06.01.2015 Views

Enhanced Coalbed Methane Recovery - Advanced Resources ...

Enhanced Coalbed Methane Recovery - Advanced Resources ...

Enhanced Coalbed Methane Recovery - Advanced Resources ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Enhanced</strong> <strong>Coalbed</strong> <strong>Methane</strong> <strong>Recovery</strong><br />

presented by:<br />

Scott Reeves<br />

<strong>Advanced</strong> <strong>Resources</strong> International<br />

Houston, TX<br />

SPE Distinguished Lecture Series<br />

2002/2003 Season<br />

1<br />

<strong>Advanced</strong> <strong>Resources</strong> International


Outline<br />

• Introduction<br />

• ECBM Process<br />

• Pilot Projects<br />

• Economics<br />

• Closing Remarks<br />

2


Introduction<br />

• <strong>Enhanced</strong> coalbed methane recovery (ECBM)<br />

involves gas injection into coal to improve methane<br />

recovery, analogous to EOR.<br />

• Typical injection gases include nitrogen and carbon dioxide.<br />

• Relatively new technology - limited field data to gauge<br />

effectiveness.<br />

• Growing interest in carbon sequestration spurring<br />

considerable R&D into integrated ECBM<br />

recovery/carbon sequestration projects.<br />

3


Integrated Power Generation, CO 2<br />

Sequestration & ECBM Vision<br />

Power<br />

Plant<br />

CO 2 /N 2 CH 4<br />

CH 4<br />

CO 2 /N 2<br />

CH 4<br />

CH 4 Deep, Unmineable<br />

Coal<br />

CH 4<br />

CH 4<br />

CH 4<br />

CH 4<br />

CH 4<br />

CO 2 /N 2<br />

4


U.S. CO 2 -ECBM/Sequestration Potential<br />

CO 2<br />

Sequestration Potential (Gt)<br />

ECBM Potential (Tcf)<br />

Basin<br />

Replacement<br />

of Primary<br />

<strong>Recovery</strong><br />

Volume<br />

Injection<br />

for<br />

ECBM in<br />

“Commercial”<br />

Area<br />

Injection for<br />

CO 2<br />

Sequestra-tion<br />

in “Non-<br />

Commer-cial”<br />

Area<br />

Total<br />

(Gt)<br />

%<br />

of<br />

Total<br />

Incremental<br />

<strong>Recovery</strong><br />

in<br />

“Commercial”<br />

Area<br />

Incremental<br />

<strong>Recovery</strong><br />

in<br />

“Non-<br />

Commercial”<br />

Area<br />

Total<br />

(Tcf)<br />

%<br />

of<br />

Total<br />

N. Appalachia<br />

0.8<br />

0.3<br />

2.3<br />

3.4<br />

4%<br />

1.7<br />

13.0<br />

14.7<br />

10%<br />

C. Appalachia<br />

0.1<br />

0.0<br />

0.0<br />

0.1<br />

0%<br />

0.5<br />

0.0<br />

0.5<br />

0%<br />

Black Warrior<br />

0.4<br />

0.1<br />

0.4<br />

0.8<br />

1%<br />

1.0<br />

2.2<br />

3.1<br />

2%<br />

Illinois<br />

Cherokee/ Forest City<br />

0.1<br />

0.4<br />

0.0<br />

0.1<br />

1.2<br />

0.3<br />

1.4<br />

0.9<br />

2%<br />

1%<br />

0.2<br />

0.5<br />

3.8<br />

0.9<br />

4.0<br />

1.4<br />

3%<br />

1%<br />

Arkoma<br />

0.1<br />

0.0<br />

0.0<br />

0.1<br />

0%<br />

0.4<br />

0.1<br />

0.5<br />

0%<br />

Gulf Coast<br />

0.7<br />

0.4<br />

0.9<br />

1.9<br />

2%<br />

0.7<br />

1.7<br />

2.4<br />

2%<br />

San Juan<br />

7.0<br />

2.3<br />

1.1<br />

10.4<br />

12%<br />

11.4<br />

4.3<br />

15.7<br />

10%<br />

Raton<br />

0.4<br />

0.1<br />

0.0<br />

0.6<br />

1%<br />

1.4<br />

0.1<br />

1.5<br />

1%<br />

Piceance<br />

0.5<br />

0.3<br />

1.5<br />

2.4<br />

3%<br />

3.6<br />

10.5<br />

14.0<br />

9%<br />

Uinta<br />

1.6<br />

0.3<br />

0.0<br />

1.9<br />

2%<br />

0.1<br />

0.2<br />

0.3<br />

0%<br />

Greater Green River<br />

3.0<br />

1.3<br />

3.5<br />

7.9<br />

9%<br />

3.5<br />

15.0<br />

18.5<br />

12%<br />

Hanna-Carbon<br />

1.4<br />

0.6<br />

1.0<br />

3.0<br />

3%<br />

1.5<br />

2.4<br />

3.9<br />

3%<br />

Wind River<br />

0.8<br />

0.3<br />

0.3<br />

1.4<br />

2%<br />

0.8<br />

0.6<br />

1.5<br />

1%<br />

Powder River<br />

3.3<br />

1.8<br />

8.5<br />

13.6<br />

15%<br />

3.4<br />

16.2<br />

19.6<br />

13%<br />

Western Washington<br />

0.7<br />

0.3<br />

1.3<br />

2.3<br />

3%<br />

0.7<br />

2.9<br />

3.6<br />

2%<br />

Alaska<br />

18.0<br />

8.1<br />

11.7<br />

37.7<br />

42%<br />

19.2<br />

27.8<br />

47.0<br />

31%<br />

TOTALS<br />

39.3<br />

16.3<br />

34.0<br />

89.8<br />

100%<br />

50.6<br />

101.7<br />

152.2<br />

100%<br />

5


Outline<br />

• Introduction<br />

• ECBM Process<br />

• Pilot Projects<br />

• Economics<br />

• Closing Remarks<br />

6


Gas Storage in Coal<br />

(CBM 101)<br />

• Dual-porosity system (matrix and cleats)<br />

• Gas stored by adsorption on coal surfaces within<br />

matrix (mono-layer of gas molecules, density<br />

approaches that of liquid)<br />

• 1 lb coal (15 in 3 ) contains 100,000 – 1,000,000 ft 2<br />

of surface area<br />

• Pore throats of 20 –500 angstrom<br />

• Production by desorption, diffusion and Darcy<br />

flow (3 D’s of CBM production)<br />

7


Example Coal Sorption Isotherms<br />

700.0<br />

600.0<br />

CO 2<br />

/CH 4 ratio = 2:1<br />

N 2<br />

/CH 4<br />

ratio = 0.5/1<br />

San Juan Basin coal<br />

Carbon Dioxide<br />

Absolute Adsorption (SCF/ton)<br />

500.0<br />

400.0<br />

300.0<br />

200.0<br />

CO 2<br />

/N 2<br />

ratio = 4:1<br />

<strong>Methane</strong><br />

Nitrogen<br />

100.0<br />

0.0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Pressure (psia)<br />

8


Variability of CO 2 /CH 4 Ratio<br />

CO2/CH4 Sorption Ratio vs Coal Rank<br />

CO2/CH4 Ratio<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Sub HV HVA MV LV<br />

y = 2.5738x -1.5649<br />

R 2 = 0.9766<br />

0.36 0.56 0.76 0.96 1.16 1.36 1.56 1.76 1.96<br />

Coal Rank, Vro (%)<br />

100 psi<br />

1000 psi<br />

3000 psi<br />

9


N 2 -ECBM <strong>Recovery</strong> Mechanism<br />

• Inject N 2 into cleats.<br />

• Due to lower adsorptivity, high percentage of N 2<br />

remains free in cleats:<br />

‣Lowers CH 4 partial pressure<br />

‣Creates compositional disequilibrium between sorbed/free gas<br />

phases<br />

• <strong>Methane</strong> “stripped” from coal matrix into cleat<br />

system.<br />

• <strong>Methane</strong>/nitrogen produced at production well.<br />

• Rapid N 2 breakthrough expected.<br />

10


CO 2 -ECBM <strong>Recovery</strong> Mechanism<br />

• Inject CO 2 into cleats.<br />

• Due to high adsorptivity, CO 2 preferentially<br />

adsorbed into coal matrix.<br />

‣<strong>Methane</strong> displaced from sorption sites.<br />

• <strong>Methane</strong> produced at production well.<br />

• Efficient displacement process – slow CO 2<br />

breakthrough.<br />

11


Modeling Sensitivity Study<br />

1 2<br />

3<br />

• San Juan Basin setting<br />

(3000 ft, 40 ft coal, 10 md).<br />

• Inject C0 2 and N 2 at rates<br />

of 10 Mcfd/ft, 25 Mcfd/ft<br />

and 50 Mcfd/ft.<br />

• 15 year period.<br />

4<br />

Quarter 5-Spot Well Pattern<br />

5<br />

12


Gas Production Response – N 2 Injection<br />

10000<br />

70<br />

60<br />

Gas Rate, Mscfd<br />

1000<br />

Incremental Recoveries:<br />

10 Mcfd/ft – 0.6 Bcf (21%)<br />

25 Mcfd/ft – 1.1 Bcf (39%)<br />

50 Mcfd/ft – 1.6 Bcf (57%)<br />

50<br />

40<br />

30<br />

20<br />

Nitrogen Content, %<br />

10<br />

100<br />

0 1000 2000 3000 4000 5000<br />

0<br />

Days<br />

Base Case Injection @ 25 Mcfd/ft<br />

Injection @ 10 Mcfd/ft<br />

Injection @ 50Mcfd/ft<br />

13


Gas Production Response – CO 2 Injection<br />

10000<br />

Gas Rate, Mscfd<br />

1000<br />

Incremental Recoveries:<br />

10 Mcfd/ft – 0.1 Bcf (4%)<br />

25 Mcfd/ft – 0.4 Bcf (14%)<br />

50 Mcfd/ft – 0.8 Bcf (29%)<br />

•No CO 2<br />

breakthrough<br />

•CO 2<br />

/CH 4<br />

ratio is 2:1 whereas N 2<br />

/CH 4<br />

ratio is 0.5/1<br />

100<br />

0 1000 2000 3000 4000 5000<br />

Days<br />

Base Case Injection @ 25 Mcfd/ft<br />

Injection @ 10 Mcfd/ft<br />

Injection @ 50Mcfd/ft<br />

14


Outline<br />

• Introduction<br />

• ECBM Process<br />

• Pilot Projects<br />

• Economics<br />

• Closing Remarks<br />

15


Only Two “Large-Scale” Field<br />

Tests Exists Worldwide<br />

• San Juan Basin, Upper Cretaceous Fruitland Coal<br />

• Allison Unit<br />

• Burlington <strong>Resources</strong><br />

• Carbon dioxide injection<br />

• 16 producers<br />

• 4 injectors<br />

• 1 pressure observation well<br />

• Tiffany Unit<br />

• BP<br />

• Nitrogen injection<br />

• 34 producers<br />

• 12 injectors<br />

16


Field Sites, San Juan Basin<br />

LA PLATA CO.<br />

ARCHULETA<br />

COLORADO<br />

NEW MEXICO<br />

Durango<br />

Florida River<br />

Plant<br />

F A I R W A Y<br />

N2 Pipeline<br />

Tiffany Unit<br />

Pagosa<br />

Springs<br />

San Juan<br />

Basin Outline<br />

Allison Unit<br />

Dulce<br />

Aztec<br />

Farmington<br />

Bloomfield<br />

R<br />

17


Allison Unit Base Map<br />

61<br />

104<br />

111<br />

12M<br />

106<br />

112<br />

101<br />

130<br />

142<br />

114<br />

POW#2<br />

115<br />

108<br />

131<br />

141<br />

113<br />

140<br />

132<br />

143<br />

120<br />

102<br />

121<br />

119<br />

62<br />

18


Well Configurations<br />

Injector<br />

Producer<br />

19


Individual Well Gas Rate, Mcf/d<br />

Allison Production History<br />

2,000,000<br />

1,800,000<br />

1,600,000<br />

1,400,000<br />

16 producers, 4 injectors, 1 POW<br />

Injectivity reduction<br />

Line pressures reduced, wells recavitated, wells<br />

reconfigured, onsite compression installed<br />

Peak @ +/- 57 MMcfd<br />

4,000<br />

3,500<br />

3,000<br />

1,200,000<br />

2,500<br />

1,000,000<br />

2,000<br />

800,000<br />

1,500<br />

600,000<br />

400,000<br />

Gas Rate, Mcf/mo<br />

CO2 Injection Rate, Mcf/mo<br />

1,000<br />

Well Gas Rate, Mcf/d<br />

200,000<br />

+/- 3 1/2 Mcfd<br />

500<br />

0<br />

0<br />

Jan-89<br />

Jul-89<br />

Jan-90<br />

Jul-90<br />

Jan-91<br />

Jul-91<br />

Jan-92<br />

Jul-92<br />

Jan-93<br />

Jul-93<br />

Jan-94<br />

Jul-94<br />

Jan-95<br />

Jul-95<br />

Jan-96<br />

Jul-96<br />

Jan-97<br />

Jul-97<br />

Jan-98<br />

Jul-98<br />

Jan-99<br />

Jul-99<br />

Jan-00<br />

Jul-00<br />

Jan-01<br />

Jul-01<br />

Date<br />

20<br />

Rates, Mcf/mo


Site Description<br />

Property<br />

Value<br />

Average Depth to Top Coal<br />

3100 feet<br />

No. Coal Intervals<br />

3 (Yellow, Blue, Purple)<br />

Average Total Net Thickness<br />

Permeability<br />

43 feet<br />

100 md<br />

Yellow – 22 ft<br />

Blue – 10 ft<br />

Purple – 11 ft<br />

Initial Pressure<br />

1650 psi<br />

Temperature<br />

120°F<br />

21


Progression of CO 2 Displacement<br />

(@ mid-2002)<br />

Face<br />

Cleat<br />

Butt<br />

Cleat<br />

N<br />

22


Incremental <strong>Recovery</strong><br />

Case<br />

Total <strong>Methane</strong><br />

<strong>Recovery</strong> (Bcf)<br />

Incremental<br />

<strong>Recovery</strong><br />

(Bcf)<br />

Total CO 2<br />

Injection<br />

(Bcf)<br />

CO 2<br />

Production<br />

(Bcf)<br />

CO 2<br />

/CH 4<br />

Ratio<br />

W/o CO 2<br />

injection<br />

100.5*<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

W/CO 2<br />

injection<br />

102.1<br />

1.6<br />

6.4**<br />

1.2<br />

3.2<br />

*6.3 Bcf/well<br />

** 20 Mcfd/ft<br />

Small incremental recovery due to limited injection volumes.<br />

INJECTIVITY IS CRITICAL!<br />

Note: OGIP for model = 152 Bcf.<br />

23


Tiffany Unit Base Map<br />

Previous Study Area<br />

Producer-to-Injector<br />

Conversions<br />

24


Well Configurations<br />

Producer Well<br />

Multiple Injector Wells<br />

25


Tiffany Production History<br />

1,000,000<br />

34 producers, 12 injectors<br />

Peak @ 26 MMcfd<br />

+/- 5MMcfd<br />

100,000<br />

10,000<br />

Injection initiated<br />

1,000<br />

100<br />

Gas Rate, Mcf/mo<br />

N2 Injection Rate,<br />

Mcf/mo<br />

Suspension periods<br />

Max Inj Rate = 26 MMcfd<br />

Sep-83<br />

Sep-84<br />

Sep-85<br />

Sep-86<br />

Sep-87<br />

Sep-88<br />

Sep-89<br />

Sep-90<br />

Sep-91<br />

Sep-92<br />

Sep-93<br />

Sep-94<br />

Sep-95<br />

Sep-96<br />

Sep-97<br />

Sep-98<br />

Sep-99<br />

Sep-00<br />

Sep-01<br />

Sep-02<br />

Date<br />

26<br />

Gas Rates, Mcf/mo


Site Description<br />

Property<br />

Value<br />

Average Depth to Top Coal (A)<br />

2970 feet<br />

No. Coal Intervals<br />

7 total (A, A2, B, C, D, E, F)<br />

4 main (B, C, D, E)<br />

Average Net Thickness<br />

Permeability<br />

47 feet<br />


Progression of N 2 Displacement<br />

(@ mid-2002)<br />

Face<br />

Cleat<br />

Butt<br />

Cleat<br />

N<br />

28


Current Field Results<br />

(through mid-2002)<br />

Case<br />

Total <strong>Methane</strong><br />

<strong>Recovery</strong> (Bcf)<br />

Incremental<br />

<strong>Recovery</strong><br />

(Bcf)<br />

Total N 2<br />

Injection<br />

(Bcf)<br />

N 2<br />

Production<br />

(Bcf)<br />

N 2<br />

/CH 4<br />

Ratio<br />

W/o N 2<br />

injection<br />

*35.3<br />

n/a<br />

n/a<br />

n/a<br />

n/a<br />

W/N 2<br />

injection<br />

45.8<br />

10.5<br />

14.0**<br />

1.3<br />

1.2<br />

*1.0 Bcf/well<br />

** 46 Mcfd/ft<br />

At N 2<br />

/CH 4<br />

ratio of 0.75:1 and reproduced volume<br />

of 25%, ultimate incremental recovery estimated<br />

to be +/- 14 Bcf or 40% improvement over primary.<br />

Note: OGIP for model = 438 Bcf.<br />

29


Summary of Field Results<br />

• Field results are in general agreement with theoretical<br />

understanding; reservoir models can reasonably<br />

replicate/predict field behavior.<br />

• Low-incremental recovery with CO 2 injection at<br />

Allison due to low injection volumes.<br />

• CO 2 injectivity key success driver; strong evidence that<br />

coal permeability (and injectivity) reduced with CO 2<br />

injection.<br />

• Incremental recoveries with N 2 injection at Tiffany<br />

currently; estimated to provide 40% improvement over<br />

primary.<br />

30


Outline<br />

• Introduction<br />

• ECBM Process<br />

• Pilot Projects<br />

• Economics<br />

• Closing Remarks<br />

31


Hypothetical Field Setting<br />

(US onshore)<br />

Example CBM Basin<br />

Well Injection Pattern<br />

(4 Sections)<br />

Sec. 6 Sec. 5<br />

Sec.7 Sec. 8<br />

Conventional <strong>Recovery</strong> – 48 Bcf<br />

(2.5 Bcf/well)<br />

Incremental <strong>Recovery</strong> – 16 Bcf<br />

(1 Bcf/well)<br />

32


Economics of CO 2 ECBM<br />

US $/Mcf<br />

Hub Gas Price $3.00<br />

Less: Basin Differential ($0.30)<br />

BTU Adjustment (@ 5%) ($0.15)<br />

Wellhead Netback $2.55<br />

Less: Royalty/Prod. Taxes (20%) ($0.51)<br />

O&M/Gas Processing ($0.50)<br />

Gross Margin $1.54<br />

Capital Costs (1) ($0.25)<br />

CO 2<br />

Costs (@ ratio of 3.0 to 1) (2) ($0.90)<br />

Net Margin $0.39<br />

(1) Capital Costs = $500,000 *4 (inj wells) = $2,000,000/16 Bcfg<br />

= $0.13/Mcfg * 2 = $0.25/Mcfg<br />

(2) CO 2 Costs = $0.30/Mcf * 3.0 = $0.90/Mcf (CO 2 )<br />

33


Economics of N 2 ECBM<br />

US $/Mcf<br />

Hub Gas Price $3.00<br />

Less: Basin Differential ($0.30)<br />

BTU Adjustment (@5%) ($0.15)<br />

Wellhead Netback $2.55<br />

Less: Royalty/Prod. Taxes (20%) ($0.51)<br />

O&M/Gas Processing ($1.00) (double over CO 2<br />

case)<br />

Gross Margin $1.04<br />

Capital Costs (1) ($0.25)<br />

N 2 Costs (@ ratio of 0.5 to 1) (2) ($0.30)<br />

Net Margin $0.49<br />

(1) Capital Costs = $500,000 * 4 (inj. wells) = $2,000,000/16 Bcfg<br />

= $0.13/Mcfg * 2 = $0.25/Mcfg<br />

(2) N 2<br />

Costs = $0.60/Mcf * 0.5 = $0.30/Mcf (N 2<br />

)<br />

34


ECBM Economic Considerations<br />

• N 2 – ECBM appears favorable, but early<br />

breakthrough requires costly post-production gas<br />

processing.<br />

• CO 2 - ECBM also appears favorable, but<br />

maintaining injectivity a key success driver.<br />

• More experience required to validate & optimize<br />

economic performance.<br />

• CO 2 /N 2 mixture may be optimum.<br />

‣ High N 2 concentrations early for rapid methane recovery<br />

‣ Increasing CO 2 concentrations later for efficient methane<br />

displacement.<br />

35


Outline<br />

• Introduction<br />

• ECBM Process<br />

• Pilot Projects<br />

• Economics<br />

• Closing Remarks<br />

36


Closing Remarks<br />

• ECBM recovery appears to hold considerable<br />

promise; on the verge of commerciality with a bright<br />

future.<br />

• CO 2 sequestration economic drivers (carbon credits)<br />

will substantially improve financial performance and<br />

accelerate commercial adoption.<br />

• In U.S., CO 2 -ECBM/sequestration potential is<br />

substantial; recently assessed at 90 Gt CO 2 and 150<br />

Tcf of incremental gas recovery.<br />

37


Closing Remarks<br />

• More work is needed to economically optimize the process.<br />

‣N 2 /CO 2 mixtures<br />

‣CO 2 injectivity<br />

‣Spacing, patterns, rates, etc.<br />

‣Reservoir settings (coal rank)<br />

• Reservoir response is generally consistent with theoretical<br />

understanding of CO 2 /N 2 processes.<br />

‣Reasonable predictions of reservoir response possible.<br />

‣Informed investment decisions.<br />

• Acknowledgements:<br />

‣U.S. Department of Energy<br />

‣Burlington <strong>Resources</strong><br />

‣BP America<br />

• For more information:<br />

www.coal-seq.com<br />

38


<strong>Enhanced</strong> <strong>Coalbed</strong> <strong>Methane</strong> <strong>Recovery</strong><br />

presented by:<br />

Scott Reeves<br />

<strong>Advanced</strong> <strong>Resources</strong> International<br />

Houston, TX<br />

SPE Distinguished Lecture Series<br />

2002/2003 Season<br />

39<br />

<strong>Advanced</strong> <strong>Resources</strong> International


Well #132 Performance<br />

4000<br />

3500<br />

CH 4 <strong>Recovery</strong> w/o CO 2 injection = 6.1 Bcf<br />

CH 4 <strong>Recovery</strong> w/ CO 2 injection = 6.9 Bcf<br />

CH 4 Incremental <strong>Recovery</strong> = 0.8 Bcf<br />

3000<br />

CH4 Rate, Mscf<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000<br />

Days<br />

CO2 Injection<br />

No CO2 Injection<br />

40


Nitrogen Content of Produced Gas<br />

14<br />

12<br />

Average = 12.3 %<br />

10<br />

No. Wells<br />

8<br />

6<br />

4<br />

2<br />

0<br />

< 1 1 - 10 10 - 20 20 - 30 30 - 40 40 - 50 > 50<br />

Last N2 Concentration (%)<br />

41


Matrix Shrinkage/Swelling<br />

Source: “An Investigation of the Effect of Gas Desorption on Coal Permeability”, paper 8923, 1989 <strong>Coalbed</strong> <strong>Methane</strong> Symposium.<br />

42


Relevant Formulas*<br />

Pressure-Dependence<br />

Shrinkage/Swelling<br />

φ = φ i + φ i C p (P-P i ) + (1 - φ i ) C m dP i<br />

dC i<br />

(C-C i )<br />

k =<br />

n<br />

φ n = +/- 3<br />

φi<br />

*Used in COMET2. Alternative formulation presented by Palmer & Mansoori; SPE 36737, 1996.<br />

43


Permeability Changes with Net Stress, Gas<br />

Concentration, and Sorptive Capacity<br />

Matrix Shrinkage<br />

Pressure Dependence<br />

250<br />

Permeability, md<br />

200<br />

150<br />

100<br />

50<br />

Sorption Capacity<br />

<strong>Methane</strong><br />

Carbon Dioxide<br />

0<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Pressure, psi<br />

44


Typical Injection Profile,<br />

Allison Unit<br />

Well #143<br />

60000<br />

2500<br />

2300<br />

50000<br />

2100<br />

Pressure<br />

40000<br />

30000<br />

CO2, Mcf/mo<br />

1900<br />

1700<br />

1500<br />

20000<br />

10000<br />

0<br />

Jan-89<br />

Jul-89<br />

Jan-90<br />

Jul-90<br />

Jan-91<br />

Jul-91<br />

Jan-92<br />

Jul-92<br />

Jan-93<br />

Jul-93<br />

Jan-94<br />

Jul-94<br />

Jan-95<br />

Jul-95<br />

Jan-96<br />

Jul-96<br />

Jan-97<br />

Jul-97<br />

Jan-98<br />

Jul-98<br />

Jan-99<br />

Jul-99<br />

Jan-00<br />

Jul-00<br />

Rate<br />

BHP, psi<br />

1300<br />

1100<br />

900<br />

700<br />

500<br />

Date<br />

45


Permeability History for Injector<br />

250<br />

Start<br />

Permeability, md<br />

200<br />

150<br />

100<br />

50<br />

Continued<br />

Injection<br />

Depletion<br />

Displace w/ CO2<br />

0<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Pressure, psi<br />

46


CO 2 Sorption Behavior<br />

(Pc=1073psi, Tc=88ºF)<br />

Source: SPE 29194: “Adsorption of Pure <strong>Methane</strong>, Nitrogen and Carbon Dioxide and their Binary Mixtures on Wet Fruitland Coal”, 1994.<br />

47


Pure Gas Gibbs Adsorption on<br />

Tiffany Coals at 130° F<br />

Gibbs Adsorption (SCF/ton)<br />

600.0<br />

500.0<br />

400.0<br />

300.0<br />

200.0<br />

N abs<br />

= N Gibbs<br />

1- ρ gas<br />

ρ ads<br />

N2 on Mixed Coal<br />

CH4 on Well #1<br />

CH4 on Well #10<br />

CH4 on Mixed Coal<br />

CO2 on Mixed Coal<br />

100.0<br />

0.0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Pressure (psia)<br />

48


CO 2 Absolute Adsorption on Tiffany<br />

Mixed Coal Sample Using Different<br />

Adsorbed-Phase Densities<br />

700<br />

600<br />

Aboslute Adsorption (SCF/ton)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Adsorbed Phase Density(g/cc)<br />

1.18<br />

1.25<br />

1.40<br />

Saturated liquid density at triple point<br />

ZGR estimate<br />

Graphical estimate<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Pressure (psia)<br />

49


Multi-Component Sorption<br />

Behavior<br />

Extended Langmuir Theory<br />

V Li p i<br />

, i = 1, 2, 3,…, n.<br />

C i (p i ) =<br />

n<br />

p<br />

p<br />

Li 1 + Σ<br />

j=1<br />

p L<br />

Other Langmuir Models:<br />

Equations of State:<br />

Simplified Local Density Models:<br />

Loading Ratio Correlation (LRC), Real Adsorbed Solution (RAS),<br />

Ideal Adsorbed Solution (IAS)<br />

Van der Walls (VDW), Eyring, Zhou-Gasem-Robinson (EOS-S, PGR)<br />

Flat Surface (PR-SLD), Slit (PR-SLD)<br />

50


Accuracy of Model Predictions for<br />

Pure Gas Adsorption<br />

Quality of Fit, % AAD, for Specified Model<br />

Component<br />

Langmuir<br />

LRC<br />

(n = 0.9)<br />

ZGR-EOS<br />

Experimental<br />

Error<br />

<strong>Methane</strong><br />

2.6<br />

2.3<br />

3.0<br />

3.0<br />

Nitrogen<br />

3.5<br />

2.3<br />

2.3<br />

6.0<br />

Carbon<br />

Dioxide<br />

2.0<br />

1.8<br />

2.1<br />

7.0<br />

51


Accuracy of Model Predictions for<br />

Binary/Ternary Gas Adsorption<br />

(based on pure-gas adsorption data)<br />

LRC<br />

Mixture,<br />

Langmuir<br />

(n=0.9)<br />

ZGR-EOS<br />

Experimental Error<br />

(Feed Mole %)<br />

% AAD<br />

% AAD<br />

% AAD<br />

% AAD<br />

CH 4 –N 2 :<br />

CH 4 (50%)<br />

N 2 (50%)<br />

Total<br />

15.8<br />

6.2<br />

12.2<br />

12.0<br />

9.3<br />

8.2<br />

11.9<br />

10.0<br />

11.5<br />

7.0<br />

17.0<br />

7.0<br />

CH 4 –CO 2 :<br />

CH 4 (40%)<br />

CO 2 (60%)<br />

Total<br />

25.9<br />

9.0<br />

1.2<br />

21.0<br />

10.5<br />

2.2<br />

27.0<br />

10.4<br />

1.4<br />

7.0<br />

6.0<br />

4.0<br />

N 2 –CO 2 :<br />

N 2 (20%)<br />

CO 2 (80%)<br />

Total<br />

44.9<br />

5.2<br />

3.5<br />

37.3<br />

5.7<br />

3.8<br />

48.7<br />

4.9<br />

3.5<br />

29.0<br />

6.0<br />

5.0<br />

N 2 –CH 4 -CO 2 :<br />

N 2 (10%)<br />

CH 4 (40%)<br />

CO 2 (50%)<br />

Total<br />

47.8<br />

20.7<br />

13.2<br />

2.9<br />

44.5<br />

5.2<br />

15.8<br />

5.4<br />

55.9<br />

21.6<br />

17.6<br />

4.3<br />

14.0<br />

27.0<br />

5.0<br />

5.0<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!