbage crop ...........................................................................................................101<br />

Herbicido Lentagran WP veiksmingumas kopūstų pasėlyje naikinant vienametes<br />

dviskiltes piktžoles .................................................................................................108<br />

D. Kviklys<br />

Tolerance of apple propagation material to herbicides ...........................................109<br />

Obelų dauginamosios medžiagos tolerantiškumas herbicidams ............................115<br />

N. Kviklienė, A. Valiuškaitė<br />

Influence of maturity stage on fruit quality during storage of ‘Shampion’ apples........<br />

.................................................................................................................................117<br />

Skynimo laiko įtaka ‘Šampion’ obuolių kokybei vaisiams nokstant <strong>ir</strong> juos laikant......<br />

.................................................................................................................................123<br />

V. Laugale, L. Lepse, L. Vilka, R. Rancāne<br />

Incidence of fruit rot on strawberries in Latvia, resistance of cultivars and impact<br />

of cultural systems .................................................................................................125<br />

Vaisių puvinio paplitimas ant braškių Latvijoje, veislių atsparumas <strong>ir</strong> kultūrinių<br />

sistemų įtaka............................................................................................................134


R. Mikaliūnaitė, M. Kazlauskas, L. Veriankaitė<br />

Prevalence peculiarities of a<strong>ir</strong>borne Alternaria genus spores in different areas<br />

of Lithuania.............................................................................................................135<br />

Ore plintančių Alternaria genties grybų sporų sklaidos ypatumai sk<strong>ir</strong>tingose<br />

Lietuvos vietovėse ..................................................................................................142<br />

L. B. Orlikowski, M. Ptaszek, A. Trzewik, T. Orlikowska<br />

Water as the source of Phytophthora spp. pathogens for horticultural plants...............<br />

.................................................................................................................................145<br />

Vanduo kaip sodo augalų ligų sukėlėjo Phytophthora spp. šaltinis........................151<br />

A. Ploomi, K. Jõgar, L. Metspalu, K. Hiiesaar,<br />

L. Loorits, I. Sibul, I. Kivimägi, A. Luik<br />

The toxicity of Neem to the snail Arianta arbustorum...........................................153<br />

Neem toksiškumas medsraigei Arianta arbustorum ..............................................158<br />

M. Ptaszek, L. B. Orlikowski, C. Skrzypczak<br />

New host plants for development of Phytophthora cryptogea in Poland...............159<br />

Nauji augalai Phytophthora cryptogea vystymuisi Lenkijoje.................................164<br />

N. Pūpola, L. Lepse, A. Kāle, I. Moročko-Bičevska<br />

Occurrence of RBDV in Latvia and v<strong>ir</strong>us elimination in vitro by chemotherapy.........<br />

.................................................................................................................................165<br />

Aviečių žemaūgiškumo v<strong>ir</strong>uso (RBDV) paplitimas Latvijoje <strong>ir</strong> v<strong>ir</strong>uso naikinimas<br />

in vitro chemoterapija..............................................................................................172<br />

L. Raudonis, A. Valiuškaitė, L. Duchovskienė, E. Survilienė<br />

Toxicity of biopesticides to green apple aphid in apple-tree...................................173<br />

Biopesticidų toksiškumas žaliesiems obeliniams amarams....................................179<br />

L. Raudonis, A. Valiuškaitė<br />

Integrated aproach of apple scab management using iMETOS warning system ...181<br />

Integruotas obelų rauplių valdymas naudojant iMETOS prognozavimo sistemą.........<br />

.................................................................................................................................191<br />

R. Rodeva, J. Gabler, Z. Stoyanova<br />

F<strong>ir</strong>st evidence of Itersonilia perplexans on dill (Anethum graveolens) in Bulgaria.....<br />

.................................................................................................................................193<br />

P<strong>ir</strong>mieji Itersonilia perplexans požymiai ant krapų (Anethum Graveolens)<br />

Bulgarijoje...............................................................................................................198


M. Samuitienė, M. Navalinskienė, S. Dapkūnienė<br />

Investigation of Tobacco rattle v<strong>ir</strong>us infection in peonies (Paeonia L.).................199<br />

Tabako garbanotosios dryžligės (Tobacco rattle v<strong>ir</strong>us, TRV) v<strong>ir</strong>uso infekcijos<br />

bijūnuose (Paeonia L.) tyrimas...............................................................................208<br />

A. Sasnauskas, D. Gelvonauskienė<br />

Evaluation of agronomical characters and resistance to fungal diseases of apple<br />

cultivars...................................................................................................................209<br />

Obelų veislių agronominių požymių <strong>ir</strong> atsparumo grybinėms ligoms tyrimas ........216<br />

R. Starkutė, L. Duchovskienė, V. Zalatorius<br />

Influence of preplant and vegetable crop rotation links on carrot yield and damage<br />

of pests ....................................................................................................................217<br />

Priešsėlių <strong>ir</strong> daržovių sėjomainos grandžių įtaka morkų derliui <strong>ir</strong> kenkėjų daromiems<br />

pažeidimams ...........................................................................................................224<br />

E. Survilienė, A. Valiuškaitė, V. Snieškienė, A. Stankevičienė<br />

Effect of essential oils on fungi isolated from apples and vegetables.....................227<br />

Eterinių aliejų poveikis grybams, išsk<strong>ir</strong>tiems iš obuolių <strong>ir</strong> daržovių......................234<br />

E. Survilienė, L. Raudonis, J. Jankauskienė<br />

Investigation of pesticides effect on pollination of bumblebees in greenhouse<br />

tomatoes...................................................................................................................235<br />

Pesticidų poveikio kamanių entomofilijai šiltnamio pomidoruose tyrimas............241<br />

A. T. Wojdyła<br />

Effictiveness of Olejan 85 EC against chrysanthemum and willow rust.................243<br />

Olejan 85 EC veiksmingumas kontroliuojant chrizantemų <strong>ir</strong> gluosnių rūdis ........248<br />

A. Yankouskaya<br />

Application of biological insecticide Pecilomicine-B for greenhouse pest control .....249<br />

Biologinio insekticido Pecilomicine-B poveikis šiltnamio kenkėjams .................258<br />

S. Yarchakovskaya, N. Kaltun<br />

Optimization of time and expediency of Incurvaria capitella Cl. number<br />

regulation.................................................................................................................259<br />

Incurvaria capitella Cl. kontroliavimo laiko <strong>ir</strong> tikslingumo optimizavimas .........268


I. Zarins, M. Daugavietis, J. Halimona<br />

Biological activity of plant extracts and the<strong>ir</strong> application as ecologically harmless<br />

biopesticide..............................................................................................................269<br />

Augalų ekstraktų biologinis efektyvumas <strong>ir</strong> jų naudojimas kaip ekologiškai nekenksmingų<br />

biopesticidų..................................................................................................<strong>28</strong>0<br />

I. Zitikaitė, M. Samuitienė<br />

Detection and characterization of Cucumber mosaic v<strong>ir</strong>us isolated from sweet<br />

peppers.....................................................................................................................<strong>28</strong>1<br />

Iš saldžiųjų paprikų izoliuoto agurkų mozaikos v<strong>ir</strong>uso nustatymas <strong>ir</strong> charakterizavimas....................................................................................................................<strong>28</strong>8<br />

Atmintinė autoriams rašantiems į Mokslo darbus „Sodininkystė <strong>ir</strong> daržininkystė“ .....<br />

.................................................................................................................................<strong>28</strong>9<br />

Guidelines for the preparation and submission of articles to the volumes of scentific<br />

works “Sodininkystė <strong>ir</strong> daržininkystė”....................................................................293


ISSN 0236-4212<br />

Mokslinis leidinys<br />

Lietuvos sodininkystės <strong>ir</strong> daržininkystės instituto <strong>ir</strong><br />

Lietuvos žemės ūkio universiteto mokslo darbai<br />

Sodininkystė <strong>ir</strong> daržininkystė. T. <strong>28</strong>(3). 1–304.<br />

Redagavo <strong>ir</strong> skaitė korektūrą Jolanta Kriūnienė<br />

Kompiuteriu maketavo Larisa Kazlauskienė<br />

SL 1070. 2009 08 27 19 sp. l. T<strong>ir</strong>ažas 200 egz.<br />

Išleido Lietuvos sodininkystės <strong>ir</strong> daržininkystės institutas,<br />

LT-54333 Babtai, Kauno r.<br />

Spausdino UAB „Spaudos brokeris“ Vytauto pr. 27,<br />

LT-44352 Kaunas<br />

Užsakymo Nr. 9184

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!