Similarity Transformations in Fluid Mechanics

Similarity Transformations in Fluid Mechanics Similarity Transformations in Fluid Mechanics

<strong>Fluid</strong> <strong>Mechanics</strong> General<br />

Perspective and Application<br />

Department of Mathematics<br />

COMSATS Institute of Information Technology<br />

Islamabad Pakistan


• Archimedes(287-217 B.C.) observed float<strong>in</strong>g objects<br />

on water and reasoned out the pr<strong>in</strong>ciple of bouncy.<br />

• Da V<strong>in</strong>ci(1452-1519) built the first chamber canal lock.<br />

• Castelli(1577-1644) stated the cont<strong>in</strong>uity pr<strong>in</strong>ciple for<br />

the river flow.<br />

• Torricelli(1608-1647) perfected the barometer.<br />

• Pascal(1623-1662) discover the scalar nature of<br />

pressure<br />

• Newton(1642-1727) developed the resistance law.<br />

• Bernoulli(1700-1782)developed developed energy<br />

equation for <strong>in</strong>viscid fluids


Physical science deal<strong>in</strong>g with the action of fluids at rest (fluid<br />

statics) or <strong>in</strong> motion (fluid dynamics), and their <strong>in</strong>teraction with<br />

flow devices and applications <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

The subject branches out <strong>in</strong>to sub-discipl<strong>in</strong>es such as:<br />

Aeronautics/Astronautics: Aircraft and missile aerodynamics,<br />

control hydraulics, gas-bear<strong>in</strong>g gyros, propeller, turbojet and<br />

rocket, satellites and cool<strong>in</strong>g system.<br />

Civil eng<strong>in</strong>eer<strong>in</strong>g: Pipe and channel flows, surface and ground<br />

water hydrology, w<strong>in</strong>d and water structure loads, lake and<br />

harbor tides, coastl<strong>in</strong>e flows, sediment transport, river flood<strong>in</strong>g<br />

and meander<strong>in</strong>g and water and water-water treatment.<br />

Physics: Magneto hydrodynamics, fusion devices, cryogenics<br />

and superconductivity.<br />

Astrophysics: Star and galaxy formation, and evolution,<br />

<strong>in</strong>terstellar gas dynamics, solar w<strong>in</strong>d and comet tails.


Mathematics: Solution of differential equations,<br />

boundary conditions, nonl<strong>in</strong>ear differential equations,<br />

dynamic analogies and computational fluid dynamics.<br />

Mechanical/ Nuclear eng<strong>in</strong>eer<strong>in</strong>g: Pumps and<br />

compressor, impulse and reaction turb<strong>in</strong>es, bear<strong>in</strong>g<br />

lubrication, heat exchangers, process control, fluid<br />

controls, cool<strong>in</strong>g system, electrochemical devices,<br />

Two-Phase flows and heat<strong>in</strong>g ventilation and air<br />

condition<strong>in</strong>g.<br />

Chemical, Petroleum eng<strong>in</strong>eer<strong>in</strong>g: Material transport,<br />

filter<strong>in</strong>g, heat transfer, mix<strong>in</strong>g and multiphase flow.<br />

Biophysics: Blood flow, artificial organs, breath<strong>in</strong>g<br />

aids, heart-lung mach<strong>in</strong>es, and artificial hearts, cellular<br />

mass transport, heat transfer, locomotion.<br />

Geophysics: Meteorology, oceanography, upper<br />

atmosphere, space, planetary atmospheres,<br />

geomagnetism, cont<strong>in</strong>ental drift, mantel convection<br />

and Glacier flows.


• Aerodynamics: deals with the motion of air and other<br />

gases, and their <strong>in</strong>teractions with bodies <strong>in</strong> motion<br />

such as lift and drag.<br />

• Hydraulics: application of fluid mechanics to<br />

eng<strong>in</strong>eer<strong>in</strong>g devices <strong>in</strong>volv<strong>in</strong>g liquids such as flow<br />

through pipes, weir and dam design<br />

• Geophysical fluid dynamics: fluid phenomena<br />

associated with the dynamics of the atmosphere and<br />

the oceans such as hurricane and weather systems<br />

• Bio-fluid mechanics: fluid mechanics <strong>in</strong>volved <strong>in</strong><br />

biophysical processes such as blood flow <strong>in</strong> arteries,<br />

and many others<br />

• Astrophysical <strong>Fluid</strong> Dynamics :the fluid mechanics<br />

of the sun, stars and other astrophysical objects


The mass of a fluid <strong>in</strong> a control volume rema<strong>in</strong>s<br />

conserved. This fact leads to establish a relation<br />

between the fluid density and fluid velocity at any<br />

po<strong>in</strong>t. Mathematical form of this relation is called<br />

equation of cont<strong>in</strong>uity<br />

Dρ<br />

∂ρ<br />

+ ρdiv( V ) = 0 or + div( ρV<br />

) = 0<br />

Dt<br />

∂t<br />

ρ<br />

If the density ( ) is constant (<strong>in</strong>compressible flow), Eq.<br />

(1) reduce to the simple equation:<br />

(1)<br />

divV = 0 (2)


The well known Navier-Stokes equations<br />

(momentum Equation) for unsteady, <strong>in</strong>compressible<br />

viscous fluid <strong>in</strong> rectangular coord<strong>in</strong>ate system are<br />

given by<br />

∂ ∂ ∂ ∂ ⎛∂ ∂<br />

+ u + v = − + ν ⎜ +<br />

∂t ∂x ∂y ρ ∂x ⎝∂x ∂y<br />

2 2<br />

u u u 1 p u u<br />

2 2<br />

∂ ∂ ∂ ∂ ⎛∂ ∂<br />

+ u + v =− + ν ⎜ +<br />

∂t ∂x ∂y ρ ∂x ⎝∂x ∂y<br />

2 2<br />

v v v 1 p v v<br />

D<br />

Dt<br />

2 2<br />

where is the material time derivative, ρ is the<br />

density, p is pressure, µ is the viscosity of fluid, g is<br />

acceleration due to gravity and v is the velocity vector.<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

(3)<br />

(4)


( uvw , , )andT<br />

If are velocity components and the<br />

temperature of the fluid respectively, then the energy<br />

equation is given by:<br />

Φ<br />

DT<br />

Dt<br />

2<br />

= α∇ + Φ<br />

where is the dissipation function and is thermal<br />

diffusivity of the fluid.<br />

Φ =<br />

∂ ∂<br />

τ μ δ λ λ μ<br />

u u<br />

' = (<br />

i<br />

+<br />

i) + div v where 3 +2 =0<br />

ij<br />

ij<br />

∂x<br />

∂x<br />

(7)<br />

j<br />

j<br />

τ<br />

T<br />

'<br />

ij<br />

∂<br />

∂<br />

u<br />

x<br />

α<br />

i<br />

j<br />

(5)<br />

(6)


• Model<strong>in</strong>g of pulsat<strong>in</strong>g diaphragms<br />

• Sweet cool<strong>in</strong>g or heat<strong>in</strong>g<br />

• Isotope separation<br />

• Filtration<br />

• Paper manufactur<strong>in</strong>g<br />

• Irrigation<br />

• Gra<strong>in</strong> regression dur<strong>in</strong>g solid propellant<br />

combustion


Diagram of a simple<br />

filtration<br />

Filtration process <strong>in</strong><br />

kidneys


Cross-flow Microfiltration (MF) is a low pressure process for<br />

separation of larger size solutes from aqueous solutions us<strong>in</strong>g a<br />

semi-permeable membrane. This process is carried out by hav<strong>in</strong>g a<br />

process solution flow along a membrane surface under pressure.<br />

Particulate matter circulates through the membrane tube, clean<strong>in</strong>g the<br />

membrane tube surface while filtrate flows through the membrane


The channel has a width <strong>in</strong> the y-direction of h, a length<br />

<strong>in</strong> the z-direction of l, and a length <strong>in</strong> the x-direction,<br />

the direction of flow. There is a pressure drop along<br />

the length of the channel, so that the pressure<br />

gradient is constant<br />

From the cont<strong>in</strong>uity equation we have<br />

u=<br />

u( y)<br />

And the momentum equation takes the follow<strong>in</strong>g form<br />

2<br />

1 dp ⎛ d u ⎞<br />

0 = − + ν ⎜ ,<br />

2 ⎟<br />

ρ dx ⎝ dy ⎠<br />

u = at y = and y = h<br />

The boundary conditions are: 0 0<br />

(9)


y-axis<br />

a<br />

Porous wall<br />

y=a<br />

Geometry<br />

x-axis<br />

Porous wall<br />

y=-a<br />

A channel of rectangular cross section, one side of the<br />

cross section, represent<strong>in</strong>g the distance between the<br />

porous walls, is taken to be much smaller than the other.<br />

Both channel walls are taken to have equal permeability.<br />

Furthermore he considered steady state,<br />

<strong>in</strong>compressible, lam<strong>in</strong>ar, no external forces on the fluid<br />

and the suction/<strong>in</strong>jection velocity is <strong>in</strong>dependent of<br />

position.


Under the above assumptions the cont<strong>in</strong>uity and<br />

momentum equations reduce to the follow<strong>in</strong>g form<br />

∂u<br />

∂x<br />

∂v<br />

+ =<br />

∂y<br />

0,<br />

∂ ∂ ∂ ⎛∂ ∂<br />

u<br />

∂x ∂y ρ ∂x ⎝∂x ∂y<br />

2 2<br />

u u 1 p u u<br />

+ v =− + ν ⎜ +<br />

2 2<br />

∂ ∂ ∂ ⎛∂ ∂<br />

u<br />

∂x ∂y ρ ∂y ⎝∂x ∂y<br />

The appropriate boundary conditions are<br />

2 2<br />

v v 1 p v v<br />

+ v =− + ν ⎜ +<br />

2 2<br />

⎞<br />

⎟,<br />

⎠<br />

⎞<br />

⎟,<br />

⎠<br />

(10)<br />

(11)<br />

(12)<br />

uxy ( , ) = 0, vxy ( , ) = vw<br />

at y=± a,<br />

(13)<br />

∂ u = 0, v = 0 at y = 0,<br />

∂ y<br />

(14)<br />

u=0 at x=0. (15)


Let us consider the two-dimensional, unsteady,<br />

<strong>in</strong>compressible viscous fluid <strong>in</strong> an elongated<br />

rectangular channel bounded by two porous walls.<br />

The mass and momentum equations give<br />

∂u<br />

∂x<br />

∂v<br />

+ =0,<br />

∂y<br />

∂ ∂ ∂ ∂ ⎛∂ ∂<br />

⎜<br />

∂t ∂x ∂y ρ ∂x ⎝∂x ∂y<br />

2 2<br />

u u u 1 p u u<br />

+ u + v =− + ν +<br />

2 2<br />

2 2<br />

∂v ∂v ∂v 1 ∂p ⎛∂ v ∂ v⎞<br />

+ u + v =− + ν ⎜ + ,<br />

2 2 ⎟<br />

∂t ∂x ∂y ρ ∂y ⎝∂x ∂y<br />

⎠<br />

The appropriate boundary conditions are<br />

⎞<br />

⎟,<br />

⎠<br />

(16)<br />

(17)<br />

(18)<br />

u=0, v=-v<br />

w<br />

at y=a(t), (19)


∂ u = 0, v = 0 at y = 0,<br />

∂y<br />

u<br />

= 0 at x = 0. (20)<br />

y-axis<br />

Porous wall<br />

a(t)<br />

X-axis<br />

Porous wall<br />

y=a(t)<br />

y=a(t)<br />

Geometry of the bulk fluid motion


The govern<strong>in</strong>g equations are<br />

∂u<br />

∂x<br />

∂v<br />

+ =0,<br />

∂y<br />

∂ ∂ ∂ ∂ ⎛∂ ∂<br />

∂ ∂ ∂ ∂ ⎝∂ ∂<br />

2 2<br />

u u u 1 p u u νεu<br />

+ u + v =− + ν ⎜ +<br />

2 2⎟−<br />

t x y ρ x x y k<br />

∂ ∂ ∂ ∂ ⎛∂ ∂<br />

∂ ∂ ∂ ∂ ⎝∂ ∂<br />

2 2<br />

v v v 1 p v v νεv<br />

+ u + v =− + ν ⎜ +<br />

2 2 ⎟−<br />

t x y ρ y x y k<br />

Where ɛ is the porosity and k is the permeability.<br />

The appropriate boundary conditions are<br />

u=0,<br />

v=-v at y=a(t),<br />

w<br />

∂ u = 0, v = 0 at y = 0,<br />

∂y<br />

⎞<br />

⎠<br />

⎞<br />

⎠<br />

,<br />

,<br />

(21)<br />

(22)<br />

(23)<br />

(24)


References<br />

1. Exact solutions us<strong>in</strong>g symmetry methods and conservation laws for the<br />

viscous flow through expand<strong>in</strong>g–contract<strong>in</strong>g channels.<br />

S. Asghar, M. Mushtaq, A.H. Kara<br />

Applied Mathematical Modell<strong>in</strong>g,Volume 32, Issue 12, 2008.<br />

2. Application of Homotopy perturbation method to deformable channel<br />

with wall suction and <strong>in</strong>jection <strong>in</strong> a porous medium.<br />

M. Mahmood, M. A. Hussa<strong>in</strong>, S. Asgar, T. Hayat<br />

International Journal of Nonl<strong>in</strong>ear Sciences and Numerical Simulation.<br />

3. Application of Homotopy perturbation method to deformable channel with<br />

wall suction and <strong>in</strong>jection <strong>in</strong> a porous medium.<br />

M. Mahmood, M. A. Hussa<strong>in</strong>, S. Asgar, T. Hayat<br />

International Journal of Nonl<strong>in</strong>ear Sciences and Numerical Simulation.


• The flow of ur<strong>in</strong>e from the kidneys <strong>in</strong>to the<br />

bladder through tubular organs<br />

• Bile from the gallbladder <strong>in</strong>to the duodenum<br />

• Peristalsis pushes <strong>in</strong>gested food through the<br />

digestive tract towards its release at the<br />

anus<br />

• Worms propel themselves through peristaltic<br />

movement<br />

• Spermatic flow is also due to the peristalsis<br />

motion<br />

• Peristaltic pump


Bolus move <strong>in</strong>to the<br />

esophagus<br />

360 Degree Peristaltic Pump


The equations that govern the flow are the<br />

cont<strong>in</strong>uity equation and Navier Stokes equations<br />

The wall motion is described by:<br />

2<br />

hxt ( , ) = a+ bs<strong>in</strong> π ( x−ct)<br />

λ<br />

(25)<br />

b<br />

λ<br />

Coord<strong>in</strong>ate system and the channel under consideration


The govern<strong>in</strong>g equations are the cont<strong>in</strong>uity equation<br />

and Navier Stokes equations<br />

The wall motion is described by:<br />

2<br />

hxt ( , ) = at ( ) + bs<strong>in</strong> π ( x−ct)<br />

λ<br />

where the distance between the walls is chang<strong>in</strong>g <strong>in</strong> (26)<br />

time<br />

b<br />

λ<br />

Coord<strong>in</strong>ate system and the channel under consideration


References<br />

1. Peristaltic flow <strong>in</strong> a deformable channel.<br />

D. N. Khan Marwat, S. Asghar<br />

2. Application of Homotopy perturbation method to deformable<br />

channel with wall suction and <strong>in</strong>jection <strong>in</strong> a porous medium.<br />

M. Mahmood, M. A. Hussa<strong>in</strong>, S. Asgar, T. Hayat<br />

International Journal of Nonl<strong>in</strong>ear Sciences and Numerical<br />

Simulation.<br />

3. Application of Homotopy perturbation method to deformable<br />

channel with wall suction and <strong>in</strong>jection <strong>in</strong> a porous medium.<br />

M. Mahmood, M. A. Hussa<strong>in</strong>, S. Asgar, T. Hayat<br />

International Journal of Nonl<strong>in</strong>ear Sciences and Numerical<br />

Simulation.


• A cont<strong>in</strong>uously mov<strong>in</strong>g surface through a<br />

quiescent medium:<br />

• Hot roll<strong>in</strong>g, wire draw<strong>in</strong>g, sp<strong>in</strong>n<strong>in</strong>g of laments,<br />

metal extrusion, crystal grow<strong>in</strong>g, cont<strong>in</strong>uous<br />

cast<strong>in</strong>g, glass fiber production, and paper<br />

production.<br />

• The flow over a cont<strong>in</strong>uous material mov<strong>in</strong>g<br />

through a quiescent fluid is <strong>in</strong>duced by the<br />

movement of the solid material and by thermal<br />

buoyancy.<br />

• Cool<strong>in</strong>g of electronic devices


Cool<strong>in</strong>g of electronic devices<br />

CPU heat s<strong>in</strong>k with fan<br />

attached<br />

Radial isotherm and swirl<strong>in</strong>g<br />

forced convection flow<br />

trajectories


Mixed convection flow along a vertical<br />

stretch<strong>in</strong>g plate with variable plate<br />

temperature<br />

x<br />

Mixed convection flow<br />

along a heated<br />

cont<strong>in</strong>uously mov<strong>in</strong>g<br />

surface subject to nonuniform<br />

surface<br />

temperature assum<strong>in</strong>g<br />

that the surface velocity<br />

is u 0 x and the wall<br />

temperature is T 0 x 2 .<br />

u=U(x)<br />

v =0<br />

T w<br />

O<br />

u<br />

g<br />

v<br />

δ T<br />

T ∞<br />

δ<br />

u=0<br />

y


Boundary-layer equations<br />

Mak<strong>in</strong>g the usual boundary-layer approximations<br />

∂<br />

∂<br />

u<br />

x<br />

∂v<br />

+ =<br />

∂y<br />

0<br />

2<br />

u u u<br />

∂ ∂ ∂<br />

u + v = ν + g β ( T − T )<br />

2<br />

∞<br />

∂x ∂y ∂ y<br />

u<br />

2 2 3<br />

⎡ ∂ ⎛ ∂ u ⎞ ∂u ∂ v ∂ u<br />

+ K ⎢ ⎜ u<br />

2 ⎟ + + v<br />

2 3<br />

⎣ ∂x<br />

⎝ ∂y ⎠ ∂y<br />

∂y ∂y<br />

2<br />

T T T<br />

∂ ∂ ∂<br />

+ v = α<br />

∂x ∂y ∂ y<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

(27)<br />

(28)<br />

(29)


Boundary conditions<br />

We have assumed that the flow is caused by the<br />

stretch<strong>in</strong>g of the wall and the buoyancy effect<br />

due to variable surface temperature<br />

u= U(), x v = 0, T= T +Δ T() x at y=<br />

0<br />

u→ 0, T= T as y→∞<br />

∞<br />

∞<br />

where T ∞ is the temperature of the ambient fluid.<br />

Here we consider the follow<strong>in</strong>g form of the<br />

surface temperature and the stretch<strong>in</strong>g velocity<br />

of the surface<br />

2<br />

0 0<br />

(30)<br />

Δ Tx () = Tx, Ux () = ux<br />

(31)


References<br />

1. Mixed convection flow of second grade fluid along a vertical stretch<strong>in</strong>g flat<br />

surface with variable surface temperature.<br />

M. Mushtaq, S. Asghar and M. A. Hossa<strong>in</strong><br />

Heat and Mass Transfer, Volume 43, Number 10 / August, 2007.<br />

2. Squeezed flow and heat transfer over a porous surface for viscous fluid.<br />

M. Mahmood, M.A. Hussa<strong>in</strong>, S.Asgar<br />

Heat and mass transfer .<br />

3. Hydro-magnetic squeezed flow of a viscous <strong>in</strong>compressible fluid past a<br />

wedge with permeable surface.<br />

M. Mahmood, M.A. Hussa<strong>in</strong>, S. Asgar,<br />

ZAMM.<br />

4. www.google.com.pk/images

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!